1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
|
/* $OpenBSD: spdmem.c,v 1.32 2009/05/23 09:14:39 jsg Exp $ */
/* $NetBSD: spdmem.c,v 1.3 2007/09/20 23:09:59 xtraeme Exp $ */
/*
* Copyright (c) 2007 Jonathan Gray <jsg@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Copyright (c) 2007 Nicolas Joly
* Copyright (c) 2007 Paul Goyette
* Copyright (c) 2007 Tobias Nygren
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Serial Presence Detect (SPD) memory identification
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <dev/i2c/i2cvar.h>
/* Encodings of the size used/total byte for certain memory types */
#define SPDMEM_SPDSIZE_MASK 0x0F /* SPD EEPROM Size */
#define SPDMEM_SPDLEN_128 0x00 /* SPD EEPROM Sizes */
#define SPDMEM_SPDLEN_176 0x10
#define SPDMEM_SPDLEN_256 0x20
#define SPDMEM_SPDLEN_MASK 0x70 /* Bits 4 - 6 */
#define SPDMEM_SPDCRC_116 0x80 /* CRC Bytes covered */
#define SPDMEM_SPDCRC_125 0x00
#define SPDMEM_SPDCRC_MASK 0x80 /* Bit 7 */
/* possible values for the memory type */
#define SPDMEM_MEMTYPE_FPM 0x01
#define SPDMEM_MEMTYPE_EDO 0x02
#define SPDMEM_MEMTYPE_PIPE_NIBBLE 0x03
#define SPDMEM_MEMTYPE_SDRAM 0x04
#define SPDMEM_MEMTYPE_ROM 0x05
#define SPDMEM_MEMTYPE_DDRSGRAM 0x06
#define SPDMEM_MEMTYPE_DDRSDRAM 0x07
#define SPDMEM_MEMTYPE_DDR2SDRAM 0x08
#define SPDMEM_MEMTYPE_FBDIMM 0x09
#define SPDMEM_MEMTYPE_FBDIMM_PROBE 0x0a
#define SPDMEM_MEMTYPE_DDR3SDRAM 0x0b
#define SPDMEM_MEMTYPE_NONE 0xff
#define SPDMEM_MEMTYPE_DIRECT_RAMBUS 0x01
#define SPDMEM_MEMTYPE_RAMBUS 0x11
/* possible values for the supply voltage */
#define SPDMEM_VOLTAGE_TTL_5V 0x00
#define SPDMEM_VOLTAGE_TTL_LV 0x01
#define SPDMEM_VOLTAGE_HSTTL_1_5V 0x02
#define SPDMEM_VOLTAGE_SSTL_3_3V 0x03
#define SPDMEM_VOLTAGE_SSTL_2_5V 0x04
#define SPDMEM_VOLTAGE_SSTL_1_8V 0x05
/* possible values for module configuration */
#define SPDMEM_MODCONFIG_PARITY 0x01
#define SPDMEM_MODCONFIG_ECC 0x02
/* for DDR2, module configuration is a bit-mask field */
#define SPDMEM_MODCONFIG_HAS_DATA_PARITY 0x01
#define SPDMEM_MODCONFIG_HAS_DATA_ECC 0x02
#define SPDMEM_MODCONFIG_HAS_ADDR_CMD_PARITY 0x04
/* possible values for the refresh field */
#define SPDMEM_REFRESH_STD 0x00
#define SPDMEM_REFRESH_QUARTER 0x01
#define SPDMEM_REFRESH_HALF 0x02
#define SPDMEM_REFRESH_TWOX 0x03
#define SPDMEM_REFRESH_FOURX 0x04
#define SPDMEM_REFRESH_EIGHTX 0x05
#define SPDMEM_REFRESH_SELFREFRESH 0x80
/* superset types */
#define SPDMEM_SUPERSET_ESDRAM 0x01
#define SPDMEM_SUPERSET_DDR_ESDRAM 0x02
#define SPDMEM_SUPERSET_EDO_PEM 0x03
#define SPDMEM_SUPERSET_SDR_PEM 0x04
/* FPM and EDO DIMMS */
#define SPDMEM_FPM_ROWS 0x00
#define SPDMEM_FPM_COLS 0x01
#define SPDMEM_FPM_BANKS 0x02
#define SPDMEM_FPM_CONFIG 0x08
#define SPDMEM_FPM_REFRESH 0x09
#define SPDMEM_FPM_SUPERSET 0x0c
/* PC66/PC100/PC133 SDRAM */
#define SPDMEM_SDR_ROWS 0x00
#define SPDMEM_SDR_COLS 0x01
#define SPDMEM_SDR_BANKS 0x02
#define SPDMEM_SDR_CYCLE 0x06
#define SPDMEM_SDR_BANKS_PER_CHIP 0x0e
#define SPDMEM_SDR_MOD_ATTRIB 0x12
#define SPDMEM_SDR_SUPERSET 0x1d
#define SPDMEM_SDR_FREQUENCY 126
#define SPDMEM_SDR_CAS 127
#define SPDMEM_SDR_FREQ_66 0x66
#define SPDMEM_SDR_FREQ_100 0x64
#define SPDMEM_SDR_FREQ_133 0x85
#define SPDMEM_SDR_CAS2 (1 << 1)
#define SPDMEM_SDR_CAS3 (1 << 2)
/* Rambus Direct DRAM */
#define SPDMEM_RDR_MODULE_TYPE 0x00
#define SPDMEM_RDR_ROWS_COLS 0x01
#define SPDMEM_RDR_BANK 0x02
#define SPDMEM_RDR_TYPE_RIMM 1
#define SPDMEM_RDR_TYPE_SORIMM 2
#define SPDMEM_RDR_TYPE_EMBED 3
#define SPDMEM_RDR_TYPE_RIMM32 4
/* Dual Data Rate SDRAM */
#define SPDMEM_DDR_ROWS 0x00
#define SPDMEM_DDR_COLS 0x01
#define SPDMEM_DDR_RANKS 0x02
#define SPDMEM_DDR_DATAWIDTH 0x03
#define SPDMEM_DDR_VOLTAGE 0x05
#define SPDMEM_DDR_CYCLE 0x06
#define SPDMEM_DDR_REFRESH 0x09
#define SPDMEM_DDR_BANKS_PER_CHIP 0x0e
#define SPDMEM_DDR_CAS 0x0f
#define SPDMEM_DDR_MOD_ATTRIB 0x12
#define SPDMEM_DDR_SUPERSET 0x1d
#define SPDMEM_DDR_ATTRIB_REG (1 << 1)
/* Dual Data Rate 2 SDRAM */
#define SPDMEM_DDR2_ROWS 0x00
#define SPDMEM_DDR2_COLS 0x01
#define SPDMEM_DDR2_RANKS 0x02
#define SPDMEM_DDR2_DATAWIDTH 0x03
#define SPDMEM_DDR2_VOLTAGE 0x05
#define SPDMEM_DDR2_CYCLE 0x06
#define SPDMEM_DDR2_DIMMTYPE 0x11
#define SPDMEM_DDR2_RANK_DENSITY 0x1c
#define SPDMEM_DDR2_TYPE_REGMASK ((1 << 4) | (1 << 0))
#define SPDMEM_DDR2_SODIMM (1 << 2)
#define SPDMEM_DDR2_MICRO_DIMM (1 << 3)
#define SPDMEM_DDR2_MINI_RDIMM (1 << 4)
#define SPDMEM_DDR2_MINI_UDIMM (1 << 5)
/* DDR2 FB-DIMM SDRAM */
#define SPDMEM_FBDIMM_ADDR 0x01
#define SPDMEM_FBDIMM_RANKS 0x04
#define SPDMEM_FBDIMM_MTB_DIVIDEND 0x06
#define SPDMEM_FBDIMM_MTB_DIVISOR 0x07
#define SPDMEM_FBDIMM_PROTO 0x4e
#define SPDMEM_FBDIMM_RANKS_WIDTH 0x07
#define SPDMEM_FBDIMM_ADDR_BANKS 0x02
#define SPDMEM_FBDIMM_ADDR_COL 0x0c
#define SPDMEM_FBDIMM_ADDR_COL_SHIFT 2
#define SPDMEM_FBDIMM_ADDR_ROW 0xe0
#define SPDMEM_FBDIMM_ADDR_ROW_SHIFT 5
#define SPDMEM_FBDIMM_PROTO_ECC (1 << 1)
/* Dual Data Rate 3 SDRAM */
#define SPDMEM_DDR3_MODTYPE 0x00
#define SPDMEM_DDR3_DENSITY 0x01
#define SPDMEM_DDR3_MOD_ORG 0x04
#define SPDMEM_DDR3_DATAWIDTH 0x05
#define SPDMEM_DDR3_MTB_DIVIDEND 0x07
#define SPDMEM_DDR3_MTB_DIVISOR 0x08
#define SPDMEM_DDR3_TCKMIN 0x09
#define SPDMEM_DDR3_THERMAL 0x1d
#define SPDMEM_DDR3_DENSITY_CAPMASK 0x0f
#define SPDMEM_DDR3_MOD_ORG_CHIPWIDTH_MASK 0x07
#define SPDMEM_DDR3_MOD_ORG_BANKS_SHIFT 3
#define SPDMEM_DDR3_MOD_ORG_BANKS_MASK 0x07
#define SPDMEM_DDR3_DATAWIDTH_ECCMASK (1 << 3)
#define SPDMEM_DDR3_DATAWIDTH_PRIMASK 0x07
#define SPDMEM_DDR3_THERMAL_PRESENT (1 << 7)
#define SPDMEM_DDR3_RDIMM 0x01
#define SPDMEM_DDR3_UDIMM 0x02
#define SPDMEM_DDR3_SODIMM 0x03
#define SPDMEM_DDR3_MICRO_DIMM 0x04
#define SPDMEM_DDR3_MINI_RDIMM 0x05
#define SPDMEM_DDR3_MINI_UDIMM 0x06
static const uint8_t ddr2_cycle_tenths[] = {
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 25, 33, 66, 75, 0, 0
};
struct spdmem {
uint8_t sm_len;
uint8_t sm_size;
uint8_t sm_type;
uint8_t sm_data[60];
uint8_t sm_cksum;
} __packed;
#define SPDMEM_TYPE_MAXLEN 16
struct spdmem_softc {
struct device sc_dev;
i2c_tag_t sc_tag;
i2c_addr_t sc_addr;
struct spdmem sc_spd_data;
};
uint16_t spdmem_crc16(struct spdmem_softc *, int);
int spdmem_match(struct device *, void *, void *);
void spdmem_attach(struct device *, struct device *, void *);
uint8_t spdmem_read(struct spdmem_softc *, uint8_t);
void spdmem_sdram_decode(struct spdmem_softc *, struct spdmem *);
void spdmem_rdr_decode(struct spdmem_softc *, struct spdmem *);
void spdmem_ddr_decode(struct spdmem_softc *, struct spdmem *);
void spdmem_ddr2_decode(struct spdmem_softc *, struct spdmem *);
void spdmem_fbdimm_decode(struct spdmem_softc *, struct spdmem *);
void spdmem_ddr3_decode(struct spdmem_softc *, struct spdmem *);
struct cfattach spdmem_ca = {
sizeof(struct spdmem_softc), spdmem_match, spdmem_attach
};
struct cfdriver spdmem_cd = {
NULL, "spdmem", DV_DULL
};
#define IS_RAMBUS_TYPE (s->sm_len < 4)
static const char *spdmem_basic_types[] = {
"unknown",
"FPM",
"EDO",
"Pipelined Nibble",
"SDRAM",
"ROM",
"DDR SGRAM",
"DDR SDRAM",
"DDR2 SDRAM",
"DDR2 SDRAM FB-DIMM",
"DDR2 SDRAM FB-DIMM Probe",
"DDR3 SDRAM"
};
static const char *spdmem_superset_types[] = {
"unknown",
"ESDRAM",
"DDR ESDRAM",
"PEM EDO",
"PEM SDRAM"
};
static const char *spdmem_parity_types[] = {
"non-parity",
"data parity",
"ECC",
"data parity and ECC",
"cmd/addr parity",
"cmd/addr/data parity",
"cmd/addr parity, data ECC",
"cmd/addr/data parity, data ECC"
};
/* CRC functions used for certain memory types */
uint16_t
spdmem_crc16(struct spdmem_softc *sc, int count)
{
uint16_t crc;
int i, j;
uint8_t val;
crc = 0;
for (j = 0; j <= count; j++) {
val = spdmem_read(sc, j);
crc = crc ^ val << 8;
for (i = 0; i < 8; ++i)
if (crc & 0x8000)
crc = crc << 1 ^ 0x1021;
else
crc = crc << 1;
}
return (crc & 0xFFFF);
}
int
spdmem_match(struct device *parent, void *match, void *aux)
{
struct i2c_attach_args *ia = aux;
struct spdmem_softc sc;
uint8_t i, val, type;
int cksum = 0;
int spd_len, spd_crc_cover;
uint16_t crc_calc, crc_spd;
/* clever attachments like openfirmware informed macppc */
if (strcmp(ia->ia_name, "spd") == 0)
return (1);
/* dumb, need sanity checks */
if (strcmp(ia->ia_name, "eeprom") != 0)
return (0);
sc.sc_tag = ia->ia_tag;
sc.sc_addr = ia->ia_addr;
type = spdmem_read(&sc, 2);
/* For older memory types, validate the checksum over 1st 63 bytes */
if (type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
for (i = 0; i < 63; i++)
cksum += spdmem_read(&sc, i);
val = spdmem_read(&sc, 63);
if (cksum == 0 || (cksum & 0xff) != val) {
return 0;
} else
return 1;
}
/* For DDR3 and FBDIMM, verify the CRC */
else if (type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
spd_len = spdmem_read(&sc, 0);
if (spd_len && SPDMEM_SPDCRC_116)
spd_crc_cover = 116;
else
spd_crc_cover = 125;
switch (spd_len & SPDMEM_SPDLEN_MASK) {
case SPDMEM_SPDLEN_128:
spd_len = 128;
break;
case SPDMEM_SPDLEN_176:
spd_len = 176;
break;
case SPDMEM_SPDLEN_256:
spd_len = 256;
break;
default:
return 0;
}
if (spd_crc_cover > spd_len)
return 0;
crc_calc = spdmem_crc16(&sc, spd_crc_cover);
crc_spd = spdmem_read(&sc, 127) << 8;
crc_spd |= spdmem_read(&sc, 126);
if (crc_calc != crc_spd) {
return 0;
}
return 1;
}
return (0);
}
void
spdmem_sdram_decode(struct spdmem_softc *sc, struct spdmem *s)
{
const char *type;
int dimm_size, p_clk;
int num_banks, per_chip;
uint8_t rows, cols;
type = spdmem_basic_types[s->sm_type];
if (s->sm_data[SPDMEM_SDR_SUPERSET] == SPDMEM_SUPERSET_SDR_PEM)
type = spdmem_superset_types[SPDMEM_SUPERSET_SDR_PEM];
if (s->sm_data[SPDMEM_SDR_SUPERSET] == SPDMEM_SUPERSET_ESDRAM)
type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
num_banks = s->sm_data[SPDMEM_SDR_BANKS];
per_chip = s->sm_data[SPDMEM_SDR_BANKS_PER_CHIP];
rows = s->sm_data[SPDMEM_SDR_ROWS] & 0x0f;
cols = s->sm_data[SPDMEM_SDR_COLS] & 0x0f;
dimm_size = (1 << (rows + cols - 17)) * num_banks * per_chip;
if (dimm_size > 0) {
if (dimm_size < 1024)
printf(" %dMB", dimm_size);
else
printf(" %dGB", dimm_size / 1024);
}
printf(" %s", type);
if (s->sm_data[SPDMEM_DDR_MOD_ATTRIB] & SPDMEM_DDR_ATTRIB_REG)
printf(" registered");
if (s->sm_data[SPDMEM_FPM_CONFIG] < 8)
printf(" %s",
spdmem_parity_types[s->sm_data[SPDMEM_FPM_CONFIG]]);
p_clk = 66;
if (s->sm_len >= 128) {
switch (spdmem_read(sc, SPDMEM_SDR_FREQUENCY)) {
case SPDMEM_SDR_FREQ_100:
case SPDMEM_SDR_FREQ_133:
/* We need to check ns to decide here */
if (s->sm_data[SPDMEM_SDR_CYCLE] < 0x80)
p_clk = 133;
else
p_clk = 100;
break;
case SPDMEM_SDR_FREQ_66:
default:
p_clk = 66;
break;
}
}
printf(" PC%d", p_clk);
/* Print CAS latency */
if (s->sm_len < 128)
return;
if (spdmem_read(sc, SPDMEM_SDR_CAS) & SPDMEM_SDR_CAS2)
printf("CL2");
else if (spdmem_read(sc, SPDMEM_SDR_CAS) & SPDMEM_SDR_CAS3)
printf("CL3");
}
void
spdmem_rdr_decode(struct spdmem_softc *sc, struct spdmem *s)
{
int rimm_size;
uint8_t row_bits, col_bits, bank_bits;
row_bits = s->sm_data[SPDMEM_RDR_ROWS_COLS] >> 4;
col_bits = s->sm_data[SPDMEM_RDR_ROWS_COLS] & 0x0f;
bank_bits = s->sm_data[SPDMEM_RDR_BANK] & 0x07;
/* subtracting 13 here is a cheaper way of dividing by 8k later */
rimm_size = 1 << (row_bits + col_bits + bank_bits - 13);
if (rimm_size < 1024)
printf(" %dMB ", rimm_size);
else
printf(" %dGB ", rimm_size / 1024);
switch(s->sm_data[SPDMEM_RDR_MODULE_TYPE]) {
case SPDMEM_RDR_TYPE_RIMM:
printf("RIMM");
break;
case SPDMEM_RDR_TYPE_SORIMM:
printf("SO-RIMM");
break;
case SPDMEM_RDR_TYPE_EMBED:
printf("Embedded Rambus");
break;
case SPDMEM_RDR_TYPE_RIMM32:
printf("RIMM32");
break;
}
}
void
spdmem_ddr_decode(struct spdmem_softc *sc, struct spdmem *s)
{
const char *type;
int dimm_size, cycle_time, d_clk, p_clk, bits;
int i, num_banks, per_chip;
uint8_t config, rows, cols, cl;
type = spdmem_basic_types[s->sm_type];
if (s->sm_data[SPDMEM_DDR_SUPERSET] == SPDMEM_SUPERSET_DDR_ESDRAM)
type = spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
num_banks = s->sm_data[SPDMEM_SDR_BANKS];
per_chip = s->sm_data[SPDMEM_SDR_BANKS_PER_CHIP];
rows = s->sm_data[SPDMEM_SDR_ROWS] & 0x0f;
cols = s->sm_data[SPDMEM_SDR_COLS] & 0x0f;
dimm_size = (1 << (rows + cols - 17)) * num_banks * per_chip;
if (dimm_size > 0) {
if (dimm_size < 1024)
printf(" %dMB", dimm_size);
else
printf(" %dGB", dimm_size / 1024);
}
printf(" %s", type);
if (s->sm_data[SPDMEM_DDR_MOD_ATTRIB] & SPDMEM_DDR_ATTRIB_REG)
printf(" registered");
if (s->sm_data[SPDMEM_FPM_CONFIG] < 8)
printf(" %s",
spdmem_parity_types[s->sm_data[SPDMEM_FPM_CONFIG]]);
/* cycle_time is expressed in units of 0.01 ns */
cycle_time = (s->sm_data[SPDMEM_DDR_CYCLE] >> 4) * 100 +
(s->sm_data[SPDMEM_DDR_CYCLE] & 0x0f) * 10;
if (cycle_time != 0) {
/*
* cycle time is scaled by a factor of 100 to avoid using
* floating point. Calculate memory speed as the number
* of cycles per microsecond.
* DDR uses dual-pumped clock
*/
d_clk = 100 * 1000 * 2;
config = s->sm_data[SPDMEM_FPM_CONFIG];
bits = s->sm_data[SPDMEM_DDR_DATAWIDTH] |
(s->sm_data[SPDMEM_DDR_DATAWIDTH + 1] << 8);
if (config == 1 || config == 2)
bits -= 8;
d_clk /= cycle_time;
p_clk = d_clk * bits / 8;
if ((p_clk % 100) >= 50)
p_clk += 50;
p_clk -= p_clk % 100;
printf(" PC%d", p_clk);
}
/* Print CAS latency */
for (i = 6; i >= 0; i--) {
if (s->sm_data[SPDMEM_DDR_CAS] & (1 << i)) {
cl = ((i * 10) / 2) + 10;
printf("CL%d.%d", cl / 10, cl % 10);
break;
}
}
}
void
spdmem_ddr2_decode(struct spdmem_softc *sc, struct spdmem *s)
{
const char *type;
int dimm_size, cycle_time, d_clk, p_clk, bits;
int i, num_ranks, density;
uint8_t config;
type = spdmem_basic_types[s->sm_type];
num_ranks = (s->sm_data[SPDMEM_DDR2_RANKS] & 0x7) + 1;
density = (s->sm_data[SPDMEM_DDR2_RANK_DENSITY] & 0xf0) |
((s->sm_data[SPDMEM_DDR2_RANK_DENSITY] & 0x0f) << 8);
dimm_size = num_ranks * density * 4;
if (dimm_size > 0) {
if (dimm_size < 1024)
printf(" %dMB", dimm_size);
else
printf(" %dGB", dimm_size / 1024);
}
printf(" %s", type);
if (s->sm_data[SPDMEM_DDR2_DIMMTYPE] & SPDMEM_DDR2_TYPE_REGMASK)
printf(" registered");
if (s->sm_data[SPDMEM_FPM_CONFIG] < 8)
printf(" %s",
spdmem_parity_types[s->sm_data[SPDMEM_FPM_CONFIG]]);
/* cycle_time is expressed in units of 0.01 ns */
cycle_time = (s->sm_data[SPDMEM_DDR2_CYCLE] >> 4) * 100 +
ddr2_cycle_tenths[(s->sm_data[SPDMEM_DDR2_CYCLE] & 0x0f)];
if (cycle_time != 0) {
/*
* cycle time is scaled by a factor of 100 to avoid using
* floating point. Calculate memory speed as the number
* of cycles per microsecond.
* DDR2 uses quad-pumped clock
*/
d_clk = 100 * 1000 * 4;
config = s->sm_data[SPDMEM_FPM_CONFIG];
bits = s->sm_data[SPDMEM_DDR2_DATAWIDTH];
if ((config & 0x03) != 0)
bits -= 8;
d_clk /= cycle_time;
d_clk = (d_clk + 1) / 2;
p_clk = d_clk * bits / 8;
p_clk -= p_clk % 100;
printf(" PC2-%d", p_clk);
}
/* Print CAS latency */
for (i = 5; i >= 2; i--) {
if (s->sm_data[SPDMEM_DDR_CAS] & (i << i)) {
printf("CL%d", i);
break;
}
}
switch (s->sm_data[SPDMEM_DDR2_DIMMTYPE]) {
case SPDMEM_DDR2_SODIMM:
printf(" SO-DIMM");
break;
case SPDMEM_DDR2_MICRO_DIMM:
printf(" Micro-DIMM");
break;
case SPDMEM_DDR2_MINI_RDIMM:
case SPDMEM_DDR2_MINI_UDIMM:
printf(" Mini-DIMM");
break;
}
}
void
spdmem_fbdimm_decode(struct spdmem_softc *sc, struct spdmem *s)
{
int dimm_size, num_banks, cycle_time, d_clk, p_clk, bits;
uint8_t rows, cols, banks, dividend, divisor;
/*
* FB-DIMM is very much like DDR3
*/
banks = s->sm_data[SPDMEM_FBDIMM_ADDR] & SPDMEM_FBDIMM_ADDR_BANKS;
cols = (s->sm_data[SPDMEM_FBDIMM_ADDR] & SPDMEM_FBDIMM_ADDR_COL) >>
SPDMEM_FBDIMM_ADDR_COL_SHIFT;
rows = (s->sm_data[SPDMEM_FBDIMM_ADDR] & SPDMEM_FBDIMM_ADDR_ROW) >>
SPDMEM_FBDIMM_ADDR_ROW_SHIFT;
dimm_size = rows + 12 + cols + 9 - 20 - 3;
num_banks = 1 << (banks + 2);
if (dimm_size < 1024)
printf(" %dMB", dimm_size);
else
printf(" %dGB", dimm_size / 1024);
if (s->sm_data[SPDMEM_FBDIMM_PROTO] & SPDMEM_FBDIMM_PROTO_ECC)
printf(" ECC");
dividend = s->sm_data[SPDMEM_FBDIMM_MTB_DIVIDEND];
divisor = s->sm_data[SPDMEM_FBDIMM_MTB_DIVISOR];
cycle_time = (1000 * dividend + (divisor / 2)) / divisor;
if (cycle_time != 0) {
/*
* cycle time is scaled by a factor of 1000 to avoid using
* floating point. Calculate memory speed as the number
* of cycles per microsecond.
*/
d_clk = 1000 * 1000;
/* DDR2 FB-DIMM uses a dual-pumped clock */
d_clk *= 2;
bits = 1 << ((s->sm_data[SPDMEM_FBDIMM_RANKS] &
SPDMEM_FBDIMM_RANKS_WIDTH) + 2);
p_clk = (d_clk * bits) / 8 / cycle_time;
d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
p_clk -= p_clk % 100;
printf(" PC2-%d", p_clk);
}
}
void
spdmem_ddr3_decode(struct spdmem_softc *sc, struct spdmem *s)
{
const char *type;
int dimm_size, cycle_time, d_clk, p_clk, bits;
uint8_t mtype, chipsize, dividend, divisor;
uint8_t datawidth, chipwidth, physbanks;
type = spdmem_basic_types[s->sm_type];
chipsize = s->sm_data[SPDMEM_DDR3_DENSITY] &
SPDMEM_DDR3_DENSITY_CAPMASK;
datawidth = s->sm_data[SPDMEM_DDR3_DATAWIDTH] &
SPDMEM_DDR3_DATAWIDTH_PRIMASK;
chipwidth = s->sm_data[SPDMEM_DDR3_MOD_ORG] &
SPDMEM_DDR3_MOD_ORG_CHIPWIDTH_MASK;
physbanks = (s->sm_data[SPDMEM_DDR3_MOD_ORG] >>
SPDMEM_DDR3_MOD_ORG_BANKS_SHIFT) & SPDMEM_DDR3_MOD_ORG_BANKS_MASK;
dimm_size = (chipsize + 28 - 20) - 3 + (datawidth + 3) -
(chipwidth + 2);
dimm_size = (1 << dimm_size) * (physbanks + 1);
if (dimm_size < 1024)
printf(" %dMB", dimm_size);
else
printf(" %dGB", dimm_size / 1024);
printf(" %s", type);
mtype = s->sm_data[SPDMEM_DDR3_MODTYPE];
if (mtype == SPDMEM_DDR3_RDIMM || mtype == SPDMEM_DDR3_MINI_RDIMM)
printf(" registered");
if (s->sm_data[SPDMEM_DDR3_DATAWIDTH] & SPDMEM_DDR3_DATAWIDTH_ECCMASK)
printf(" ECC");
dividend = s->sm_data[SPDMEM_DDR3_MTB_DIVIDEND];
divisor = s->sm_data[SPDMEM_DDR3_MTB_DIVISOR];
cycle_time = (1000 * dividend + (divisor / 2)) / divisor;
cycle_time *= s->sm_data[SPDMEM_DDR3_TCKMIN];
if (cycle_time != 0) {
/*
* cycle time is scaled by a factor of 1000 to avoid using
* floating point. Calculate memory speed as the number
* of cycles per microsecond.
* DDR3 uses a dual-pumped clock
*/
d_clk = 1000 * 1000;
d_clk *= 2;
bits = 1 << ((s->sm_data[SPDMEM_DDR3_DATAWIDTH] &
SPDMEM_DDR3_DATAWIDTH_PRIMASK) + 3);
/*
* Calculate p_clk first, since for DDR3 we need maximum
* significance. DDR3 rating is not rounded to a multiple
* of 100. This results in cycle_time of 1.5ns displayed
* as p_clk PC3-10666 (d_clk DDR3-1333)
*/
p_clk = (d_clk * bits) / 8 / cycle_time;
p_clk -= (p_clk % 100);
d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
printf(" PC3-%d", p_clk);
}
switch (s->sm_data[SPDMEM_DDR3_MODTYPE]) {
case SPDMEM_DDR3_SODIMM:
printf(" SO-DIMM");
break;
case SPDMEM_DDR3_MICRO_DIMM:
printf(" Micro-DIMM");
break;
case SPDMEM_DDR3_MINI_RDIMM:
case SPDMEM_DDR3_MINI_UDIMM:
printf(" Mini-DIMM");
break;
}
if (s->sm_data[SPDMEM_DDR3_THERMAL] & SPDMEM_DDR3_THERMAL_PRESENT)
printf(" with thermal sensor");
}
void
spdmem_attach(struct device *parent, struct device *self, void *aux)
{
struct spdmem_softc *sc = (struct spdmem_softc *)self;
struct i2c_attach_args *ia = aux;
struct spdmem *s = &(sc->sc_spd_data);
int i;
sc->sc_tag = ia->ia_tag;
sc->sc_addr = ia->ia_addr;
printf(":");
/* All SPD have at least 64 bytes of data including checksum */
for (i = 0; i < 64; i++) {
((uint8_t *)s)[i] = spdmem_read(sc, i);
}
/*
* Decode and print SPD contents
*/
if (s->sm_len < 4) {
if (s->sm_type == SPDMEM_MEMTYPE_DIRECT_RAMBUS)
spdmem_rdr_decode(sc, s);
else
printf(" no decode method for Rambus memory");
} else {
switch(s->sm_type) {
case SPDMEM_MEMTYPE_EDO:
case SPDMEM_MEMTYPE_SDRAM:
spdmem_sdram_decode(sc, s);
break;
case SPDMEM_MEMTYPE_DDRSDRAM:
spdmem_ddr_decode(sc, s);
break;
case SPDMEM_MEMTYPE_DDR2SDRAM:
spdmem_ddr2_decode(sc, s);
break;
case SPDMEM_MEMTYPE_FBDIMM:
case SPDMEM_MEMTYPE_FBDIMM_PROBE:
spdmem_fbdimm_decode(sc, s);
break;
case SPDMEM_MEMTYPE_DDR3SDRAM:
spdmem_ddr3_decode(sc, s);
break;
case SPDMEM_MEMTYPE_NONE:
printf(" no EEPROM found");
break;
default:
if (s->sm_type <= 10)
printf(" no decode method for %s memory",
spdmem_basic_types[s->sm_type]);
else
printf(" unknown memory type %d", s->sm_type);
break;
}
}
printf("\n");
}
uint8_t
spdmem_read(struct spdmem_softc *sc, uint8_t reg)
{
uint8_t val = 0xff;
iic_acquire_bus(sc->sc_tag,0);
iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_addr,
®, sizeof reg, &val, sizeof val, 0);
iic_release_bus(sc->sc_tag, 0);
return val;
}
|