summaryrefslogtreecommitdiff
path: root/sys/dev/pci/if_em.c
blob: 640d12b9daff59d926e2777c3198c0d7a94d394e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
/**************************************************************************

Copyright (c) 2001-2003, Intel Corporation
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,
    this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.

 3. Neither the name of the Intel Corporation nor the names of its
    contributors may be used to endorse or promote products derived from
    this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

***************************************************************************/

/* $OpenBSD: if_em.c,v 1.354 2020/06/22 02:31:32 dlg Exp $ */
/* $FreeBSD: if_em.c,v 1.46 2004/09/29 18:28:28 mlaier Exp $ */

#include <dev/pci/if_em.h>
#include <dev/pci/if_em_soc.h>

/*********************************************************************
 *  Driver version
 *********************************************************************/

#define EM_DRIVER_VERSION	"6.2.9"

/*********************************************************************
 *  PCI Device ID Table
 *********************************************************************/
const struct pci_matchid em_devices[] = {
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80003ES2LAN_CPR_DPT },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80003ES2LAN_SDS_DPT },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80003ES2LAN_CPR_SPT },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80003ES2LAN_SDS_SPT },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_LF },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD_CPR },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_CPR },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_CPR_K },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_2 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_AF },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_AT },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_CPR },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_CPR_LP },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_FBR },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SDS_DUAL },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SDS_QUAD },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571PT_QUAD_CPR },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_PM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L_PL_1 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L_PL_2 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573V_PM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574L },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574LA },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_SERDES },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_CPR },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QP_PM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_FIBER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_CU_ET2 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS_SERDES },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES_QUAD },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82577LC },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82577LM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82578DC },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82578DM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82579LM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82579V },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_OEM1 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_IT },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_FIBER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_NF },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES_NF },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I211_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_LM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_V },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM_2 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM_3 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V_2 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V_3 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM2 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM3 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM4 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM5 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM6 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM7 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM8 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM9 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM10 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM11 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM12 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM13 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM14 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM15 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V2 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V4 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V5 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V6 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V7 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V8 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V9 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V10 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V11 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V12 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V13 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V14 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_FIBER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SERDES },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SGMII },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER_DUAL },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_QUAD_FIBER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SGMII },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SERDES },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_BPLANE },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SFP },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82583V },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_COPPER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_FIBER },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SERDES },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SGMII },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I354_BP_1GBPS },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I354_BP_2_5GBPS },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I354_SGMII },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH8_82567V_3 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH8_IFE },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH8_IFE_G },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH8_IFE_GT },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH8_IGP_AMT },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH8_IGP_C },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH8_IGP_M },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH8_IGP_M_AMT },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH9_BM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH9_IFE },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH9_IFE_G },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH9_IFE_GT },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH9_IGP_AMT },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH9_IGP_C },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH9_IGP_M },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH9_IGP_M_AMT },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH9_IGP_M_V },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH10_D_BM_LF },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH10_D_BM_LM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH10_D_BM_V },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH10_R_BM_LF },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH10_R_BM_LM },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH10_R_BM_V },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_EP80579_LAN_1 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_EP80579_LAN_2 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_EP80579_LAN_3 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_EP80579_LAN_4 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_EP80579_LAN_5 },
	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_EP80579_LAN_6 }
};

/*********************************************************************
 *  Function prototypes
 *********************************************************************/
int  em_probe(struct device *, void *, void *);
void em_attach(struct device *, struct device *, void *);
void em_defer_attach(struct device*);
int  em_detach(struct device *, int);
int  em_activate(struct device *, int);
int  em_intr(void *);
int  em_allocate_legacy(struct em_softc *);
void em_start(struct ifqueue *);
int  em_ioctl(struct ifnet *, u_long, caddr_t);
void em_watchdog(struct ifnet *);
void em_init(void *);
void em_stop(void *, int);
void em_media_status(struct ifnet *, struct ifmediareq *);
int  em_media_change(struct ifnet *);
uint64_t  em_flowstatus(struct em_softc *);
void em_identify_hardware(struct em_softc *);
int  em_allocate_pci_resources(struct em_softc *);
void em_free_pci_resources(struct em_softc *);
void em_local_timer(void *);
int  em_hardware_init(struct em_softc *);
void em_setup_interface(struct em_softc *);
int  em_setup_transmit_structures(struct em_softc *);
void em_initialize_transmit_unit(struct em_softc *);
int  em_setup_receive_structures(struct em_softc *);
void em_initialize_receive_unit(struct em_softc *);
void em_enable_intr(struct em_softc *);
void em_disable_intr(struct em_softc *);
void em_free_transmit_structures(struct em_softc *);
void em_free_receive_structures(struct em_softc *);
void em_update_stats_counters(struct em_softc *);
void em_disable_aspm(struct em_softc *);
void em_txeof(struct em_queue *);
int  em_allocate_receive_structures(struct em_softc *);
int  em_allocate_transmit_structures(struct em_softc *);
int  em_allocate_desc_rings(struct em_softc *);
int  em_rxfill(struct em_queue *);
void em_rxrefill(void *);
int  em_rxeof(struct em_queue *);
void em_receive_checksum(struct em_softc *, struct em_rx_desc *,
			 struct mbuf *);
u_int	em_transmit_checksum_setup(struct em_queue *, struct mbuf *, u_int,
	    u_int32_t *, u_int32_t *);
void em_iff(struct em_softc *);
#ifdef EM_DEBUG
void em_print_hw_stats(struct em_softc *);
#endif
void em_update_link_status(struct em_softc *);
int  em_get_buf(struct em_queue *, int);
void em_enable_hw_vlans(struct em_softc *);
u_int em_encap(struct em_queue *, struct mbuf *);
void em_smartspeed(struct em_softc *);
int  em_82547_fifo_workaround(struct em_softc *, int);
void em_82547_update_fifo_head(struct em_softc *, int);
int  em_82547_tx_fifo_reset(struct em_softc *);
void em_82547_move_tail(void *arg);
void em_82547_move_tail_locked(struct em_softc *);
int  em_dma_malloc(struct em_softc *, bus_size_t, struct em_dma_alloc *);
void em_dma_free(struct em_softc *, struct em_dma_alloc *);
u_int32_t em_fill_descriptors(u_int64_t address, u_int32_t length,
			      PDESC_ARRAY desc_array);
void em_flush_tx_ring(struct em_queue *);
void em_flush_rx_ring(struct em_queue *);
void em_flush_desc_rings(struct em_softc *);

#ifndef SMALL_KERNEL
/* MSIX/Multiqueue functions */
int  em_allocate_msix(struct em_softc *);
int  em_setup_queues_msix(struct em_softc *);
int  em_queue_intr_msix(void *);
int  em_link_intr_msix(void *);
void em_enable_queue_intr_msix(struct em_queue *);
#else
#define em_allocate_msix(_sc) 	(-1)
#endif

/*********************************************************************
 *  OpenBSD Device Interface Entry Points
 *********************************************************************/

struct cfattach em_ca = {
	sizeof(struct em_softc), em_probe, em_attach, em_detach,
	em_activate
};

struct cfdriver em_cd = {
	NULL, "em", DV_IFNET
};

static int em_smart_pwr_down = FALSE;
int em_enable_msix = 0;

/*********************************************************************
 *  Device identification routine
 *
 *  em_probe determines if the driver should be loaded on
 *  adapter based on PCI vendor/device id of the adapter.
 *
 *  return 0 on no match, positive on match
 *********************************************************************/

int
em_probe(struct device *parent, void *match, void *aux)
{
	INIT_DEBUGOUT("em_probe: begin");

	return (pci_matchbyid((struct pci_attach_args *)aux, em_devices,
	    nitems(em_devices)));
}

void
em_defer_attach(struct device *self)
{
	struct em_softc *sc = (struct em_softc *)self;
	struct pci_attach_args *pa = &sc->osdep.em_pa;
	pci_chipset_tag_t	pc = pa->pa_pc;
	void *gcu;

	INIT_DEBUGOUT("em_defer_attach: begin");

	if ((gcu = em_lookup_gcu(self)) == 0) {
		printf("%s: No GCU found, defered attachment failed\n",
		    DEVNAME(sc));

		if (sc->sc_intrhand)
			pci_intr_disestablish(pc, sc->sc_intrhand);
		sc->sc_intrhand = 0;

		em_stop(sc, 1);

		em_free_pci_resources(sc);

		return;
	}
	
	sc->hw.gcu = gcu;
	
	em_attach_miibus(self);			

	em_setup_interface(sc);			

	em_setup_link(&sc->hw);			

	em_update_link_status(sc);
}

/*********************************************************************
 *  Device initialization routine
 *
 *  The attach entry point is called when the driver is being loaded.
 *  This routine identifies the type of hardware, allocates all resources
 *  and initializes the hardware.
 *
 *********************************************************************/

void 
em_attach(struct device *parent, struct device *self, void *aux)
{
	struct pci_attach_args *pa = aux;
	struct em_softc *sc;
	int defer = 0;
    
	INIT_DEBUGOUT("em_attach: begin");

	sc = (struct em_softc *)self;
	sc->sc_dmat = pa->pa_dmat;
	sc->osdep.em_pa = *pa;

	timeout_set(&sc->timer_handle, em_local_timer, sc);
	timeout_set(&sc->tx_fifo_timer_handle, em_82547_move_tail, sc);

	/* Determine hardware revision */
	em_identify_hardware(sc);

	/*
	 * Only use MSI on the newer PCIe parts, with the exception
	 * of 82571/82572 due to "Byte Enables 2 and 3 Are Not Set" errata
	 */
	if (sc->hw.mac_type <= em_82572)
		sc->osdep.em_pa.pa_flags &= ~PCI_FLAGS_MSI_ENABLED;

	/* Parameters (to be read from user) */
	if (sc->hw.mac_type >= em_82544) {
		sc->sc_tx_slots = EM_MAX_TXD;
		sc->sc_rx_slots = EM_MAX_RXD;
	} else {
		sc->sc_tx_slots = EM_MAX_TXD_82543;
		sc->sc_rx_slots = EM_MAX_RXD_82543;
	}
	sc->tx_int_delay = EM_TIDV;
	sc->tx_abs_int_delay = EM_TADV;
	sc->rx_int_delay = EM_RDTR;
	sc->rx_abs_int_delay = EM_RADV;
	sc->hw.autoneg = DO_AUTO_NEG;
	sc->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT;
	sc->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
	sc->hw.tbi_compatibility_en = TRUE;
	sc->sc_rx_buffer_len = EM_RXBUFFER_2048;

	sc->hw.phy_init_script = 1;
	sc->hw.phy_reset_disable = FALSE;

#ifndef EM_MASTER_SLAVE
	sc->hw.master_slave = em_ms_hw_default;
#else
	sc->hw.master_slave = EM_MASTER_SLAVE;
#endif

	/*
	 * This controls when hardware reports transmit completion
	 * status.   
	 */
	sc->hw.report_tx_early = 1;

	if (em_allocate_pci_resources(sc))
		goto err_pci;

	/* Initialize eeprom parameters */
	em_init_eeprom_params(&sc->hw);

	/*
	 * Set the max frame size assuming standard Ethernet
	 * sized frames.
	 */
	switch (sc->hw.mac_type) {
		case em_82573:
		{
			uint16_t	eeprom_data = 0;

			/*
			 * 82573 only supports Jumbo frames
			 * if ASPM is disabled.
			 */
			em_read_eeprom(&sc->hw, EEPROM_INIT_3GIO_3,
			    1, &eeprom_data);
			if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
				sc->hw.max_frame_size = ETHER_MAX_LEN;
				break;
			}
			/* Allow Jumbo frames */
			/* FALLTHROUGH */
		}
		case em_82571:
		case em_82572:
		case em_82574:
		case em_82575:
		case em_82576:
		case em_82580:
		case em_i210:
		case em_i350:
		case em_ich9lan:
		case em_ich10lan:
		case em_pch2lan:
		case em_pch_lpt:
		case em_pch_spt:
		case em_pch_cnp:
		case em_80003es2lan:
			/* 9K Jumbo Frame size */
			sc->hw.max_frame_size = 9234;
			break;
		case em_pchlan:
			sc->hw.max_frame_size = 4096;
			break;
		case em_82542_rev2_0:
		case em_82542_rev2_1:
		case em_ich8lan:
			/* Adapters that do not support Jumbo frames */
			sc->hw.max_frame_size = ETHER_MAX_LEN;
			break;
		default:
			sc->hw.max_frame_size =
			    MAX_JUMBO_FRAME_SIZE;
	}

	sc->hw.min_frame_size = 
	    ETHER_MIN_LEN + ETHER_CRC_LEN;

	if (em_allocate_desc_rings(sc) != 0) {
		printf("%s: Unable to allocate descriptor ring memory\n",
		    DEVNAME(sc));
		goto err_pci;
	}

	/* Initialize the hardware */
	if ((defer = em_hardware_init(sc))) {
		if (defer == EAGAIN)
			config_defer(self, em_defer_attach);
		else {
			printf("%s: Unable to initialize the hardware\n",
			    DEVNAME(sc));
			goto err_pci;
		}
	}

	if (sc->hw.mac_type == em_80003es2lan || sc->hw.mac_type == em_82575 ||
	    sc->hw.mac_type == em_82576 ||
	    sc->hw.mac_type == em_82580 || sc->hw.mac_type == em_i210 ||
	    sc->hw.mac_type == em_i350) {
		uint32_t reg = EM_READ_REG(&sc->hw, E1000_STATUS);
		sc->hw.bus_func = (reg & E1000_STATUS_FUNC_MASK) >>
		    E1000_STATUS_FUNC_SHIFT;

		switch (sc->hw.bus_func) {
		case 0:
			sc->hw.swfw = E1000_SWFW_PHY0_SM;
			break;
		case 1:
			sc->hw.swfw = E1000_SWFW_PHY1_SM;
			break;
		case 2:
			sc->hw.swfw = E1000_SWFW_PHY2_SM;
			break;
		case 3:
			sc->hw.swfw = E1000_SWFW_PHY3_SM;
			break;
		}
	} else {
		sc->hw.bus_func = 0;
	}

	/* Copy the permanent MAC address out of the EEPROM */
	if (em_read_mac_addr(&sc->hw) < 0) {
		printf("%s: EEPROM read error while reading mac address\n",
		       DEVNAME(sc));
		goto err_pci;
	}

	bcopy(sc->hw.mac_addr, sc->sc_ac.ac_enaddr, ETHER_ADDR_LEN);

	/* Setup OS specific network interface */
	if (!defer)
		em_setup_interface(sc);

	/* Initialize statistics */
	em_clear_hw_cntrs(&sc->hw);
#ifndef SMALL_KERNEL
	em_update_stats_counters(sc);
#endif
	sc->hw.get_link_status = 1;
	if (!defer)
		em_update_link_status(sc);

#ifdef EM_DEBUG
	printf(", mac %#x phy %#x", sc->hw.mac_type, sc->hw.phy_type);
#endif
	printf(", address %s\n", ether_sprintf(sc->sc_ac.ac_enaddr));

	/* Indicate SOL/IDER usage */
	if (em_check_phy_reset_block(&sc->hw))
		printf("%s: PHY reset is blocked due to SOL/IDER session.\n",
		    DEVNAME(sc));

	/* Identify 82544 on PCI-X */
	em_get_bus_info(&sc->hw);
	if (sc->hw.bus_type == em_bus_type_pcix &&
	    sc->hw.mac_type == em_82544)
		sc->pcix_82544 = TRUE;
        else
		sc->pcix_82544 = FALSE;

	sc->hw.icp_xxxx_is_link_up = FALSE;

	INIT_DEBUGOUT("em_attach: end");
	return;

err_pci:
	em_free_pci_resources(sc);
}

/*********************************************************************
 *  Transmit entry point
 *
 *  em_start is called by the stack to initiate a transmit.
 *  The driver will remain in this routine as long as there are
 *  packets to transmit and transmit resources are available.
 *  In case resources are not available stack is notified and
 *  the packet is requeued.
 **********************************************************************/

void
em_start(struct ifqueue *ifq)
{
	struct ifnet *ifp = ifq->ifq_if;
	struct em_softc *sc = ifp->if_softc;
	u_int head, free, used;
	struct mbuf *m;
	int post = 0;
	struct em_queue *que = sc->queues; /* Use only first queue. */

	if (!sc->link_active) {
		ifq_purge(ifq);
		return;
	}

	/* calculate free space */
	head = que->tx.sc_tx_desc_head;
	free = que->tx.sc_tx_desc_tail;
	if (free <= head)
		free += sc->sc_tx_slots;
	free -= head;

	if (sc->hw.mac_type != em_82547) {
		bus_dmamap_sync(sc->sc_dmat, que->tx.sc_tx_dma.dma_map,
		    0, que->tx.sc_tx_dma.dma_map->dm_mapsize,
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
	}

	for (;;) {
		/* use 2 because cksum setup can use an extra slot */
		if (EM_MAX_SCATTER + 2 > free) {
			ifq_set_oactive(ifq);
			break;
		}

		m = ifq_dequeue(ifq);
		if (m == NULL)
			break;

		used = em_encap(que, m);
		if (used == 0) {
			m_freem(m);
			continue;
		}

		KASSERT(used <= free);

		free -= used;

#if NBPFILTER > 0
		/* Send a copy of the frame to the BPF listener */
		if (ifp->if_bpf)
			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif

		/* Set timeout in case hardware has problems transmitting */
		ifp->if_timer = EM_TX_TIMEOUT;

		if (sc->hw.mac_type == em_82547) {
			int len = m->m_pkthdr.len;

			if (sc->link_duplex == HALF_DUPLEX)
				em_82547_move_tail_locked(sc);
			else {
				E1000_WRITE_REG(&sc->hw, TDT(que->me),
				    que->tx.sc_tx_desc_head);
				em_82547_update_fifo_head(sc, len);
			}
		}

		post = 1;
	}

	if (sc->hw.mac_type != em_82547) {
		bus_dmamap_sync(sc->sc_dmat, que->tx.sc_tx_dma.dma_map,
		    0, que->tx.sc_tx_dma.dma_map->dm_mapsize,
		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
		/* 
		 * Advance the Transmit Descriptor Tail (Tdt),
		 * this tells the E1000 that this frame is
		 * available to transmit.
		 */
		if (post)
			E1000_WRITE_REG(&sc->hw, TDT(que->me),
			    que->tx.sc_tx_desc_head);
	}
}

/*********************************************************************
 *  Ioctl entry point
 *
 *  em_ioctl is called when the user wants to configure the
 *  interface.
 *
 *  return 0 on success, positive on failure
 **********************************************************************/

int
em_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
	int		error = 0;
	struct ifreq   *ifr = (struct ifreq *) data;
	struct em_softc *sc = ifp->if_softc;
	int s;

	s = splnet();

	switch (command) {
	case SIOCSIFADDR:
		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFADDR (Set Interface "
			       "Addr)");
		if (!(ifp->if_flags & IFF_UP)) {
			ifp->if_flags |= IFF_UP;
			em_init(sc);
		}
		break;

	case SIOCSIFFLAGS:
		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS (Set Interface Flags)");
		if (ifp->if_flags & IFF_UP) {
			if (ifp->if_flags & IFF_RUNNING)
				error = ENETRESET;
			else
				em_init(sc);
		} else {
			if (ifp->if_flags & IFF_RUNNING)
				em_stop(sc, 0);
		}
		break;

	case SIOCSIFMEDIA:
		/* Check SOL/IDER usage */
		if (em_check_phy_reset_block(&sc->hw)) {
			printf("%s: Media change is blocked due to SOL/IDER session.\n",
			    DEVNAME(sc));
			break;
		}
	case SIOCGIFMEDIA:
		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA (Get/Set Interface Media)");
		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
		break;

	case SIOCGIFRXR:
		error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_data,
		    NULL, EM_MCLBYTES, &sc->queues->rx.sc_rx_ring);
		break;

	default:
		error = ether_ioctl(ifp, &sc->sc_ac, command, data);
	}

	if (error == ENETRESET) {
		if (ifp->if_flags & IFF_RUNNING) {
			em_disable_intr(sc);
			em_iff(sc);
			if (sc->hw.mac_type == em_82542_rev2_0)
				em_initialize_receive_unit(sc);
			em_enable_intr(sc);
		}
		error = 0;
	}

	splx(s);
	return (error);
}

/*********************************************************************
 *  Watchdog entry point
 *
 *  This routine is called whenever hardware quits transmitting.
 *
 **********************************************************************/

void
em_watchdog(struct ifnet *ifp)
{
	struct em_softc *sc = ifp->if_softc;
	struct em_queue *que = sc->queues; /* Use only first queue. */


	/* If we are in this routine because of pause frames, then
	 * don't reset the hardware.
	 */
	if (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_TXOFF) {
		ifp->if_timer = EM_TX_TIMEOUT;
		return;
	}
	printf("%s: watchdog: head %u tail %u TDH %u TDT %u\n",
	    DEVNAME(sc),
	    que->tx.sc_tx_desc_head, que->tx.sc_tx_desc_tail,
	    E1000_READ_REG(&sc->hw, TDH(que->me)),
	    E1000_READ_REG(&sc->hw, TDT(que->me)));

	em_init(sc);

	sc->watchdog_events++;
}

/*********************************************************************
 *  Init entry point
 *
 *  This routine is used in two ways. It is used by the stack as
 *  init entry point in network interface structure. It is also used
 *  by the driver as a hw/sw initialization routine to get to a
 *  consistent state.
 *
 **********************************************************************/

void
em_init(void *arg)
{
	struct em_softc *sc = arg;
	struct ifnet   *ifp = &sc->sc_ac.ac_if;
	uint32_t	pba;
	int s;

	s = splnet();

	INIT_DEBUGOUT("em_init: begin");

	em_stop(sc, 0);

	/*
	 * Packet Buffer Allocation (PBA)
	 * Writing PBA sets the receive portion of the buffer
	 * the remainder is used for the transmit buffer.
	 *
	 * Devices before the 82547 had a Packet Buffer of 64K.
	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
	 * After the 82547 the buffer was reduced to 40K.
	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
	 *   Note: default does not leave enough room for Jumbo Frame >10k.
	 */
	switch (sc->hw.mac_type) {
	case em_82547:
	case em_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
		if (sc->hw.max_frame_size > EM_RXBUFFER_8192)
			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
		else
			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
		sc->tx_fifo_head = 0;
		sc->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
		sc->tx_fifo_size = (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
		break;
	case em_82571:
	case em_82572: /* Total Packet Buffer on these is 48k */
	case em_82575:
	case em_82576:
	case em_82580:
	case em_80003es2lan:
	case em_i350:
		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
		break;
	case em_i210:
		pba = E1000_PBA_34K;
		break;
	case em_82573: /* 82573: Total Packet Buffer is 32K */
		/* Jumbo frames not supported */
		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
		break;
	case em_82574: /* Total Packet Buffer is 40k */
		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
		break;
	case em_ich8lan:
		pba = E1000_PBA_8K;
		break;
	case em_ich9lan:
	case em_ich10lan:
		/* Boost Receive side for jumbo frames */
		if (sc->hw.max_frame_size > EM_RXBUFFER_4096)
			pba = E1000_PBA_14K;
		else
			pba = E1000_PBA_10K;
		break;
	case em_pchlan:
	case em_pch2lan:
	case em_pch_lpt:
	case em_pch_spt:
	case em_pch_cnp:
		pba = E1000_PBA_26K;
		break;
	default:
		/* Devices before 82547 had a Packet Buffer of 64K.   */
		if (sc->hw.max_frame_size > EM_RXBUFFER_8192)
			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
		else
			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
	}
	INIT_DEBUGOUT1("em_init: pba=%dK",pba);
	E1000_WRITE_REG(&sc->hw, PBA, pba);

	/* Get the latest mac address, User can use a LAA */
	bcopy(sc->sc_ac.ac_enaddr, sc->hw.mac_addr, ETHER_ADDR_LEN);

	/* Initialize the hardware */
	if (em_hardware_init(sc)) {
		printf("%s: Unable to initialize the hardware\n", 
		       DEVNAME(sc));
		splx(s);
		return;
	}
	em_update_link_status(sc);

	E1000_WRITE_REG(&sc->hw, VET, ETHERTYPE_VLAN);
	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
		em_enable_hw_vlans(sc);

	/* Prepare transmit descriptors and buffers */
	if (em_setup_transmit_structures(sc)) {
		printf("%s: Could not setup transmit structures\n", 
		       DEVNAME(sc));
		em_stop(sc, 0);
		splx(s);
		return;
	}
	em_initialize_transmit_unit(sc);

	/* Prepare receive descriptors and buffers */
	if (em_setup_receive_structures(sc)) {
		printf("%s: Could not setup receive structures\n", 
		       DEVNAME(sc));
		em_stop(sc, 0);
		splx(s);
		return;
	}
	em_initialize_receive_unit(sc);

#ifndef SMALL_KERNEL
	if (sc->msix) {
		if (em_setup_queues_msix(sc)) {
			printf("%s: Can't setup msix queues\n", DEVNAME(sc));
			splx(s);
			return;
		}
	}
#endif

	/* Program promiscuous mode and multicast filters. */
	em_iff(sc);

	ifp->if_flags |= IFF_RUNNING;
	ifq_clr_oactive(&ifp->if_snd);

	timeout_add_sec(&sc->timer_handle, 1);
	em_clear_hw_cntrs(&sc->hw);
	em_enable_intr(sc);

	/* Don't reset the phy next time init gets called */
	sc->hw.phy_reset_disable = TRUE;

	splx(s);
}

/*********************************************************************
 *
 *  Interrupt Service routine
 *
 **********************************************************************/
int 
em_intr(void *arg)
{
	struct em_softc	*sc = arg;
	struct em_queue *que = sc->queues; /* single queue */
	struct ifnet	*ifp = &sc->sc_ac.ac_if;
	u_int32_t	reg_icr, test_icr;

	test_icr = reg_icr = E1000_READ_REG(&sc->hw, ICR);
	if (sc->hw.mac_type >= em_82571)
		test_icr = (reg_icr & E1000_ICR_INT_ASSERTED);
	if (!test_icr)
		return (0);

	if (ifp->if_flags & IFF_RUNNING) {
		em_txeof(que);
		if (em_rxeof(que))
			em_rxrefill(que);
	}

	/* Link status change */
	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		KERNEL_LOCK();
		sc->hw.get_link_status = 1;
		em_check_for_link(&sc->hw);
		em_update_link_status(sc);
		KERNEL_UNLOCK();
	}

	return (1);
}

/*********************************************************************
 *
 *  Media Ioctl callback
 *
 *  This routine is called whenever the user queries the status of
 *  the interface using ifconfig.
 *
 **********************************************************************/
void
em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
	struct em_softc *sc = ifp->if_softc;
	uint64_t fiber_type = IFM_1000_SX;
	u_int16_t gsr;

	INIT_DEBUGOUT("em_media_status: begin");

	em_check_for_link(&sc->hw);
	em_update_link_status(sc);

	ifmr->ifm_status = IFM_AVALID;
	ifmr->ifm_active = IFM_ETHER;

	if (!sc->link_active) {
		ifmr->ifm_active |= IFM_NONE;
		return;
	}

	ifmr->ifm_status |= IFM_ACTIVE;

	if (sc->hw.media_type == em_media_type_fiber ||
	    sc->hw.media_type == em_media_type_internal_serdes) {
		if (sc->hw.mac_type == em_82545)
			fiber_type = IFM_1000_LX;
		ifmr->ifm_active |= fiber_type | IFM_FDX;
	} else {
		switch (sc->link_speed) {
		case 10:
			ifmr->ifm_active |= IFM_10_T;
			break;
		case 100:
			ifmr->ifm_active |= IFM_100_TX;
			break;
		case 1000:
			ifmr->ifm_active |= IFM_1000_T;
			break;
		}

		if (sc->link_duplex == FULL_DUPLEX)
			ifmr->ifm_active |= em_flowstatus(sc) | IFM_FDX;
		else
			ifmr->ifm_active |= IFM_HDX;

		if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_1000_T) {
			em_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &gsr);
			if (gsr & SR_1000T_MS_CONFIG_RES)
				ifmr->ifm_active |= IFM_ETH_MASTER;
		}
	}
}

/*********************************************************************
 *
 *  Media Ioctl callback
 *
 *  This routine is called when the user changes speed/duplex using
 *  media/mediopt option with ifconfig.
 *
 **********************************************************************/
int
em_media_change(struct ifnet *ifp)
{
	struct em_softc *sc = ifp->if_softc;
	struct ifmedia	*ifm = &sc->media;

	INIT_DEBUGOUT("em_media_change: begin");

	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
		return (EINVAL);

	switch (IFM_SUBTYPE(ifm->ifm_media)) {
	case IFM_AUTO:
		sc->hw.autoneg = DO_AUTO_NEG;
		sc->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
		break;
	case IFM_1000_LX:
	case IFM_1000_SX:
	case IFM_1000_T:
		sc->hw.autoneg = DO_AUTO_NEG;
		sc->hw.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case IFM_100_TX:
		sc->hw.autoneg = FALSE;
		sc->hw.autoneg_advertised = 0;
		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
			sc->hw.forced_speed_duplex = em_100_full;
		else
			sc->hw.forced_speed_duplex = em_100_half;
		break;
	case IFM_10_T:
		sc->hw.autoneg = FALSE;
		sc->hw.autoneg_advertised = 0;
		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
			sc->hw.forced_speed_duplex = em_10_full;
		else
			sc->hw.forced_speed_duplex = em_10_half;
		break;
	default:
		printf("%s: Unsupported media type\n", DEVNAME(sc));
	}

	/*
	 * As the speed/duplex settings may have changed we need to
	 * reset the PHY.
	 */
	sc->hw.phy_reset_disable = FALSE;

	em_init(sc);

	return (0);
}

uint64_t
em_flowstatus(struct em_softc *sc)
{
	u_int16_t ar, lpar;

	if (sc->hw.media_type == em_media_type_fiber ||
	    sc->hw.media_type == em_media_type_internal_serdes)
		return (0);

	em_read_phy_reg(&sc->hw, PHY_AUTONEG_ADV, &ar);
	em_read_phy_reg(&sc->hw, PHY_LP_ABILITY, &lpar);

	if ((ar & NWAY_AR_PAUSE) && (lpar & NWAY_LPAR_PAUSE))
		return (IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE);
	else if (!(ar & NWAY_AR_PAUSE) && (ar & NWAY_AR_ASM_DIR) &&
		(lpar & NWAY_LPAR_PAUSE) && (lpar & NWAY_LPAR_ASM_DIR))
		return (IFM_FLOW|IFM_ETH_TXPAUSE);
	else if ((ar & NWAY_AR_PAUSE) && (ar & NWAY_AR_ASM_DIR) &&
		!(lpar & NWAY_LPAR_PAUSE) && (lpar & NWAY_LPAR_ASM_DIR))
		return (IFM_FLOW|IFM_ETH_RXPAUSE);

	return (0);
}

/*********************************************************************
 *
 *  This routine maps the mbufs to tx descriptors.
 *
 *  return 0 on success, positive on failure
 **********************************************************************/
u_int
em_encap(struct em_queue *que, struct mbuf *m)
{
	struct em_softc *sc = que->sc;
	struct em_packet *pkt;
	struct em_tx_desc *desc;
	bus_dmamap_t map;
	u_int32_t txd_upper, txd_lower;
	u_int head, last, used = 0;
	int i, j;

	/* For 82544 Workaround */
	DESC_ARRAY		desc_array;
	u_int32_t		array_elements;

	/* get a dmamap for this packet from the next free slot */
	head = que->tx.sc_tx_desc_head;
	pkt = &que->tx.sc_tx_pkts_ring[head];
	map = pkt->pkt_map;

	switch (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT)) {
	case 0:
		break;
	case EFBIG:
		if (m_defrag(m, M_DONTWAIT) == 0 &&
		    bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
		     BUS_DMA_NOWAIT) == 0)
			break;

		/* FALLTHROUGH */
	default:
		sc->no_tx_dma_setup++;
		return (0);
	}

	bus_dmamap_sync(sc->sc_dmat, map,
	    0, map->dm_mapsize,
	    BUS_DMASYNC_PREWRITE);

	if (sc->hw.mac_type == em_82547) {
		bus_dmamap_sync(sc->sc_dmat, que->tx.sc_tx_dma.dma_map,
		    0, que->tx.sc_tx_dma.dma_map->dm_mapsize,
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
	}

	if (sc->hw.mac_type >= em_82543 && sc->hw.mac_type != em_82575 &&
	    sc->hw.mac_type != em_82576 &&
	    sc->hw.mac_type != em_82580 && sc->hw.mac_type != em_i210 &&
	    sc->hw.mac_type != em_i350) {
		used += em_transmit_checksum_setup(que, m, head,
		    &txd_upper, &txd_lower);
	} else {
		txd_upper = txd_lower = 0;
	}

	head += used;
	if (head >= sc->sc_tx_slots)
		head -= sc->sc_tx_slots;

	for (i = 0; i < map->dm_nsegs; i++) {
		/* If sc is 82544 and on PCI-X bus */
		if (sc->pcix_82544) {
			/*
			 * Check the Address and Length combination and
			 * split the data accordingly
			 */
			array_elements = em_fill_descriptors(
			    map->dm_segs[i].ds_addr, map->dm_segs[i].ds_len,
			    &desc_array);
			for (j = 0; j < array_elements; j++) {
				desc = &que->tx.sc_tx_desc_ring[head];

				desc->buffer_addr = htole64(
					desc_array.descriptor[j].address);
				desc->lower.data = htole32(
					(que->tx.sc_txd_cmd | txd_lower |
					 (u_int16_t)desc_array.descriptor[j].length));
				desc->upper.data = htole32(txd_upper);

				last = head;
				if (++head == sc->sc_tx_slots)
					head = 0;

				used++;
			}
		} else {
			desc = &que->tx.sc_tx_desc_ring[head];

			desc->buffer_addr = htole64(map->dm_segs[i].ds_addr);
			desc->lower.data = htole32(que->tx.sc_txd_cmd |
			    txd_lower | map->dm_segs[i].ds_len);
			desc->upper.data = htole32(txd_upper);

			last = head;
			if (++head == sc->sc_tx_slots)
	        		head = 0;

			used++;
		}
	}

#if NVLAN > 0
	/* Find out if we are in VLAN mode */
	if (m->m_flags & M_VLANTAG) {
		/* Set the VLAN id */
		desc->upper.fields.special = htole16(m->m_pkthdr.ether_vtag);

		/* Tell hardware to add tag */
		desc->lower.data |= htole32(E1000_TXD_CMD_VLE);
	}
#endif

	/* mark the packet with the mbuf and last desc slot */
	pkt->pkt_m = m;
	pkt->pkt_eop = last;

	que->tx.sc_tx_desc_head = head;

	/* 
	 * Last Descriptor of Packet
	 * needs End Of Packet (EOP)
	 * and Report Status (RS)
	 */
	desc->lower.data |= htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);

	if (sc->hw.mac_type == em_82547) {
		bus_dmamap_sync(sc->sc_dmat, que->tx.sc_tx_dma.dma_map,
		    0, que->tx.sc_tx_dma.dma_map->dm_mapsize,
		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
	}

	return (used);
}

/*********************************************************************
 *
 * 82547 workaround to avoid controller hang in half-duplex environment.
 * The workaround is to avoid queuing a large packet that would span
 * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
 * in this case. We do that only when FIFO is quiescent.
 *
 **********************************************************************/
void
em_82547_move_tail_locked(struct em_softc *sc)
{
	uint16_t hw_tdt;
	uint16_t sw_tdt;
	struct em_tx_desc *tx_desc;
	uint16_t length = 0;
	boolean_t eop = 0;
	struct em_queue *que = sc->queues; /* single queue chip */

	hw_tdt = E1000_READ_REG(&sc->hw, TDT(que->me));
	sw_tdt = que->tx.sc_tx_desc_head;

	while (hw_tdt != sw_tdt) {
		tx_desc = &que->tx.sc_tx_desc_ring[hw_tdt];
		length += tx_desc->lower.flags.length;
		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
		if (++hw_tdt == sc->sc_tx_slots)
			hw_tdt = 0;

		if (eop) {
			if (em_82547_fifo_workaround(sc, length)) {
				sc->tx_fifo_wrk_cnt++;
				timeout_add(&sc->tx_fifo_timer_handle, 1);
				break;
			}
			E1000_WRITE_REG(&sc->hw, TDT(que->me), hw_tdt);
			em_82547_update_fifo_head(sc, length);
			length = 0;
		}
	}
}

void
em_82547_move_tail(void *arg)
{
	struct em_softc *sc = arg;
	int s;

	s = splnet();
	em_82547_move_tail_locked(sc);
	splx(s);
}

int
em_82547_fifo_workaround(struct em_softc *sc, int len)
{
	int fifo_space, fifo_pkt_len;

	fifo_pkt_len = EM_ROUNDUP(len + EM_FIFO_HDR, EM_FIFO_HDR);

	if (sc->link_duplex == HALF_DUPLEX) {
		fifo_space = sc->tx_fifo_size - sc->tx_fifo_head;

		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
			if (em_82547_tx_fifo_reset(sc))
				return (0);
			else
				return (1);
		}
	}

	return (0);
}

void
em_82547_update_fifo_head(struct em_softc *sc, int len)
{
	int fifo_pkt_len = EM_ROUNDUP(len + EM_FIFO_HDR, EM_FIFO_HDR);

	/* tx_fifo_head is always 16 byte aligned */
	sc->tx_fifo_head += fifo_pkt_len;
	if (sc->tx_fifo_head >= sc->tx_fifo_size)
		sc->tx_fifo_head -= sc->tx_fifo_size;
}

int
em_82547_tx_fifo_reset(struct em_softc *sc)
{
	uint32_t tctl;
	struct em_queue *que = sc->queues; /* single queue chip */

	if ((E1000_READ_REG(&sc->hw, TDT(que->me)) ==
	     E1000_READ_REG(&sc->hw, TDH(que->me))) &&
	    (E1000_READ_REG(&sc->hw, TDFT) ==
	     E1000_READ_REG(&sc->hw, TDFH)) &&
	    (E1000_READ_REG(&sc->hw, TDFTS) ==
	     E1000_READ_REG(&sc->hw, TDFHS)) &&
	    (E1000_READ_REG(&sc->hw, TDFPC) == 0)) {

		/* Disable TX unit */
		tctl = E1000_READ_REG(&sc->hw, TCTL);
		E1000_WRITE_REG(&sc->hw, TCTL, tctl & ~E1000_TCTL_EN);

		/* Reset FIFO pointers */
		E1000_WRITE_REG(&sc->hw, TDFT, sc->tx_head_addr);
		E1000_WRITE_REG(&sc->hw, TDFH, sc->tx_head_addr);
		E1000_WRITE_REG(&sc->hw, TDFTS, sc->tx_head_addr);
		E1000_WRITE_REG(&sc->hw, TDFHS, sc->tx_head_addr);

		/* Re-enable TX unit */
		E1000_WRITE_REG(&sc->hw, TCTL, tctl);
		E1000_WRITE_FLUSH(&sc->hw);

		sc->tx_fifo_head = 0;
		sc->tx_fifo_reset_cnt++;

		return (TRUE);
	} else
		return (FALSE);
}

void
em_iff(struct em_softc *sc)
{
	struct ifnet *ifp = &sc->sc_ac.ac_if;
	struct arpcom *ac = &sc->sc_ac;
	u_int32_t reg_rctl = 0;
	u_int8_t  mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
	struct ether_multi *enm;
	struct ether_multistep step;
	int i = 0;

	IOCTL_DEBUGOUT("em_iff: begin");

	if (sc->hw.mac_type == em_82542_rev2_0) {
		reg_rctl = E1000_READ_REG(&sc->hw, RCTL);
		if (sc->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
			em_pci_clear_mwi(&sc->hw);
		reg_rctl |= E1000_RCTL_RST;
		E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl);
		msec_delay(5);
	}

	reg_rctl = E1000_READ_REG(&sc->hw, RCTL);
	reg_rctl &= ~(E1000_RCTL_MPE | E1000_RCTL_UPE);
	ifp->if_flags &= ~IFF_ALLMULTI;

	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0 ||
	    ac->ac_multicnt > MAX_NUM_MULTICAST_ADDRESSES) {
		ifp->if_flags |= IFF_ALLMULTI;
		reg_rctl |= E1000_RCTL_MPE;
		if (ifp->if_flags & IFF_PROMISC)
			reg_rctl |= E1000_RCTL_UPE;
	} else {
		ETHER_FIRST_MULTI(step, ac, enm);
		while (enm != NULL) {
			bcopy(enm->enm_addrlo, mta + i, ETH_LENGTH_OF_ADDRESS);
			i += ETH_LENGTH_OF_ADDRESS;

			ETHER_NEXT_MULTI(step, enm);
		}

		em_mc_addr_list_update(&sc->hw, mta, ac->ac_multicnt, 0, 1);
	}

	E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl);

	if (sc->hw.mac_type == em_82542_rev2_0) {
		reg_rctl = E1000_READ_REG(&sc->hw, RCTL);
		reg_rctl &= ~E1000_RCTL_RST;
		E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl);
		msec_delay(5);
		if (sc->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
			em_pci_set_mwi(&sc->hw);
	}
}

/*********************************************************************
 *  Timer routine
 *
 *  This routine checks for link status and updates statistics.
 *
 **********************************************************************/

void
em_local_timer(void *arg)
{
	struct ifnet   *ifp;
	struct em_softc *sc = arg;
	int s;

	ifp = &sc->sc_ac.ac_if;

	s = splnet();

#ifndef SMALL_KERNEL
	em_update_stats_counters(sc);
#ifdef EM_DEBUG
	if (ifp->if_flags & IFF_DEBUG && ifp->if_flags & IFF_RUNNING)
		em_print_hw_stats(sc);
#endif
#endif
	em_smartspeed(sc);

	timeout_add_sec(&sc->timer_handle, 1);

	splx(s);
}

void
em_update_link_status(struct em_softc *sc)
{
	struct ifnet *ifp = &sc->sc_ac.ac_if;
	u_char link_state;

	if (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_LU) {
		if (sc->link_active == 0) {
			em_get_speed_and_duplex(&sc->hw,
						&sc->link_speed,
						&sc->link_duplex);
			/* Check if we may set SPEED_MODE bit on PCI-E */
			if ((sc->link_speed == SPEED_1000) &&
			    ((sc->hw.mac_type == em_82571) ||
			    (sc->hw.mac_type == em_82572) ||
			    (sc->hw.mac_type == em_82575) ||
			    (sc->hw.mac_type == em_82576) ||
			    (sc->hw.mac_type == em_82580))) {
				int tarc0;

				tarc0 = E1000_READ_REG(&sc->hw, TARC0);
				tarc0 |= SPEED_MODE_BIT;
				E1000_WRITE_REG(&sc->hw, TARC0, tarc0);
			}
			sc->link_active = 1;
			sc->smartspeed = 0;
			ifp->if_baudrate = IF_Mbps(sc->link_speed);
		}
		link_state = (sc->link_duplex == FULL_DUPLEX) ?
		    LINK_STATE_FULL_DUPLEX : LINK_STATE_HALF_DUPLEX;
	} else {
		if (sc->link_active == 1) {
			ifp->if_baudrate = sc->link_speed = 0;
			sc->link_duplex = 0;
			sc->link_active = 0;
		}
		link_state = LINK_STATE_DOWN;
	}
	if (ifp->if_link_state != link_state) {
		ifp->if_link_state = link_state;
		if_link_state_change(ifp);
	}
}

/*********************************************************************
 *
 *  This routine disables all traffic on the adapter by issuing a
 *  global reset on the MAC and deallocates TX/RX buffers. 
 *
 **********************************************************************/

void
em_stop(void *arg, int softonly)
{
	struct em_softc *sc = arg;
	struct em_queue *que = sc->queues; /* Use only first queue. */
	struct ifnet   *ifp = &sc->sc_ac.ac_if;

	/* Tell the stack that the interface is no longer active */
	ifp->if_flags &= ~IFF_RUNNING;

	INIT_DEBUGOUT("em_stop: begin");

	timeout_del(&que->rx_refill);
	timeout_del(&sc->timer_handle);
	timeout_del(&sc->tx_fifo_timer_handle);

	if (!softonly)
		em_disable_intr(sc);
	if (sc->hw.mac_type >= em_pch_spt)
		em_flush_desc_rings(sc);
	if (!softonly)
		em_reset_hw(&sc->hw);

	intr_barrier(sc->sc_intrhand);
	ifq_barrier(&ifp->if_snd);

	KASSERT((ifp->if_flags & IFF_RUNNING) == 0);

	ifq_clr_oactive(&ifp->if_snd);
	ifp->if_timer = 0;

	em_free_transmit_structures(sc);
	em_free_receive_structures(sc);
}

/*********************************************************************
 *
 *  Determine hardware revision.
 *
 **********************************************************************/
void
em_identify_hardware(struct em_softc *sc)
{
	u_int32_t reg;
	struct pci_attach_args *pa = &sc->osdep.em_pa;

	/* Make sure our PCI config space has the necessary stuff set */
	sc->hw.pci_cmd_word = pci_conf_read(pa->pa_pc, pa->pa_tag,
					    PCI_COMMAND_STATUS_REG);

	/* Save off the information about this board */
	sc->hw.vendor_id = PCI_VENDOR(pa->pa_id);
	sc->hw.device_id = PCI_PRODUCT(pa->pa_id);

	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_CLASS_REG);
	sc->hw.revision_id = PCI_REVISION(reg);

	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
	sc->hw.subsystem_vendor_id = PCI_VENDOR(reg);
	sc->hw.subsystem_id = PCI_PRODUCT(reg);

	/* Identify the MAC */
	if (em_set_mac_type(&sc->hw))
		printf("%s: Unknown MAC Type\n", DEVNAME(sc));

	if (sc->hw.mac_type == em_pchlan)
		sc->hw.revision_id = PCI_PRODUCT(pa->pa_id) & 0x0f;

	if (sc->hw.mac_type == em_82541 ||
	    sc->hw.mac_type == em_82541_rev_2 ||
	    sc->hw.mac_type == em_82547 ||
	    sc->hw.mac_type == em_82547_rev_2)
		sc->hw.phy_init_script = TRUE;
}

void
em_legacy_irq_quirk_spt(struct em_softc *sc)
{
	uint32_t	reg;

	/* Legacy interrupt: SPT needs a quirk. */
	if (sc->hw.mac_type != em_pch_spt && sc->hw.mac_type != em_pch_cnp)
		return;
	if (sc->legacy_irq == 0)
		return;

	reg = EM_READ_REG(&sc->hw, E1000_FEXTNVM7);
	reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
	EM_WRITE_REG(&sc->hw, E1000_FEXTNVM7, reg);

	reg = EM_READ_REG(&sc->hw, E1000_FEXTNVM9);
	reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
	    E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
	EM_WRITE_REG(&sc->hw, E1000_FEXTNVM9, reg);
}

int
em_allocate_pci_resources(struct em_softc *sc)
{
	int		val, rid;
	struct pci_attach_args *pa = &sc->osdep.em_pa;
	struct em_queue	       *que = NULL;

	val = pci_conf_read(pa->pa_pc, pa->pa_tag, EM_MMBA);
	if (PCI_MAPREG_TYPE(val) != PCI_MAPREG_TYPE_MEM) {
		printf(": mmba is not mem space\n");
		return (ENXIO);
	}
	if (pci_mapreg_map(pa, EM_MMBA, PCI_MAPREG_MEM_TYPE(val), 0,
	    &sc->osdep.mem_bus_space_tag, &sc->osdep.mem_bus_space_handle,
	    &sc->osdep.em_membase, &sc->osdep.em_memsize, 0)) {
		printf(": cannot find mem space\n");
		return (ENXIO);
	}

	switch (sc->hw.mac_type) {
	case em_82544:
	case em_82540:
	case em_82545:
	case em_82546:
	case em_82541:
	case em_82541_rev_2:
		/* Figure out where our I/O BAR is ? */
		for (rid = PCI_MAPREG_START; rid < PCI_MAPREG_END;) {
			val = pci_conf_read(pa->pa_pc, pa->pa_tag, rid);
			if (PCI_MAPREG_TYPE(val) == PCI_MAPREG_TYPE_IO) {
				sc->io_rid = rid;
				break;
			}
			rid += 4;
			if (PCI_MAPREG_MEM_TYPE(val) ==
			    PCI_MAPREG_MEM_TYPE_64BIT)
				rid += 4;	/* skip high bits, too */
		}

		if (pci_mapreg_map(pa, rid, PCI_MAPREG_TYPE_IO, 0,
		    &sc->osdep.io_bus_space_tag, &sc->osdep.io_bus_space_handle,
		    &sc->osdep.em_iobase, &sc->osdep.em_iosize, 0)) {
			printf(": cannot find i/o space\n");
			return (ENXIO);
		}

		sc->hw.io_base = 0;
		break;
	default:
		break;
	}

	sc->osdep.em_flashoffset = 0;
	/* for ICH8 and family we need to find the flash memory */
	if (sc->hw.mac_type >= em_pch_spt) {
		sc->osdep.flash_bus_space_tag = sc->osdep.mem_bus_space_tag;
		sc->osdep.flash_bus_space_handle = sc->osdep.mem_bus_space_handle;
		sc->osdep.em_flashbase = 0;
		sc->osdep.em_flashsize = 0;
		sc->osdep.em_flashoffset = 0xe000;
	} else if (IS_ICH8(sc->hw.mac_type)) {
		val = pci_conf_read(pa->pa_pc, pa->pa_tag, EM_FLASH);
		if (PCI_MAPREG_TYPE(val) != PCI_MAPREG_TYPE_MEM) {
			printf(": flash is not mem space\n");
			return (ENXIO);
		}

		if (pci_mapreg_map(pa, EM_FLASH, PCI_MAPREG_MEM_TYPE(val), 0,
		    &sc->osdep.flash_bus_space_tag, &sc->osdep.flash_bus_space_handle,
		    &sc->osdep.em_flashbase, &sc->osdep.em_flashsize, 0)) {
			printf(": cannot find mem space\n");
			return (ENXIO);
		}
        }

	sc->osdep.dev = (struct device *)sc;
	sc->hw.back = &sc->osdep;

	/* Only one queue for the moment. */
	que = malloc(sizeof(struct em_queue), M_DEVBUF, M_NOWAIT | M_ZERO);
	if (que == NULL) {
		printf(": unable to allocate queue memory\n");
		return (ENOMEM);
	}
	que->me = 0;
	que->sc = sc;
	timeout_set(&que->rx_refill, em_rxrefill, que);

	sc->queues = que;
	sc->num_queues = 1;
	sc->msix = 0;
	sc->legacy_irq = 0;
	if (em_allocate_msix(sc) && em_allocate_legacy(sc))
		return (ENXIO);

	/*
	 * the ICP_xxxx device has multiple, duplicate register sets for
	 * use when it is being used as a network processor. Disable those
	 * registers here, as they are not necessary in this context and
	 * can confuse the system
	 */
	if(sc->hw.mac_type == em_icp_xxxx) {
		int offset;
		pcireg_t val;
		
		if (!pci_get_capability(sc->osdep.em_pa.pa_pc, 
		    sc->osdep.em_pa.pa_tag, PCI_CAP_ID_ST, &offset, &val)) {
			return (0);
		}
		offset += PCI_ST_SMIA_OFFSET;
		pci_conf_write(sc->osdep.em_pa.pa_pc, sc->osdep.em_pa.pa_tag,
		    offset, 0x06);
		E1000_WRITE_REG(&sc->hw, IMC1, ~0x0);
		E1000_WRITE_REG(&sc->hw, IMC2, ~0x0);
	}
	return (0);
}

void
em_free_pci_resources(struct em_softc *sc)
{
	struct pci_attach_args *pa = &sc->osdep.em_pa;
	pci_chipset_tag_t	pc = pa->pa_pc;
	struct em_queue	       *que = NULL;
	if (sc->sc_intrhand)
		pci_intr_disestablish(pc, sc->sc_intrhand);
	sc->sc_intrhand = 0;

	if (sc->osdep.em_flashbase)
		bus_space_unmap(sc->osdep.flash_bus_space_tag, sc->osdep.flash_bus_space_handle,
				sc->osdep.em_flashsize);
	sc->osdep.em_flashbase = 0;

	if (sc->osdep.em_iobase)
		bus_space_unmap(sc->osdep.io_bus_space_tag, sc->osdep.io_bus_space_handle,
				sc->osdep.em_iosize);
	sc->osdep.em_iobase = 0;

	if (sc->osdep.em_membase)
		bus_space_unmap(sc->osdep.mem_bus_space_tag, sc->osdep.mem_bus_space_handle,
				sc->osdep.em_memsize);
	sc->osdep.em_membase = 0;

	FOREACH_QUEUE(sc, que) {
		if (que->rx.sc_rx_desc_ring != NULL) {
			que->rx.sc_rx_desc_ring = NULL;
			em_dma_free(sc, &que->rx.sc_rx_dma);
		}
		if (que->tx.sc_tx_desc_ring != NULL) {
			que->tx.sc_tx_desc_ring = NULL;
			em_dma_free(sc, &que->tx.sc_tx_dma);
		}
		if (que->tag)
			pci_intr_disestablish(pc, que->tag);
		que->tag = NULL;
		que->eims = 0;
		que->me = 0;
		que->sc = NULL;
	}
	sc->legacy_irq = 0;
	sc->msix_linkvec = 0;
	sc->msix_queuesmask = 0;
	if (sc->queues)
		free(sc->queues, M_DEVBUF,
		    sc->num_queues * sizeof(struct em_queue));
	sc->num_queues = 0;
	sc->queues = NULL;
}

/*********************************************************************
 *
 *  Initialize the hardware to a configuration as specified by the
 *  em_softc structure. The controller is reset, the EEPROM is
 *  verified, the MAC address is set, then the shared initialization
 *  routines are called.
 *
 **********************************************************************/
int
em_hardware_init(struct em_softc *sc)
{
	uint32_t ret_val;
	u_int16_t rx_buffer_size;

	INIT_DEBUGOUT("em_hardware_init: begin");
	if (sc->hw.mac_type >= em_pch_spt)
		em_flush_desc_rings(sc);
	/* Issue a global reset */
	em_reset_hw(&sc->hw);

	/* When hardware is reset, fifo_head is also reset */
	sc->tx_fifo_head = 0;

	/* Make sure we have a good EEPROM before we read from it */
	if (em_get_flash_presence_i210(&sc->hw) &&
	    em_validate_eeprom_checksum(&sc->hw) < 0) {
		/*
		 * Some PCIe parts fail the first check due to
		 * the link being in sleep state, call it again,
		 * if it fails a second time its a real issue.
		 */
		if (em_validate_eeprom_checksum(&sc->hw) < 0) {
			printf("%s: The EEPROM Checksum Is Not Valid\n",
			       DEVNAME(sc));
			return (EIO);
		}
	}

	if (em_get_flash_presence_i210(&sc->hw) &&
	    em_read_part_num(&sc->hw, &(sc->part_num)) < 0) {
		printf("%s: EEPROM read error while reading part number\n",
		       DEVNAME(sc));
		return (EIO);
	}

	/* Set up smart power down as default off on newer adapters */
	if (!em_smart_pwr_down &&
	     (sc->hw.mac_type == em_82571 ||
	      sc->hw.mac_type == em_82572 ||
	      sc->hw.mac_type == em_82575 ||
	      sc->hw.mac_type == em_82576 ||
	      sc->hw.mac_type == em_82580 ||
	      sc->hw.mac_type == em_i210 ||
	      sc->hw.mac_type == em_i350 )) {
		uint16_t phy_tmp = 0;

		/* Speed up time to link by disabling smart power down */
		em_read_phy_reg(&sc->hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
		phy_tmp &= ~IGP02E1000_PM_SPD;
		em_write_phy_reg(&sc->hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
	}

	em_legacy_irq_quirk_spt(sc);

	/*
	 * These parameters control the automatic generation (Tx) and 
	 * response (Rx) to Ethernet PAUSE frames.
	 * - High water mark should allow for at least two frames to be
	 *   received after sending an XOFF.
	 * - Low water mark works best when it is very near the high water mark.
	 *   This allows the receiver to restart by sending XON when it has
	 *   drained a bit.  Here we use an arbitary value of 1500 which will
	 *   restart after one full frame is pulled from the buffer.  There
	 *   could be several smaller frames in the buffer and if so they will
	 *   not trigger the XON until their total number reduces the buffer
	 *   by 1500.
	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
	 */
	rx_buffer_size = ((E1000_READ_REG(&sc->hw, PBA) & 0xffff) << 10 );

	sc->hw.fc_high_water = rx_buffer_size -
	    EM_ROUNDUP(sc->hw.max_frame_size, 1024);
	sc->hw.fc_low_water = sc->hw.fc_high_water - 1500;
	if (sc->hw.mac_type == em_80003es2lan)
		sc->hw.fc_pause_time = 0xFFFF;
	else
		sc->hw.fc_pause_time = 1000;
	sc->hw.fc_send_xon = TRUE;
	sc->hw.fc = E1000_FC_FULL;

	em_disable_aspm(sc);

	if ((ret_val = em_init_hw(sc)) != 0) {
		if (ret_val == E1000_DEFER_INIT) {
			INIT_DEBUGOUT("\nHardware Initialization Deferred ");
			return (EAGAIN);
		}
		printf("\n%s: Hardware Initialization Failed: %d\n",
		       DEVNAME(sc), ret_val);
		return (EIO);
	}

	em_check_for_link(&sc->hw);

	return (0);
}

/*********************************************************************
 *
 *  Setup networking device structure and register an interface.
 *
 **********************************************************************/
void
em_setup_interface(struct em_softc *sc)
{
	struct ifnet   *ifp;
	uint64_t fiber_type = IFM_1000_SX;

	INIT_DEBUGOUT("em_setup_interface: begin");

	ifp = &sc->sc_ac.ac_if;
	strlcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ);
	ifp->if_softc = sc;
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_xflags = IFXF_MPSAFE;
	ifp->if_ioctl = em_ioctl;
	ifp->if_qstart = em_start;
	ifp->if_watchdog = em_watchdog;
	ifp->if_hardmtu =
		sc->hw.max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN;
	IFQ_SET_MAXLEN(&ifp->if_snd, sc->sc_tx_slots - 1);

	ifp->if_capabilities = IFCAP_VLAN_MTU;

#if NVLAN > 0
	if (sc->hw.mac_type != em_82575 && sc->hw.mac_type != em_82580 &&
	    sc->hw.mac_type != em_82576 &&
	    sc->hw.mac_type != em_i210 && sc->hw.mac_type != em_i350)
		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
#endif

	if (sc->hw.mac_type >= em_82543 && sc->hw.mac_type != em_82575 &&
	    sc->hw.mac_type != em_82576 &&
	    sc->hw.mac_type != em_82580 && sc->hw.mac_type != em_i210 &&
	    sc->hw.mac_type != em_i350)
		ifp->if_capabilities |= IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;

	/* 
	 * Specify the media types supported by this adapter and register
	 * callbacks to update media and link information
	 */
	ifmedia_init(&sc->media, IFM_IMASK, em_media_change,
		     em_media_status);
	if (sc->hw.media_type == em_media_type_fiber ||
	    sc->hw.media_type == em_media_type_internal_serdes) {
		if (sc->hw.mac_type == em_82545)
			fiber_type = IFM_1000_LX;
		ifmedia_add(&sc->media, IFM_ETHER | fiber_type | IFM_FDX, 
			    0, NULL);
		ifmedia_add(&sc->media, IFM_ETHER | fiber_type, 
			    0, NULL);
	} else {
		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 
			    0, NULL);
		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 
			    0, NULL);
		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 
			    0, NULL);
		if (sc->hw.phy_type != em_phy_ife) {
			ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 
				    0, NULL);
			ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
		}
	}
	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);

	if_attach(ifp);
	ether_ifattach(ifp);
	em_enable_intr(sc);
}

int
em_detach(struct device *self, int flags)
{
	struct em_softc *sc = (struct em_softc *)self;
	struct ifnet *ifp = &sc->sc_ac.ac_if;
	struct pci_attach_args *pa = &sc->osdep.em_pa;
	pci_chipset_tag_t	pc = pa->pa_pc;

	if (sc->sc_intrhand)
		pci_intr_disestablish(pc, sc->sc_intrhand);
	sc->sc_intrhand = 0;

	em_stop(sc, 1);

	em_free_pci_resources(sc);

	ether_ifdetach(ifp);
	if_detach(ifp);

	return (0);
}

int
em_activate(struct device *self, int act)
{
	struct em_softc *sc = (struct em_softc *)self;
	struct ifnet *ifp = &sc->sc_ac.ac_if;
	int rv = 0;

	switch (act) {
	case DVACT_SUSPEND:
		if (ifp->if_flags & IFF_RUNNING)
			em_stop(sc, 0);
		/* We have no children atm, but we will soon */
		rv = config_activate_children(self, act);
		break;
	case DVACT_RESUME:
		if (ifp->if_flags & IFF_UP)
			em_init(sc);
		break;
	default:
		rv = config_activate_children(self, act);
		break;
	}
	return (rv);
}

/*********************************************************************
 *
 *  Workaround for SmartSpeed on 82541 and 82547 controllers
 *
 **********************************************************************/	
void
em_smartspeed(struct em_softc *sc)
{
	uint16_t phy_tmp;
 
	if (sc->link_active || (sc->hw.phy_type != em_phy_igp) || 
	    !sc->hw.autoneg || !(sc->hw.autoneg_advertised & ADVERTISE_1000_FULL))
		return;

	if (sc->smartspeed == 0) {
		/* If Master/Slave config fault is asserted twice,
		 * we assume back-to-back */
		em_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
			return;
		em_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
			em_read_phy_reg(&sc->hw, PHY_1000T_CTRL,
					&phy_tmp);
			if (phy_tmp & CR_1000T_MS_ENABLE) {
				phy_tmp &= ~CR_1000T_MS_ENABLE;
				em_write_phy_reg(&sc->hw,
						    PHY_1000T_CTRL, phy_tmp);
				sc->smartspeed++;
				if (sc->hw.autoneg &&
				    !em_phy_setup_autoneg(&sc->hw) &&
				    !em_read_phy_reg(&sc->hw, PHY_CTRL,
						       &phy_tmp)) {
					phy_tmp |= (MII_CR_AUTO_NEG_EN |  
						    MII_CR_RESTART_AUTO_NEG);
					em_write_phy_reg(&sc->hw,
							 PHY_CTRL, phy_tmp);
				}
			}
		}
		return;
	} else if (sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
		/* If still no link, perhaps using 2/3 pair cable */
		em_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
		phy_tmp |= CR_1000T_MS_ENABLE;
		em_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
		if (sc->hw.autoneg &&
		    !em_phy_setup_autoneg(&sc->hw) &&
		    !em_read_phy_reg(&sc->hw, PHY_CTRL, &phy_tmp)) {
			phy_tmp |= (MII_CR_AUTO_NEG_EN |
				    MII_CR_RESTART_AUTO_NEG);
			em_write_phy_reg(&sc->hw, PHY_CTRL, phy_tmp);
		}
	}
	/* Restart process after EM_SMARTSPEED_MAX iterations */
	if (sc->smartspeed++ == EM_SMARTSPEED_MAX)
		sc->smartspeed = 0;
}

/*
 * Manage DMA'able memory.
 */
int
em_dma_malloc(struct em_softc *sc, bus_size_t size, struct em_dma_alloc *dma)
{
	int r;

	r = bus_dmamap_create(sc->sc_dmat, size, 1,
	    size, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->dma_map);
	if (r != 0)
		return (r);

	r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &dma->dma_seg,
	    1, &dma->dma_nseg, BUS_DMA_WAITOK | BUS_DMA_ZERO);
	if (r != 0)
		goto destroy;

	r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg, size,
	    &dma->dma_vaddr, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
	if (r != 0)
		goto free;

	r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr, size,
	    NULL, BUS_DMA_WAITOK);
	if (r != 0)
		goto unmap;

	dma->dma_size = size;
	return (0);

unmap:
	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
free:
	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
destroy:
	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);

	return (r);
}

void
em_dma_free(struct em_softc *sc, struct em_dma_alloc *dma)
{
	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
}

/*********************************************************************
 *
 *  Allocate memory for tx_buffer structures. The tx_buffer stores all
 *  the information needed to transmit a packet on the wire.
 *
 **********************************************************************/
int
em_allocate_transmit_structures(struct em_softc *sc)
{
	struct em_queue *que;

	FOREACH_QUEUE(sc, que) {
		bus_dmamap_sync(sc->sc_dmat, que->tx.sc_tx_dma.dma_map,
		    0, que->tx.sc_tx_dma.dma_map->dm_mapsize,
		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

		que->tx.sc_tx_pkts_ring = mallocarray(sc->sc_tx_slots,
		    sizeof(*que->tx.sc_tx_pkts_ring), M_DEVBUF, M_NOWAIT | M_ZERO);
		if (que->tx.sc_tx_pkts_ring == NULL) {
			printf("%s: Unable to allocate tx_buffer memory\n", 
			    DEVNAME(sc));
			return (ENOMEM);
		}
	}

	return (0);
}

/*********************************************************************
 *
 *  Allocate and initialize transmit structures. 
 *
 **********************************************************************/
int
em_setup_transmit_structures(struct em_softc *sc)
{
	struct em_queue *que;
	struct em_packet *pkt;
	int error, i;

	if ((error = em_allocate_transmit_structures(sc)) != 0)
		goto fail;

	FOREACH_QUEUE(sc, que) {
		bzero((void *) que->tx.sc_tx_desc_ring,
		    (sizeof(struct em_tx_desc)) * sc->sc_tx_slots);

		for (i = 0; i < sc->sc_tx_slots; i++) {
			pkt = &que->tx.sc_tx_pkts_ring[i];
			error = bus_dmamap_create(sc->sc_dmat, MAX_JUMBO_FRAME_SIZE,
			    EM_MAX_SCATTER / (sc->pcix_82544 ? 2 : 1),
			    MAX_JUMBO_FRAME_SIZE, 0, BUS_DMA_NOWAIT, &pkt->pkt_map);
			if (error != 0) {
				printf("%s: Unable to create TX DMA map\n",
				    DEVNAME(sc));
				goto fail;
			}
		}

		que->tx.sc_tx_desc_head = 0;
		que->tx.sc_tx_desc_tail = 0;

		/* Set checksum context */
		que->tx.active_checksum_context = OFFLOAD_NONE;
	}

	return (0);

fail:
	em_free_transmit_structures(sc);
	return (error);
}

/*********************************************************************
 *
 *  Enable transmit unit.
 *
 **********************************************************************/
void
em_initialize_transmit_unit(struct em_softc *sc)
{
	u_int32_t	reg_tctl, reg_tipg = 0;
	u_int64_t	bus_addr;
	struct em_queue *que;

	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");

	FOREACH_QUEUE(sc, que) {
		/* Setup the Base and Length of the Tx Descriptor Ring */
		bus_addr = que->tx.sc_tx_dma.dma_map->dm_segs[0].ds_addr;
		E1000_WRITE_REG(&sc->hw, TDLEN(que->me),
		    sc->sc_tx_slots *
		    sizeof(struct em_tx_desc));
		E1000_WRITE_REG(&sc->hw, TDBAH(que->me), (u_int32_t)(bus_addr >> 32));
		E1000_WRITE_REG(&sc->hw, TDBAL(que->me), (u_int32_t)bus_addr);

		/* Setup the HW Tx Head and Tail descriptor pointers */
		E1000_WRITE_REG(&sc->hw, TDT(que->me), 0);
		E1000_WRITE_REG(&sc->hw, TDH(que->me), 0);

		HW_DEBUGOUT2("Base = %x, Length = %x\n",
		    E1000_READ_REG(&sc->hw, TDBAL(que->me)),
		    E1000_READ_REG(&sc->hw, TDLEN(que->me)));

		/* Set the default values for the Tx Inter Packet Gap timer */
		switch (sc->hw.mac_type) {
		case em_82542_rev2_0:
		case em_82542_rev2_1:
			reg_tipg = DEFAULT_82542_TIPG_IPGT;
			reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
			reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
			break;
		case em_80003es2lan:
			reg_tipg = DEFAULT_82543_TIPG_IPGR1;
			reg_tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
			break;
		default:
			if (sc->hw.media_type == em_media_type_fiber ||
			    sc->hw.media_type == em_media_type_internal_serdes)
				reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
			else
				reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
			reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
			reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
		}


		E1000_WRITE_REG(&sc->hw, TIPG, reg_tipg);
		E1000_WRITE_REG(&sc->hw, TIDV, sc->tx_int_delay);
		if (sc->hw.mac_type >= em_82540)
			E1000_WRITE_REG(&sc->hw, TADV, sc->tx_abs_int_delay);

		/* Setup Transmit Descriptor Base Settings */
		que->tx.sc_txd_cmd = E1000_TXD_CMD_IFCS;

		if (sc->hw.mac_type == em_82575 || sc->hw.mac_type == em_82580 ||
		    sc->hw.mac_type == em_82576 ||
		    sc->hw.mac_type == em_i210 || sc->hw.mac_type == em_i350) {
			/* 82575/6 need to enable the TX queue and lack the IDE bit */
			reg_tctl = E1000_READ_REG(&sc->hw, TXDCTL(que->me));
			reg_tctl |= E1000_TXDCTL_QUEUE_ENABLE;
			E1000_WRITE_REG(&sc->hw, TXDCTL(que->me), reg_tctl);
		} else if (sc->tx_int_delay > 0)
			que->tx.sc_txd_cmd |= E1000_TXD_CMD_IDE;
	}

	/* Program the Transmit Control Register */
	reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
	if (sc->hw.mac_type >= em_82571)
		reg_tctl |= E1000_TCTL_MULR;
	if (sc->link_duplex == FULL_DUPLEX)
		reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
	else
		reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
	/* This write will effectively turn on the transmit unit */
	E1000_WRITE_REG(&sc->hw, TCTL, reg_tctl);

	/* SPT Si errata workaround to avoid data corruption */

	if (sc->hw.mac_type == em_pch_spt) {
		uint32_t	reg_val;

		reg_val = EM_READ_REG(&sc->hw, E1000_IOSFPC);
		reg_val |= E1000_RCTL_RDMTS_HEX;
		EM_WRITE_REG(&sc->hw, E1000_IOSFPC, reg_val);

		reg_val = E1000_READ_REG(&sc->hw, TARC0);
		/* i218-i219 Specification Update 1.5.4.5 */
		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
		E1000_WRITE_REG(&sc->hw, TARC0, reg_val);
	}
}

/*********************************************************************
 *
 *  Free all transmit related data structures.
 *
 **********************************************************************/
void
em_free_transmit_structures(struct em_softc *sc)
{
	struct em_queue *que;
	struct em_packet *pkt;
	int i;

	INIT_DEBUGOUT("free_transmit_structures: begin");

	FOREACH_QUEUE(sc, que) {
		if (que->tx.sc_tx_pkts_ring != NULL) {
			for (i = 0; i < sc->sc_tx_slots; i++) {
				pkt = &que->tx.sc_tx_pkts_ring[i];

				if (pkt->pkt_m != NULL) {
					bus_dmamap_sync(sc->sc_dmat, pkt->pkt_map,
					    0, pkt->pkt_map->dm_mapsize,
					    BUS_DMASYNC_POSTWRITE);
					bus_dmamap_unload(sc->sc_dmat,
					    pkt->pkt_map);

					m_freem(pkt->pkt_m);
					pkt->pkt_m = NULL;
				}

				if (pkt->pkt_map != NULL) {
					bus_dmamap_destroy(sc->sc_dmat,
					    pkt->pkt_map);
					pkt->pkt_map = NULL;
				}
			}

			free(que->tx.sc_tx_pkts_ring, M_DEVBUF,
			    sc->sc_tx_slots * sizeof(*que->tx.sc_tx_pkts_ring));
			que->tx.sc_tx_pkts_ring = NULL;
		}

		bus_dmamap_sync(sc->sc_dmat, que->tx.sc_tx_dma.dma_map,
		    0, que->tx.sc_tx_dma.dma_map->dm_mapsize,
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
	}
}

/*********************************************************************
 *
 *  The offload context needs to be set when we transfer the first
 *  packet of a particular protocol (TCP/UDP). We change the
 *  context only if the protocol type changes.
 *
 **********************************************************************/
u_int
em_transmit_checksum_setup(struct em_queue *que, struct mbuf *mp, u_int head,
    u_int32_t *txd_upper, u_int32_t *txd_lower)
{
	struct em_context_desc *TXD;

	if (mp->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) {
		*txd_upper = E1000_TXD_POPTS_TXSM << 8;
		*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		if (que->tx.active_checksum_context == OFFLOAD_TCP_IP)
			return (0);
		else
			que->tx.active_checksum_context = OFFLOAD_TCP_IP;
	} else if (mp->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) {
		*txd_upper = E1000_TXD_POPTS_TXSM << 8;
		*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		if (que->tx.active_checksum_context == OFFLOAD_UDP_IP)
			return (0);
		else
			que->tx.active_checksum_context = OFFLOAD_UDP_IP;
	} else {
		*txd_upper = 0;
		*txd_lower = 0;
		return (0);
	}

	/* If we reach this point, the checksum offload context
	 * needs to be reset.
	 */
	TXD = (struct em_context_desc *)&que->tx.sc_tx_desc_ring[head];

	TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN;
	TXD->lower_setup.ip_fields.ipcso = 
	    ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
	TXD->lower_setup.ip_fields.ipcse = 
	    htole16(ETHER_HDR_LEN + sizeof(struct ip) - 1);

	TXD->upper_setup.tcp_fields.tucss = 
	    ETHER_HDR_LEN + sizeof(struct ip);
	TXD->upper_setup.tcp_fields.tucse = htole16(0);

	if (que->tx.active_checksum_context == OFFLOAD_TCP_IP) {
		TXD->upper_setup.tcp_fields.tucso = 
		    ETHER_HDR_LEN + sizeof(struct ip) + 
		    offsetof(struct tcphdr, th_sum);
	} else if (que->tx.active_checksum_context == OFFLOAD_UDP_IP) {
		TXD->upper_setup.tcp_fields.tucso = 
		    ETHER_HDR_LEN + sizeof(struct ip) + 
		    offsetof(struct udphdr, uh_sum);
	}

	TXD->tcp_seg_setup.data = htole32(0);
	TXD->cmd_and_length = htole32(que->tx.sc_txd_cmd | E1000_TXD_CMD_DEXT);

	return (1);
}

/**********************************************************************
 *
 *  Examine each tx_buffer in the used queue. If the hardware is done
 *  processing the packet then free associated resources. The
 *  tx_buffer is put back on the free queue. 
 *
 **********************************************************************/
void
em_txeof(struct em_queue *que)
{
	struct em_softc *sc = que->sc;
	struct ifnet *ifp = &sc->sc_ac.ac_if;
	struct em_packet *pkt;
	struct em_tx_desc *desc;
	u_int head, tail;
	u_int free = 0;

	head = que->tx.sc_tx_desc_head;
	tail = que->tx.sc_tx_desc_tail;

	if (head == tail)
		return;

	bus_dmamap_sync(sc->sc_dmat, que->tx.sc_tx_dma.dma_map,
	    0, que->tx.sc_tx_dma.dma_map->dm_mapsize,
	    BUS_DMASYNC_POSTREAD);

	do {
		pkt = &que->tx.sc_tx_pkts_ring[tail];
		desc = &que->tx.sc_tx_desc_ring[pkt->pkt_eop];

		if (!ISSET(desc->upper.fields.status, E1000_TXD_STAT_DD))
			break;

		bus_dmamap_sync(sc->sc_dmat, pkt->pkt_map,
		    0, pkt->pkt_map->dm_mapsize,
		    BUS_DMASYNC_POSTWRITE);
		bus_dmamap_unload(sc->sc_dmat, pkt->pkt_map);

		KASSERT(pkt->pkt_m != NULL);

		m_freem(pkt->pkt_m);
		pkt->pkt_m = NULL;

		tail = pkt->pkt_eop;

		if (++tail == sc->sc_tx_slots)
			tail = 0;

		free++;
	} while (tail != head);

	bus_dmamap_sync(sc->sc_dmat, que->tx.sc_tx_dma.dma_map,
	    0, que->tx.sc_tx_dma.dma_map->dm_mapsize,
	    BUS_DMASYNC_PREREAD);

	if (free == 0)
		return;

	que->tx.sc_tx_desc_tail = tail;

	if (ifq_is_oactive(&ifp->if_snd))
		ifq_restart(&ifp->if_snd);
	else if (tail == head)
		ifp->if_timer = 0;
}

/*********************************************************************
 *
 *  Get a buffer from system mbuf buffer pool.
 *
 **********************************************************************/
int
em_get_buf(struct em_queue *que, int i)
{
	struct em_softc *sc = que->sc;
	struct mbuf    *m;
	struct em_packet *pkt;
	struct em_rx_desc *desc;
	int error;

	pkt = &que->rx.sc_rx_pkts_ring[i];
	desc = &que->rx.sc_rx_desc_ring[i];

	KASSERT(pkt->pkt_m == NULL);

	m = MCLGETI(NULL, M_DONTWAIT, NULL, EM_MCLBYTES);
	if (m == NULL) {
		sc->mbuf_cluster_failed++;
		return (ENOBUFS);
	}
	m->m_len = m->m_pkthdr.len = EM_MCLBYTES;
	m_adj(m, ETHER_ALIGN);

	error = bus_dmamap_load_mbuf(sc->sc_dmat, pkt->pkt_map,
	    m, BUS_DMA_NOWAIT);
	if (error) {
		m_freem(m);
		return (error);
	}

	bus_dmamap_sync(sc->sc_dmat, pkt->pkt_map,
	    0, pkt->pkt_map->dm_mapsize,
	    BUS_DMASYNC_PREREAD);
	pkt->pkt_m = m;

	memset(desc, 0, sizeof(*desc));
	htolem64(&desc->buffer_addr, pkt->pkt_map->dm_segs[0].ds_addr);

	return (0);
}

/*********************************************************************
 *
 *  Allocate memory for rx_buffer structures. Since we use one 
 *  rx_buffer per received packet, the maximum number of rx_buffer's 
 *  that we'll need is equal to the number of receive descriptors 
 *  that we've allocated.
 *
 **********************************************************************/
int
em_allocate_receive_structures(struct em_softc *sc)
{
	struct em_queue *que;
	struct em_packet *pkt;
	int i;
	int error;

	FOREACH_QUEUE(sc, que) {
		que->rx.sc_rx_pkts_ring = mallocarray(sc->sc_rx_slots,
		    sizeof(*que->rx.sc_rx_pkts_ring),
		    M_DEVBUF, M_NOWAIT | M_ZERO);
		if (que->rx.sc_rx_pkts_ring == NULL) {
			printf("%s: Unable to allocate rx_buffer memory\n",
			    DEVNAME(sc));
			return (ENOMEM);
		}

		bus_dmamap_sync(sc->sc_dmat, que->rx.sc_rx_dma.dma_map,
		    0, que->rx.sc_rx_dma.dma_map->dm_mapsize,
		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

		for (i = 0; i < sc->sc_rx_slots; i++) {
			pkt = &que->rx.sc_rx_pkts_ring[i];

			error = bus_dmamap_create(sc->sc_dmat, EM_MCLBYTES, 1,
			    EM_MCLBYTES, 0, BUS_DMA_NOWAIT, &pkt->pkt_map);
			if (error != 0) {
				printf("%s: em_allocate_receive_structures: "
				    "bus_dmamap_create failed; error %u\n",
				    DEVNAME(sc), error);
				goto fail;
			}

			pkt->pkt_m = NULL;
		}
	}

        return (0);

fail:
	em_free_receive_structures(sc);
	return (error);
}

/*********************************************************************
 *
 *  Allocate and initialize receive structures.
 *  
 **********************************************************************/
int
em_setup_receive_structures(struct em_softc *sc)
{
	struct ifnet *ifp = &sc->sc_ac.ac_if;
	struct em_queue *que;
	u_int lwm;

	if (em_allocate_receive_structures(sc))
		return (ENOMEM);

	FOREACH_QUEUE(sc, que) {
		memset(que->rx.sc_rx_desc_ring, 0,
		    sc->sc_rx_slots * sizeof(*que->rx.sc_rx_desc_ring));

		/* Setup our descriptor pointers */
		que->rx.sc_rx_desc_tail = 0;
		que->rx.sc_rx_desc_head = sc->sc_rx_slots - 1;

		lwm = max(4, 2 * ((ifp->if_hardmtu / MCLBYTES) + 1));
		if_rxr_init(&que->rx.sc_rx_ring, lwm, sc->sc_rx_slots);

		if (em_rxfill(que) == 0) {
			printf("%s: unable to fill any rx descriptors\n",
			    DEVNAME(sc));
			return (ENOMEM);
		}
	}

	return (0);
}

/*********************************************************************
 *
 *  Enable receive unit.
 *  
 **********************************************************************/
void
em_initialize_receive_unit(struct em_softc *sc)
{
	struct em_queue *que;
	u_int32_t	reg_rctl;
	u_int32_t	reg_rxcsum;
	u_int32_t	reg_srrctl;
	u_int64_t	bus_addr;

	INIT_DEBUGOUT("em_initialize_receive_unit: begin");

	/* Make sure receives are disabled while setting up the descriptor ring */
	E1000_WRITE_REG(&sc->hw, RCTL, 0);

	/* Set the Receive Delay Timer Register */
	E1000_WRITE_REG(&sc->hw, RDTR, 
			sc->rx_int_delay | E1000_RDT_FPDB);

	if (sc->hw.mac_type >= em_82540) {
		if (sc->rx_int_delay)
			E1000_WRITE_REG(&sc->hw, RADV, sc->rx_abs_int_delay);

		/* Set the interrupt throttling rate.  Value is calculated
		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
		E1000_WRITE_REG(&sc->hw, ITR, DEFAULT_ITR);
	}

	/* Setup the Receive Control Register */
	reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
	    E1000_RCTL_RDMTS_HALF |
	    (sc->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);

	if (sc->hw.tbi_compatibility_on == TRUE)
		reg_rctl |= E1000_RCTL_SBP;

	/*
	 * The i350 has a bug where it always strips the CRC whether
	 * asked to or not.  So ask for stripped CRC here and
	 * cope in rxeof
	 */
	if (sc->hw.mac_type == em_i210 || sc->hw.mac_type == em_i350)
		reg_rctl |= E1000_RCTL_SECRC;

	switch (sc->sc_rx_buffer_len) {
	default:
	case EM_RXBUFFER_2048:
		reg_rctl |= E1000_RCTL_SZ_2048;
		break;
	case EM_RXBUFFER_4096:
		reg_rctl |= E1000_RCTL_SZ_4096|E1000_RCTL_BSEX|E1000_RCTL_LPE;
		break;		  
	case EM_RXBUFFER_8192:
		reg_rctl |= E1000_RCTL_SZ_8192|E1000_RCTL_BSEX|E1000_RCTL_LPE;
		break;
	case EM_RXBUFFER_16384:
		reg_rctl |= E1000_RCTL_SZ_16384|E1000_RCTL_BSEX|E1000_RCTL_LPE;
		break;
	}

	if (sc->hw.max_frame_size != ETHER_MAX_LEN)
		reg_rctl |= E1000_RCTL_LPE;

	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
	if (sc->hw.mac_type >= em_82543) {
		reg_rxcsum = E1000_READ_REG(&sc->hw, RXCSUM);
		reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
		E1000_WRITE_REG(&sc->hw, RXCSUM, reg_rxcsum);
	}

	/*
	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
	 * long latencies are observed, like Lenovo X60.
	 */
	if (sc->hw.mac_type == em_82573)
		E1000_WRITE_REG(&sc->hw, RDTR, 0x20);

	FOREACH_QUEUE(sc, que) {
		if (sc->num_queues > 1) {
			/*
			 * Disable Drop Enable for every queue, default has
			 * it enabled for queues > 0
			 */
			reg_srrctl = E1000_READ_REG(&sc->hw, SRRCTL(que->me));
			reg_srrctl &= ~E1000_SRRCTL_DROP_EN;
			E1000_WRITE_REG(&sc->hw, SRRCTL(que->me), reg_srrctl);
		}

		/* Setup the Base and Length of the Rx Descriptor Ring */
		bus_addr = que->rx.sc_rx_dma.dma_map->dm_segs[0].ds_addr;
		E1000_WRITE_REG(&sc->hw, RDLEN(que->me),
		    sc->sc_rx_slots * sizeof(*que->rx.sc_rx_desc_ring));
		E1000_WRITE_REG(&sc->hw, RDBAH(que->me), (u_int32_t)(bus_addr >> 32));
		E1000_WRITE_REG(&sc->hw, RDBAL(que->me), (u_int32_t)bus_addr);

		if (sc->hw.mac_type == em_82575 || sc->hw.mac_type == em_82580 ||
		    sc->hw.mac_type == em_82576 ||
		    sc->hw.mac_type == em_i210 || sc->hw.mac_type == em_i350) {
			/* 82575/6 need to enable the RX queue */
			uint32_t reg;
			reg = E1000_READ_REG(&sc->hw, RXDCTL(que->me));
			reg |= E1000_RXDCTL_QUEUE_ENABLE;
			E1000_WRITE_REG(&sc->hw, RXDCTL(que->me), reg);
		}
	}

	/* Enable Receives */
	E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl);

	/* Setup the HW Rx Head and Tail Descriptor Pointers */
	FOREACH_QUEUE(sc, que) {
		E1000_WRITE_REG(&sc->hw, RDH(que->me), 0);
		E1000_WRITE_REG(&sc->hw, RDT(que->me), que->rx.sc_rx_desc_head);
	}
}

/*********************************************************************
 *
 *  Free receive related data structures.
 *
 **********************************************************************/
void
em_free_receive_structures(struct em_softc *sc)
{
	struct em_queue *que;
	struct em_packet *pkt;
	int i;

	INIT_DEBUGOUT("free_receive_structures: begin");

	FOREACH_QUEUE(sc, que) {
		if_rxr_init(&que->rx.sc_rx_ring, 0, 0);

		bus_dmamap_sync(sc->sc_dmat, que->rx.sc_rx_dma.dma_map,
		    0, que->rx.sc_rx_dma.dma_map->dm_mapsize,
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);

		if (que->rx.sc_rx_pkts_ring != NULL) {
			for (i = 0; i < sc->sc_rx_slots; i++) {
				pkt = &que->rx.sc_rx_pkts_ring[i];
				if (pkt->pkt_m != NULL) {
					bus_dmamap_sync(sc->sc_dmat,
					    pkt->pkt_map,
					    0, pkt->pkt_map->dm_mapsize,
					    BUS_DMASYNC_POSTREAD);
					bus_dmamap_unload(sc->sc_dmat,
					    pkt->pkt_map);
					m_freem(pkt->pkt_m);
					pkt->pkt_m = NULL;
				}
				bus_dmamap_destroy(sc->sc_dmat, pkt->pkt_map);
			}

			free(que->rx.sc_rx_pkts_ring, M_DEVBUF,
			    sc->sc_rx_slots * sizeof(*que->rx.sc_rx_pkts_ring));
			que->rx.sc_rx_pkts_ring = NULL;
		}

		if (que->rx.fmp != NULL) {
			m_freem(que->rx.fmp);
			que->rx.fmp = NULL;
			que->rx.lmp = NULL;
		}
	}
}

int
em_rxfill(struct em_queue *que)
{
	struct em_softc *sc = que->sc;
	u_int slots;
	int post = 0;
	int i;

	i = que->rx.sc_rx_desc_head;

	bus_dmamap_sync(sc->sc_dmat, que->rx.sc_rx_dma.dma_map,
	    0, que->rx.sc_rx_dma.dma_map->dm_mapsize,
	    BUS_DMASYNC_POSTWRITE);

	for (slots = if_rxr_get(&que->rx.sc_rx_ring, sc->sc_rx_slots);
	    slots > 0; slots--) {
		if (++i == sc->sc_rx_slots)
			i = 0;

		if (em_get_buf(que, i) != 0)
			break;

		que->rx.sc_rx_desc_head = i;
		post = 1;
	}

	if_rxr_put(&que->rx.sc_rx_ring, slots);

	bus_dmamap_sync(sc->sc_dmat, que->rx.sc_rx_dma.dma_map,
	    0, que->rx.sc_rx_dma.dma_map->dm_mapsize,
	    BUS_DMASYNC_PREWRITE);

	return (post);
}

void
em_rxrefill(void *arg)
{
	struct em_queue *que = arg;
	struct em_softc *sc = que->sc;

	if (em_rxfill(que))
		E1000_WRITE_REG(&sc->hw, RDT(que->me), que->rx.sc_rx_desc_head);
	else if (if_rxr_needrefill(&que->rx.sc_rx_ring))
		timeout_add(&que->rx_refill, 1);
}

/*********************************************************************
 *
 *  This routine executes in interrupt context. It replenishes
 *  the mbufs in the descriptor and sends data which has been
 *  dma'ed into host memory to upper layer.
 *
 *********************************************************************/
int
em_rxeof(struct em_queue *que)
{
	struct em_softc	    *sc = que->sc;
	struct ifnet	    *ifp = &sc->sc_ac.ac_if;
	struct mbuf_list    ml = MBUF_LIST_INITIALIZER();
	struct mbuf	    *m;
	u_int8_t	    accept_frame = 0;
	u_int8_t	    eop = 0;
	u_int16_t	    len, desc_len, prev_len_adj;
	int		    i, rv = 0;

	/* Pointer to the receive descriptor being examined. */
	struct em_rx_desc   *desc;
	struct em_packet    *pkt;
	u_int8_t	    status;

	if (if_rxr_inuse(&que->rx.sc_rx_ring) == 0)
		return (0);

	i = que->rx.sc_rx_desc_tail;

	bus_dmamap_sync(sc->sc_dmat, que->rx.sc_rx_dma.dma_map,
	    0, que->rx.sc_rx_dma.dma_map->dm_mapsize,
	    BUS_DMASYNC_POSTREAD);

	do {
		m = NULL;

		pkt = &que->rx.sc_rx_pkts_ring[i];
		desc = &que->rx.sc_rx_desc_ring[i];

		status = desc->status;
		if (!ISSET(status, E1000_RXD_STAT_DD))
			break;

		/* pull the mbuf off the ring */
		bus_dmamap_sync(sc->sc_dmat, pkt->pkt_map,
		    0, pkt->pkt_map->dm_mapsize,
		    BUS_DMASYNC_POSTREAD);
		bus_dmamap_unload(sc->sc_dmat, pkt->pkt_map);
		m = pkt->pkt_m;
		pkt->pkt_m = NULL;

		KASSERT(m != NULL);

		if_rxr_put(&que->rx.sc_rx_ring, 1);
		rv = 1;

		accept_frame = 1;
		prev_len_adj = 0;
		desc_len = letoh16(desc->length);

		if (status & E1000_RXD_STAT_EOP) {
			eop = 1;
			if (desc_len < ETHER_CRC_LEN) {
				len = 0;
				prev_len_adj = ETHER_CRC_LEN - desc_len;
			} else if (sc->hw.mac_type == em_i210 ||
			    sc->hw.mac_type == em_i350)
				len = desc_len;
			else
				len = desc_len - ETHER_CRC_LEN;
		} else {
			eop = 0;
			len = desc_len;
		}

		if (desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
			u_int8_t last_byte;
			u_int32_t pkt_len = desc_len;

			if (que->rx.fmp != NULL)
				pkt_len += que->rx.fmp->m_pkthdr.len;

			last_byte = *(mtod(m, caddr_t) + desc_len - 1);
			if (TBI_ACCEPT(&sc->hw, status, desc->errors,
			    pkt_len, last_byte)) {
#ifndef SMALL_KERNEL
				em_tbi_adjust_stats(&sc->hw, &sc->stats, 
				    pkt_len, sc->hw.mac_addr);
#endif
				if (len > 0)
					len--;
			} else
				accept_frame = 0;
		}

		if (accept_frame) {
			/* Assign correct length to the current fragment */
			m->m_len = len;

			if (que->rx.fmp == NULL) {
				m->m_pkthdr.len = m->m_len;
				que->rx.fmp = m;	 /* Store the first mbuf */
				que->rx.lmp = m;
			} else {
				/* Chain mbuf's together */
				m->m_flags &= ~M_PKTHDR;
				/*
				 * Adjust length of previous mbuf in chain if
				 * we received less than 4 bytes in the last
				 * descriptor.
				 */
				if (prev_len_adj > 0) {
					que->rx.lmp->m_len -= prev_len_adj;
					que->rx.fmp->m_pkthdr.len -= prev_len_adj;
				}
				que->rx.lmp->m_next = m;
				que->rx.lmp = m;
				que->rx.fmp->m_pkthdr.len += m->m_len;
			}

			if (eop) {
				m = que->rx.fmp;

				em_receive_checksum(sc, desc, m);
#if NVLAN > 0
				if (desc->status & E1000_RXD_STAT_VP) {
					m->m_pkthdr.ether_vtag =
					    letoh16(desc->special);
					m->m_flags |= M_VLANTAG;
				}
#endif
				ml_enqueue(&ml, m);

				que->rx.fmp = NULL;
				que->rx.lmp = NULL;
			}
		} else {
			que->rx.dropped_pkts++;

			if (que->rx.fmp != NULL) {
				m_freem(que->rx.fmp);
				que->rx.fmp = NULL;
				que->rx.lmp = NULL;
			}

			m_freem(m);
		}

		/* Advance our pointers to the next descriptor. */
		if (++i == sc->sc_rx_slots)
			i = 0;
	} while (if_rxr_inuse(&que->rx.sc_rx_ring) > 0);

	bus_dmamap_sync(sc->sc_dmat, que->rx.sc_rx_dma.dma_map,
	    0, que->rx.sc_rx_dma.dma_map->dm_mapsize,
	    BUS_DMASYNC_PREREAD);

	que->rx.sc_rx_desc_tail = i;

	if (ifiq_input(&ifp->if_rcv, &ml))
		if_rxr_livelocked(&que->rx.sc_rx_ring);

	return (rv);
}

/*********************************************************************
 *
 *  Verify that the hardware indicated that the checksum is valid. 
 *  Inform the stack about the status of checksum so that stack
 *  doesn't spend time verifying the checksum.
 *
 *********************************************************************/
void
em_receive_checksum(struct em_softc *sc, struct em_rx_desc *rx_desc,
    struct mbuf *mp)
{
	/* 82543 or newer only */
	if ((sc->hw.mac_type < em_82543) ||
	    /* Ignore Checksum bit is set */
	    (rx_desc->status & E1000_RXD_STAT_IXSM)) {
		mp->m_pkthdr.csum_flags = 0;
		return;
	}

	if (rx_desc->status & E1000_RXD_STAT_IPCS) {
		/* Did it pass? */
		if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
			/* IP Checksum Good */
			mp->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;

		} else
			mp->m_pkthdr.csum_flags = 0;
	}

	if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
		/* Did it pass? */        
		if (!(rx_desc->errors & E1000_RXD_ERR_TCPE))
			mp->m_pkthdr.csum_flags |=
				M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
	}
}

/*
 * This turns on the hardware offload of the VLAN
 * tag insertion and strip
 */
void 
em_enable_hw_vlans(struct em_softc *sc)
{
	uint32_t ctrl;

	ctrl = E1000_READ_REG(&sc->hw, CTRL);
	ctrl |= E1000_CTRL_VME;
	E1000_WRITE_REG(&sc->hw, CTRL, ctrl);
}

void
em_enable_intr(struct em_softc *sc)
{
	uint32_t mask;

	if (sc->msix) {
		mask = sc->msix_queuesmask | sc->msix_linkmask;
		E1000_WRITE_REG(&sc->hw, EIAC, mask);
		E1000_WRITE_REG(&sc->hw, EIAM, mask);
		E1000_WRITE_REG(&sc->hw, EIMS, mask);
		E1000_WRITE_REG(&sc->hw, IMS, E1000_IMS_LSC);
	} else
		E1000_WRITE_REG(&sc->hw, IMS, (IMS_ENABLE_MASK));
}

void
em_disable_intr(struct em_softc *sc)
{
	/*
	 * The first version of 82542 had an errata where when link
	 * was forced it would stay up even if the cable was disconnected
	 * Sequence errors were used to detect the disconnect and then
	 * the driver would unforce the link.  This code is in the ISR.
	 * For this to work correctly the Sequence error interrupt had
	 * to be enabled all the time.
	 */
	if (sc->msix) {
		E1000_WRITE_REG(&sc->hw, EIMC, ~0);
		E1000_WRITE_REG(&sc->hw, EIAC, 0);
	} else if (sc->hw.mac_type == em_82542_rev2_0)
		E1000_WRITE_REG(&sc->hw, IMC, (0xffffffff & ~E1000_IMC_RXSEQ));
	else
		E1000_WRITE_REG(&sc->hw, IMC, 0xffffffff);
}

void
em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
{
	struct pci_attach_args *pa = &((struct em_osdep *)hw->back)->em_pa;
	pcireg_t val;

	val = pci_conf_read(pa->pa_pc, pa->pa_tag, reg & ~0x3);
	if (reg & 0x2) {
		val &= 0x0000ffff;
		val |= (*value << 16);
	} else {
		val &= 0xffff0000;
		val |= *value;
	}
	pci_conf_write(pa->pa_pc, pa->pa_tag, reg & ~0x3, val);
}

void
em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
{
	struct pci_attach_args *pa = &((struct em_osdep *)hw->back)->em_pa;
	pcireg_t val;

	val = pci_conf_read(pa->pa_pc, pa->pa_tag, reg & ~0x3);
	if (reg & 0x2)
		*value = (val >> 16) & 0xffff;
	else
		*value = val & 0xffff;
}

void
em_pci_set_mwi(struct em_hw *hw)
{
	struct pci_attach_args *pa = &((struct em_osdep *)hw->back)->em_pa;

	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
		(hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE));
}

void
em_pci_clear_mwi(struct em_hw *hw)
{
	struct pci_attach_args *pa = &((struct em_osdep *)hw->back)->em_pa;

	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
		(hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE));
}

/*
 * We may eventually really do this, but its unnecessary
 * for now so we just return unsupported.
 */
int32_t
em_read_pcie_cap_reg(struct em_hw *hw, uint32_t reg, uint16_t *value)
{
	return -E1000_NOT_IMPLEMENTED;
}

/*********************************************************************
* 82544 Coexistence issue workaround.
*    There are 2 issues.
*       1. Transmit Hang issue.
*    To detect this issue, following equation can be used...
*          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
*          If SUM[3:0] is in between 1 to 4, we will have this issue.
*
*       2. DAC issue.
*    To detect this issue, following equation can be used...
*          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
*          If SUM[3:0] is in between 9 to c, we will have this issue.
*
*
*    WORKAROUND:
*          Make sure we do not have ending address as 1,2,3,4(Hang) or 9,a,b,c (DAC)
*
*** *********************************************************************/
u_int32_t
em_fill_descriptors(u_int64_t address, u_int32_t length,
    PDESC_ARRAY desc_array)
{
        /* Since issue is sensitive to length and address.*/
        /* Let us first check the address...*/
        u_int32_t safe_terminator;
        if (length <= 4) {
                desc_array->descriptor[0].address = address;
                desc_array->descriptor[0].length = length;
                desc_array->elements = 1;
                return desc_array->elements;
        }
        safe_terminator = (u_int32_t)((((u_int32_t)address & 0x7) + (length & 0xF)) & 0xF);
        /* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
        if (safe_terminator == 0   ||
        (safe_terminator > 4   &&
        safe_terminator < 9)   ||
        (safe_terminator > 0xC &&
        safe_terminator <= 0xF)) {
                desc_array->descriptor[0].address = address;
                desc_array->descriptor[0].length = length;
                desc_array->elements = 1;
                return desc_array->elements;
        }

        desc_array->descriptor[0].address = address;
        desc_array->descriptor[0].length = length - 4;
        desc_array->descriptor[1].address = address + (length - 4);
        desc_array->descriptor[1].length = 4;
        desc_array->elements = 2;
        return desc_array->elements;
}

/*
 * Disable the L0S and L1 LINK states.
 */
void
em_disable_aspm(struct em_softc *sc)
{
	int offset;
	pcireg_t val;

	switch (sc->hw.mac_type) {
		case em_82571:
		case em_82572:
		case em_82573:
		case em_82574:
			break;
		default:
			return;
	}

	if (!pci_get_capability(sc->osdep.em_pa.pa_pc, sc->osdep.em_pa.pa_tag,
	    PCI_CAP_PCIEXPRESS, &offset, NULL))
		return;

	/* Disable PCIe Active State Power Management (ASPM). */
	val = pci_conf_read(sc->osdep.em_pa.pa_pc, sc->osdep.em_pa.pa_tag,
	    offset + PCI_PCIE_LCSR);

	switch (sc->hw.mac_type) {
		case em_82571:
		case em_82572:
			val &= ~PCI_PCIE_LCSR_ASPM_L1;
			break;
		case em_82573:
		case em_82574:
			val &= ~(PCI_PCIE_LCSR_ASPM_L0S |
			    PCI_PCIE_LCSR_ASPM_L1);
			break;
		default:
			break;
	}

	pci_conf_write(sc->osdep.em_pa.pa_pc, sc->osdep.em_pa.pa_tag,
	    offset + PCI_PCIE_LCSR, val);
}

/*
 * em_flush_tx_ring - remove all descriptors from the tx_ring
 *
 * We want to clear all pending descriptors from the TX ring.
 * zeroing happens when the HW reads the regs. We assign the ring itself as
 * the data of the next descriptor. We don't care about the data we are about
 * to reset the HW.
 */
void
em_flush_tx_ring(struct em_queue *que)
{
	struct em_softc		*sc = que->sc;
	uint32_t		 tctl, txd_lower = E1000_TXD_CMD_IFCS;
	uint16_t		 size = 512;
	struct em_tx_desc	*txd;

	KASSERT(que->tx.sc_tx_desc_ring != NULL);

	tctl = EM_READ_REG(&sc->hw, E1000_TCTL);
	EM_WRITE_REG(&sc->hw, E1000_TCTL, tctl | E1000_TCTL_EN);

	KASSERT(EM_READ_REG(&sc->hw, E1000_TDT(que->me)) == que->tx.sc_tx_desc_head);

	txd = &que->tx.sc_tx_desc_ring[que->tx.sc_tx_desc_head];
	txd->buffer_addr = que->tx.sc_tx_dma.dma_map->dm_segs[0].ds_addr;
	txd->lower.data = htole32(txd_lower | size);
	txd->upper.data = 0;

	/* flush descriptors to memory before notifying the HW */
	bus_space_barrier(sc->osdep.mem_bus_space_tag,
	    sc->osdep.mem_bus_space_handle, 0, 0, BUS_SPACE_BARRIER_WRITE);

	if (++que->tx.sc_tx_desc_head == sc->sc_tx_slots)
		que->tx.sc_tx_desc_head = 0;

	EM_WRITE_REG(&sc->hw, E1000_TDT(que->me), que->tx.sc_tx_desc_head);
	bus_space_barrier(sc->osdep.mem_bus_space_tag, sc->osdep.mem_bus_space_handle,
	    0, 0, BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE);
	usec_delay(250);
}

/*
 * em_flush_rx_ring - remove all descriptors from the rx_ring
 *
 * Mark all descriptors in the RX ring as consumed and disable the rx ring
 */
void
em_flush_rx_ring(struct em_queue *que)
{
	uint32_t	rctl, rxdctl;
	struct em_softc	*sc = que->sc;

	rctl = EM_READ_REG(&sc->hw, E1000_RCTL);
	EM_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
	E1000_WRITE_FLUSH(&sc->hw);
	usec_delay(150);

	rxdctl = EM_READ_REG(&sc->hw, E1000_RXDCTL(que->me));
	/* zero the lower 14 bits (prefetch and host thresholds) */
	rxdctl &= 0xffffc000;
	/*
	 * update thresholds: prefetch threshold to 31, host threshold to 1
	 * and make sure the granularity is "descriptors" and not "cache lines"
	 */
	rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
	EM_WRITE_REG(&sc->hw, E1000_RXDCTL(que->me), rxdctl);

	/* momentarily enable the RX ring for the changes to take effect */
	EM_WRITE_REG(&sc->hw, E1000_RCTL, rctl | E1000_RCTL_EN);
	E1000_WRITE_FLUSH(&sc->hw);
	usec_delay(150);
	EM_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
}

/*
 * em_flush_desc_rings - remove all descriptors from the descriptor rings
 *
 * In i219, the descriptor rings must be emptied before resetting the HW
 * or before changing the device state to D3 during runtime (runtime PM).
 *
 * Failure to do this will cause the HW to enter a unit hang state which can
 * only be released by PCI reset on the device
 *
 */
void
em_flush_desc_rings(struct em_softc *sc)
{
	struct em_queue		*que = sc->queues; /* Use only first queue. */
	struct pci_attach_args	*pa = &sc->osdep.em_pa;
	uint32_t		 fextnvm11, tdlen;
	uint16_t		 hang_state;

	/* First, disable MULR fix in FEXTNVM11 */
	fextnvm11 = EM_READ_REG(&sc->hw, E1000_FEXTNVM11);
	fextnvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
	EM_WRITE_REG(&sc->hw, E1000_FEXTNVM11, fextnvm11);

	/* do nothing if we're not in faulty state, or if the queue is empty */
	tdlen = EM_READ_REG(&sc->hw, E1000_TDLEN(que->me));
	hang_state = pci_conf_read(pa->pa_pc, pa->pa_tag, PCICFG_DESC_RING_STATUS);
	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
		return;
	em_flush_tx_ring(que);

	/* recheck, maybe the fault is caused by the rx ring */
	hang_state = pci_conf_read(pa->pa_pc, pa->pa_tag, PCICFG_DESC_RING_STATUS);
	if (hang_state & FLUSH_DESC_REQUIRED)
		em_flush_rx_ring(que);
}

int
em_allocate_legacy(struct em_softc *sc)
{
	pci_intr_handle_t	 ih;
	const char		*intrstr = NULL;
	struct pci_attach_args	*pa = &sc->osdep.em_pa;
	pci_chipset_tag_t	 pc = pa->pa_pc;

	if (pci_intr_map_msi(pa, &ih)) {
		if (pci_intr_map(pa, &ih)) {
			printf(": couldn't map interrupt\n");
			return (ENXIO);
		}
		sc->legacy_irq = 1;
	}

	intrstr = pci_intr_string(pc, ih);
	sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET | IPL_MPSAFE,
	    em_intr, sc, DEVNAME(sc));
	if (sc->sc_intrhand == NULL) {
		printf(": couldn't establish interrupt");
		if (intrstr != NULL)
			printf(" at %s", intrstr);
		printf("\n");
		return (ENXIO);
	}
	printf(": %s", intrstr);

	return (0);
}


#ifndef SMALL_KERNEL
/**********************************************************************
 *
 *  Update the board statistics counters. 
 *
 **********************************************************************/
void
em_update_stats_counters(struct em_softc *sc)
{
	struct em_queue *que = sc->queues; /* Use only first queue. */
	struct ifnet   *ifp = &sc->sc_ac.ac_if;
	uint64_t	colc, rxerrc, crcerrs, algnerrc;
	uint64_t	ruc, roc, mpc, cexterr;
	uint64_t	ecol, latecol;

	crcerrs = E1000_READ_REG(&sc->hw, CRCERRS);
	sc->stats.crcerrs += crcerrs;
	mpc = E1000_READ_REG(&sc->hw, MPC);
	sc->stats.mpc += mpc;
	ecol = E1000_READ_REG(&sc->hw, ECOL);
	sc->stats.ecol += ecol;

	latecol = E1000_READ_REG(&sc->hw, LATECOL);
	sc->stats.latecol += latecol;
	colc = E1000_READ_REG(&sc->hw, COLC);
	sc->stats.colc += colc;

	ruc = E1000_READ_REG(&sc->hw, RUC);
	sc->stats.ruc += ruc;
	roc = E1000_READ_REG(&sc->hw, ROC);
	sc->stats.roc += roc;

	algnerrc = rxerrc = cexterr = 0;
	if (sc->hw.mac_type >= em_82543) {
		algnerrc = E1000_READ_REG(&sc->hw, ALGNERRC);
		rxerrc = E1000_READ_REG(&sc->hw, RXERRC);
		cexterr = E1000_READ_REG(&sc->hw, CEXTERR);
	}
	sc->stats.algnerrc += algnerrc;
	sc->stats.rxerrc += rxerrc;
	sc->stats.cexterr += cexterr;

#ifdef EM_DEBUG
	if (sc->hw.media_type == em_media_type_copper ||
	    (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_LU)) {
		sc->stats.symerrs += E1000_READ_REG(&sc->hw, SYMERRS);
		sc->stats.sec += E1000_READ_REG(&sc->hw, SEC);
	}
	sc->stats.scc += E1000_READ_REG(&sc->hw, SCC);

	sc->stats.mcc += E1000_READ_REG(&sc->hw, MCC);
	sc->stats.dc += E1000_READ_REG(&sc->hw, DC);
	sc->stats.rlec += E1000_READ_REG(&sc->hw, RLEC);
	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, XONRXC);
	sc->stats.xontxc += E1000_READ_REG(&sc->hw, XONTXC);
	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, XOFFRXC);
	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, XOFFTXC);
	sc->stats.fcruc += E1000_READ_REG(&sc->hw, FCRUC);
	sc->stats.prc64 += E1000_READ_REG(&sc->hw, PRC64);
	sc->stats.prc127 += E1000_READ_REG(&sc->hw, PRC127);
	sc->stats.prc255 += E1000_READ_REG(&sc->hw, PRC255);
	sc->stats.prc511 += E1000_READ_REG(&sc->hw, PRC511);
	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, PRC1023);
	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, PRC1522);
	sc->stats.gprc += E1000_READ_REG(&sc->hw, GPRC);
	sc->stats.bprc += E1000_READ_REG(&sc->hw, BPRC);
	sc->stats.mprc += E1000_READ_REG(&sc->hw, MPRC);
	sc->stats.gptc += E1000_READ_REG(&sc->hw, GPTC);

	/* For the 64-bit byte counters the low dword must be read first. */
	/* Both registers clear on the read of the high dword */

	sc->stats.gorcl += E1000_READ_REG(&sc->hw, GORCL); 
	sc->stats.gorch += E1000_READ_REG(&sc->hw, GORCH);
	sc->stats.gotcl += E1000_READ_REG(&sc->hw, GOTCL);
	sc->stats.gotch += E1000_READ_REG(&sc->hw, GOTCH);

	sc->stats.rnbc += E1000_READ_REG(&sc->hw, RNBC);
	sc->stats.rfc += E1000_READ_REG(&sc->hw, RFC);
	sc->stats.rjc += E1000_READ_REG(&sc->hw, RJC);

	sc->stats.torl += E1000_READ_REG(&sc->hw, TORL);
	sc->stats.torh += E1000_READ_REG(&sc->hw, TORH);
	sc->stats.totl += E1000_READ_REG(&sc->hw, TOTL);
	sc->stats.toth += E1000_READ_REG(&sc->hw, TOTH);

	sc->stats.tpr += E1000_READ_REG(&sc->hw, TPR);
	sc->stats.tpt += E1000_READ_REG(&sc->hw, TPT);
	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, PTC64);
	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, PTC127);
	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, PTC255);
	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, PTC511);
	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, PTC1023);
	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, PTC1522);
	sc->stats.mptc += E1000_READ_REG(&sc->hw, MPTC);
	sc->stats.bptc += E1000_READ_REG(&sc->hw, BPTC);
	sc->stats.sdpc += E1000_READ_REG(&sc->hw, SDPC);
	sc->stats.mngpdc += E1000_READ_REG(&sc->hw, MGTPDC);
	sc->stats.mngprc += E1000_READ_REG(&sc->hw, MGTPRC);
	sc->stats.mngptc += E1000_READ_REG(&sc->hw, MGTPTC);
	sc->stats.b2ospc += E1000_READ_REG(&sc->hw, B2OSPC);
	sc->stats.o2bgptc += E1000_READ_REG(&sc->hw, O2BGPTC);
	sc->stats.b2ogprc += E1000_READ_REG(&sc->hw, B2OGPRC);
	sc->stats.o2bspc += E1000_READ_REG(&sc->hw, O2BSPC);
	sc->stats.rpthc += E1000_READ_REG(&sc->hw, RPTHC);

	if (sc->hw.mac_type >= em_82543) {
		sc->stats.tncrs += 
		E1000_READ_REG(&sc->hw, TNCRS);
		sc->stats.tsctc += 
		E1000_READ_REG(&sc->hw, TSCTC);
		sc->stats.tsctfc += 
		E1000_READ_REG(&sc->hw, TSCTFC);
	}
#endif

	/* Fill out the OS statistics structure */
	ifp->if_collisions = colc;

	/* Rx Errors */
	ifp->if_ierrors =
	    que->rx.dropped_pkts +
	    rxerrc +
	    crcerrs +
	    algnerrc +
	    ruc +
	    roc +
	    mpc +
	    cexterr +
	    sc->rx_overruns;

	/* Tx Errors */
	ifp->if_oerrors = ecol + latecol +
	    sc->watchdog_events;
}

#ifdef EM_DEBUG
/**********************************************************************
 *
 *  This routine is called only when IFF_DEBUG is enabled.
 *  This routine provides a way to take a look at important statistics
 *  maintained by the driver and hardware.
 *
 **********************************************************************/
void
em_print_hw_stats(struct em_softc *sc)
{
	const char * const unit = DEVNAME(sc);
	struct em_queue *que;

	printf("%s: Excessive collisions = %lld\n", unit,
		(long long)sc->stats.ecol);
	printf("%s: Symbol errors = %lld\n", unit,
		(long long)sc->stats.symerrs);
	printf("%s: Sequence errors = %lld\n", unit,
		(long long)sc->stats.sec);
	printf("%s: Defer count = %lld\n", unit,
		(long long)sc->stats.dc);

	printf("%s: Missed Packets = %lld\n", unit,
		(long long)sc->stats.mpc);
	printf("%s: Receive No Buffers = %lld\n", unit,
		(long long)sc->stats.rnbc);
	/* RLEC is inaccurate on some hardware, calculate our own */
	printf("%s: Receive Length Errors = %lld\n", unit,
		((long long)sc->stats.roc +
		(long long)sc->stats.ruc));
	printf("%s: Receive errors = %lld\n", unit,
		(long long)sc->stats.rxerrc);
	printf("%s: Crc errors = %lld\n", unit,
		(long long)sc->stats.crcerrs);
	printf("%s: Alignment errors = %lld\n", unit,
		(long long)sc->stats.algnerrc);
	printf("%s: Carrier extension errors = %lld\n", unit,
		(long long)sc->stats.cexterr);

	printf("%s: RX overruns = %ld\n", unit,
		sc->rx_overruns);
	printf("%s: watchdog timeouts = %ld\n", unit,
		sc->watchdog_events);

	printf("%s: XON Rcvd = %lld\n", unit,
		(long long)sc->stats.xonrxc);
	printf("%s: XON Xmtd = %lld\n", unit,
		(long long)sc->stats.xontxc);
	printf("%s: XOFF Rcvd = %lld\n", unit,
		(long long)sc->stats.xoffrxc);
	printf("%s: XOFF Xmtd = %lld\n", unit,
		(long long)sc->stats.xofftxc);

	printf("%s: Good Packets Rcvd = %lld\n", unit,
		(long long)sc->stats.gprc);
	printf("%s: Good Packets Xmtd = %lld\n", unit,
		(long long)sc->stats.gptc);
	printf("%s: Switch Drop Packet Count = %lld\n", unit,
	    (long long)sc->stats.sdpc);
	printf("%s: Management Packets Dropped Count  = %lld\n", unit,
	    (long long)sc->stats.mngptc);
	printf("%s: Management Packets Received Count  = %lld\n", unit,
	    (long long)sc->stats.mngprc);
	printf("%s: Management Packets Transmitted Count  = %lld\n", unit,
	    (long long)sc->stats.mngptc);
	printf("%s: OS2BMC Packets Sent by MC Count  = %lld\n", unit,
	    (long long)sc->stats.b2ospc);
	printf("%s: OS2BMC Packets Received by MC Count  = %lld\n", unit,
	    (long long)sc->stats.o2bgptc);
	printf("%s: OS2BMC Packets Received by Host Count  = %lld\n", unit,
	    (long long)sc->stats.b2ogprc);
	printf("%s: OS2BMC Packets Transmitted by Host Count  = %lld\n", unit,
	    (long long)sc->stats.o2bspc);
	printf("%s: Multicast Packets Received Count  = %lld\n", unit,
	    (long long)sc->stats.mprc);
	printf("%s: Rx Packets to Host Count = %lld\n", unit,
	    (long long)sc->stats.rpthc);
	FOREACH_QUEUE(sc, que) {
		printf("%s: Queue %d Good Packets Received = %d\n", unit,
		    que->me, E1000_READ_REG(&sc->hw, PQGPRC(que->me)));
	}
}
#endif

int
em_allocate_msix(struct em_softc *sc)
{
	pci_intr_handle_t	 ih;
	const char		*intrstr = NULL;
	struct pci_attach_args	*pa = &sc->osdep.em_pa;
	pci_chipset_tag_t	 pc = pa->pa_pc;
	struct em_queue		*que = sc->queues; /* Use only first queue. */
	int			 vec;

	if (!em_enable_msix)
		return (ENODEV);

	switch (sc->hw.mac_type) {
	case em_82576:
	case em_82580:
	case em_i350:
	case em_i210:
		break;
	default:
		return (ENODEV);
	}

	vec = 0;
	if (pci_intr_map_msix(pa, vec, &ih))
		return (ENODEV);
	sc->msix = 1;

	que->me = vec;
	que->eims = 1 << vec;
	snprintf(que->name, sizeof(que->name), "%s:%d", DEVNAME(sc), vec);

	intrstr = pci_intr_string(pc, ih);
	que->tag = pci_intr_establish(pc, ih, IPL_NET | IPL_MPSAFE,
	    em_queue_intr_msix, que, que->name);
	if (que->tag == NULL) {
		printf(": couldn't establish interrupt");
		if (intrstr != NULL)
			printf(" at %s", intrstr);
		printf("\n");
		return (ENXIO);
	}

	/* Setup linkvector, use last queue vector + 1 */
	vec++;
	sc->msix_linkvec = vec;
	if (pci_intr_map_msix(pa, sc->msix_linkvec, &ih)) {
		printf(": couldn't map link vector\n");
		return (ENXIO);
	}

	intrstr = pci_intr_string(pc, ih);
	sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET | IPL_MPSAFE,
	    em_link_intr_msix, sc, DEVNAME(sc));
	if (sc->sc_intrhand == NULL) {
		printf(": couldn't establish interrupt");
		if (intrstr != NULL)
			printf(" at %s", intrstr);
		printf("\n");
		return (ENXIO);
	}
	printf(", %s, %d queue%s", intrstr, vec, (vec > 1) ? "s" : "");

	return (0);
}

/*
 * Interrupt for a specific queue, (not link interrupts). The EICR bit which
 * maps to the EIMS bit expresses both RX and TX, therefore we can't
 * distringuish if this is a RX completion of TX completion and must do both.
 * The bits in EICR are autocleared and we _cannot_ read EICR.
 */
int
em_queue_intr_msix(void *vque)
{
	struct em_queue *que = vque;
	struct em_softc *sc = que->sc;
	struct ifnet   *ifp = &sc->sc_ac.ac_if;

	if (ifp->if_flags & IFF_RUNNING) {
		em_txeof(que);
		if (em_rxeof(que))
			em_rxrefill(que);
	}

	em_enable_queue_intr_msix(que);

	return (1);
}

int
em_link_intr_msix(void *arg)
{
	struct em_softc *sc = arg;
	uint32_t icr;

	icr = E1000_READ_REG(&sc->hw, ICR);

	/* Link status change */
	if (icr & E1000_ICR_LSC) {
		KERNEL_LOCK();
		sc->hw.get_link_status = 1;
		em_check_for_link(&sc->hw);
		em_update_link_status(sc);
		KERNEL_UNLOCK();
	}

	/* Re-arm unconditionally */
	E1000_WRITE_REG(&sc->hw, IMS, E1000_ICR_LSC);
	E1000_WRITE_REG(&sc->hw, EIMS, sc->msix_linkmask);

	return (1);
}

/*
 * Maps queues into msix interrupt vectors.
 */
int
em_setup_queues_msix(struct em_softc *sc)
{
	uint32_t ivar, newitr, index;
	struct em_queue *que;

	KASSERT(sc->msix);

	/* First turn on RSS capability */
	if (sc->hw.mac_type != em_82575)
		E1000_WRITE_REG(&sc->hw, GPIE,
		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
		    E1000_GPIE_PBA | E1000_GPIE_NSICR);

	/* Turn on MSIX */
	switch (sc->hw.mac_type) {
	case em_82580:
	case em_i350:
	case em_i210:
		/* RX entries */
		/*
		 * Note, this maps Queues into MSIX vectors, it works fine.
		 * The funky calculation of offsets and checking if que->me is
		 * odd is due to the weird register distribution, the datasheet
		 * explains it well.
		 */
		FOREACH_QUEUE(sc, que) {
			index = que->me >> 1;
			ivar = E1000_READ_REG_ARRAY(&sc->hw, IVAR0, index);
			if (que->me & 1) {
				ivar &= 0xFF00FFFF;
				ivar |= (que->me | E1000_IVAR_VALID) << 16;
			} else {
				ivar &= 0xFFFFFF00;
				ivar |= que->me | E1000_IVAR_VALID;
			}
			E1000_WRITE_REG_ARRAY(&sc->hw, IVAR0, index, ivar);
		}

		/* TX entries */
		FOREACH_QUEUE(sc, que) {
			index = que->me >> 1;
			ivar = E1000_READ_REG_ARRAY(&sc->hw, IVAR0, index);
			if (que->me & 1) {
				ivar &= 0x00FFFFFF;
				ivar |= (que->me | E1000_IVAR_VALID) << 24;
			} else {
				ivar &= 0xFFFF00FF;
				ivar |= (que->me | E1000_IVAR_VALID) << 8;
			}
			E1000_WRITE_REG_ARRAY(&sc->hw, IVAR0, index, ivar);
			sc->msix_queuesmask |= que->eims;
		}

		/* And for the link interrupt */
		ivar = (sc->msix_linkvec | E1000_IVAR_VALID) << 8;
		sc->msix_linkmask = 1 << sc->msix_linkvec;
		E1000_WRITE_REG(&sc->hw, IVAR_MISC, ivar);
		break;
	case em_82576:
		/* RX entries */
		FOREACH_QUEUE(sc, que) {
			index = que->me & 0x7; /* Each IVAR has two entries */
			ivar = E1000_READ_REG_ARRAY(&sc->hw, IVAR0, index);
			if (que->me < 8) {
				ivar &= 0xFFFFFF00;
				ivar |= que->me | E1000_IVAR_VALID;
			} else {
				ivar &= 0xFF00FFFF;
				ivar |= (que->me | E1000_IVAR_VALID) << 16;
			}
			E1000_WRITE_REG_ARRAY(&sc->hw, IVAR0, index, ivar);
			sc->msix_queuesmask |= que->eims;
		}
		/* TX entries */
		FOREACH_QUEUE(sc, que) {
			index = que->me & 0x7; /* Each IVAR has two entries */
			ivar = E1000_READ_REG_ARRAY(&sc->hw, IVAR0, index);
			if (que->me < 8) {
				ivar &= 0xFFFF00FF;
				ivar |= (que->me | E1000_IVAR_VALID) << 8;
			} else {
				ivar &= 0x00FFFFFF;
				ivar |= (que->me | E1000_IVAR_VALID) << 24;
			}
			E1000_WRITE_REG_ARRAY(&sc->hw, IVAR0, index, ivar);
			sc->msix_queuesmask |= que->eims;
		}

		/* And for the link interrupt */
		ivar = (sc->msix_linkvec | E1000_IVAR_VALID) << 8;
		sc->msix_linkmask = 1 << sc->msix_linkvec;
		E1000_WRITE_REG(&sc->hw, IVAR_MISC, ivar);
		break;
	default:
		panic("unsupported mac");
		break;
	}

	/* Set the starting interrupt rate */
	newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;

	if (sc->hw.mac_type == em_82575)
		newitr |= newitr << 16;
	else
		newitr |= E1000_EITR_CNT_IGNR;

	FOREACH_QUEUE(sc, que)
		E1000_WRITE_REG(&sc->hw, EITR(que->me), newitr);

	return (0);
}

void
em_enable_queue_intr_msix(struct em_queue *que)
{
	E1000_WRITE_REG(&que->sc->hw, EIMS, que->eims);
}
#endif /* !SMALL_KERNEL */

int
em_allocate_desc_rings(struct em_softc *sc)
{
	struct em_queue *que;

	FOREACH_QUEUE(sc, que) {
		/* Allocate Transmit Descriptor ring */
		if (em_dma_malloc(sc, sc->sc_tx_slots * sizeof(struct em_tx_desc),
		    &que->tx.sc_tx_dma) != 0) {
			printf("%s: Unable to allocate tx_desc memory\n",
			    DEVNAME(sc));
			return (ENOMEM);
		}
		que->tx.sc_tx_desc_ring =
		    (struct em_tx_desc *)que->tx.sc_tx_dma.dma_vaddr;

		/* Allocate Receive Descriptor ring */
		if (em_dma_malloc(sc, sc->sc_rx_slots * sizeof(struct em_rx_desc),
		    &que->rx.sc_rx_dma) != 0) {
			printf("%s: Unable to allocate rx_desc memory\n",
			    DEVNAME(sc));
			return (ENOMEM);
		}
		que->rx.sc_rx_desc_ring =
		    (struct em_rx_desc *)que->rx.sc_rx_dma.dma_vaddr;
	}

	return (0);
}