summaryrefslogtreecommitdiff
path: root/sys/dev/pci/if_em_hw.c
blob: 8cc744ed42c07307a6baa6dc611f306438fb50c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
/*******************************************************************************

  Copyright (c) 2001-2003, Intel Corporation 
  All rights reserved.
  
  Redistribution and use in source and binary forms, with or without 
  modification, are permitted provided that the following conditions are met:
  
   1. Redistributions of source code must retain the above copyright notice, 
      this list of conditions and the following disclaimer.
  
   2. Redistributions in binary form must reproduce the above copyright 
      notice, this list of conditions and the following disclaimer in the 
      documentation and/or other materials provided with the distribution.
  
   3. Neither the name of the Intel Corporation nor the names of its 
      contributors may be used to endorse or promote products derived from 
      this software without specific prior written permission.
  
  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE.

*******************************************************************************/

/*$FreeBSD: if_em_hw.c,v 1.9 2003/06/05 17:51:38 pdeuskar Exp $*/
/* $OpenBSD: if_em_hw.c,v 1.2 2003/06/13 19:21:21 henric Exp $ */
/* if_em_hw.c
 * Shared functions for accessing and configuring the MAC
 */

#include "bpfilter.h"
#include "vlan.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/socket.h>

#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>

#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif

#if NVLAN > 0
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#endif

#if NBPFILTER > 0
#include <net/bpf.h>
#endif

#include <uvm/uvm_extern.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>

#include <dev/pci/if_em_hw.h>

static int32_t em_set_phy_type(struct em_hw *hw);
static void em_phy_init_script(struct em_hw *hw);
static int32_t em_setup_fiber_link(struct em_hw *hw);
static int32_t em_setup_copper_link(struct em_hw *hw);
static int32_t em_phy_force_speed_duplex(struct em_hw *hw);
static int32_t em_config_mac_to_phy(struct em_hw *hw);
static int32_t em_force_mac_fc(struct em_hw *hw);
static void em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
static void em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
static void em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data, uint16_t count);
static uint16_t em_shift_in_mdi_bits(struct em_hw *hw);
static int32_t em_phy_reset_dsp(struct em_hw *hw);
static int32_t em_write_eeprom_spi(struct em_hw *hw, uint16_t offset,
                                      uint16_t words, uint16_t *data);
static int32_t em_write_eeprom_microwire(struct em_hw *hw,
                                            uint16_t offset, uint16_t words,
                                            uint16_t *data);
static int32_t em_spi_eeprom_ready(struct em_hw *hw);
static void em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd);
static void em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd);
static void em_shift_out_ee_bits(struct em_hw *hw, uint16_t data, uint16_t count);
static uint16_t em_shift_in_ee_bits(struct em_hw *hw, uint16_t count);
static int32_t em_acquire_eeprom(struct em_hw *hw);
static void em_release_eeprom(struct em_hw *hw);
static void em_standby_eeprom(struct em_hw *hw);
static int32_t em_id_led_init(struct em_hw * hw);



/******************************************************************************
 * Set the phy type member in the hw struct.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
em_set_phy_type(struct em_hw *hw)
{
    DEBUGFUNC("em_set_phy_type");

    switch(hw->phy_id) {
    case M88E1000_E_PHY_ID:
    case M88E1000_I_PHY_ID:
    case M88E1011_I_PHY_ID:
        hw->phy_type = em_phy_m88;
        break;
    case IGP01E1000_I_PHY_ID:
        hw->phy_type = em_phy_igp;
        break;
    default:
        /* Should never have loaded on this device */
        hw->phy_type = em_phy_undefined;
        return -E1000_ERR_PHY_TYPE;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * IGP phy init script - initializes the GbE PHY
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
em_phy_init_script(struct em_hw *hw)
{
    DEBUGFUNC("em_phy_init_script");

    if(hw->phy_init_script) {
        msec_delay(10);

        em_write_phy_reg(hw,IGP01E1000_PHY_PAGE_SELECT,0x0000);
        em_write_phy_reg(hw,0x0000,0x0140);

        msec_delay(5);
        em_write_phy_reg(hw,IGP01E1000_PHY_PAGE_SELECT,0x1F95);
        em_write_phy_reg(hw,0x0015,0x0001);

        em_write_phy_reg(hw,IGP01E1000_PHY_PAGE_SELECT,0x1F71);
        em_write_phy_reg(hw,0x0011,0xBD21);

        em_write_phy_reg(hw,IGP01E1000_PHY_PAGE_SELECT,0x1F79);
        em_write_phy_reg(hw,0x0019,0x0018);

        em_write_phy_reg(hw,IGP01E1000_PHY_PAGE_SELECT,0x1F30);
        em_write_phy_reg(hw,0x0010,0x1600);

        em_write_phy_reg(hw,IGP01E1000_PHY_PAGE_SELECT,0x1F31);
        em_write_phy_reg(hw,0x0011,0x0014);

        em_write_phy_reg(hw,IGP01E1000_PHY_PAGE_SELECT,0x1F32);
        em_write_phy_reg(hw,0x0012,0x161C);

        em_write_phy_reg(hw,IGP01E1000_PHY_PAGE_SELECT,0x1F94);
        em_write_phy_reg(hw,0x0014,0x0003);

        em_write_phy_reg(hw,IGP01E1000_PHY_PAGE_SELECT,0x1F96);
        em_write_phy_reg(hw,0x0016,0x003F);

        em_write_phy_reg(hw,IGP01E1000_PHY_PAGE_SELECT,0x2010);
        em_write_phy_reg(hw,0x0010,0x0008);

        em_write_phy_reg(hw,IGP01E1000_PHY_PAGE_SELECT,0x0000);
        em_write_phy_reg(hw,0x0000,0x3300);
    }
}

/******************************************************************************
 * Set the mac type member in the hw struct.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
em_set_mac_type(struct em_hw *hw)
{
    DEBUGFUNC("em_set_mac_type");

    switch (hw->device_id) {
    case E1000_DEV_ID_82542:
        switch (hw->revision_id) {
        case E1000_82542_2_0_REV_ID:
            hw->mac_type = em_82542_rev2_0;
            break;
        case E1000_82542_2_1_REV_ID:
            hw->mac_type = em_82542_rev2_1;
            break;
        default:
            /* Invalid 82542 revision ID */
            return -E1000_ERR_MAC_TYPE;
        }
        break;
    case E1000_DEV_ID_82543GC_FIBER:
    case E1000_DEV_ID_82543GC_COPPER:
        hw->mac_type = em_82543;
        break;
    case E1000_DEV_ID_82544EI_COPPER:
    case E1000_DEV_ID_82544EI_FIBER:
    case E1000_DEV_ID_82544GC_COPPER:
    case E1000_DEV_ID_82544GC_LOM:
        hw->mac_type = em_82544;
        break;
    case E1000_DEV_ID_82540EM:
    case E1000_DEV_ID_82540EM_LOM:
    case E1000_DEV_ID_82540EP:
    case E1000_DEV_ID_82540EP_LOM:
    case E1000_DEV_ID_82540EP_LP:
        hw->mac_type = em_82540;
        break;
    case E1000_DEV_ID_82545EM_COPPER:
    case E1000_DEV_ID_82545EM_FIBER:
        hw->mac_type = em_82545;
        break;
    case E1000_DEV_ID_82546EB_COPPER:
    case E1000_DEV_ID_82546EB_FIBER:
    case E1000_DEV_ID_82546EB_QUAD_COPPER:
        hw->mac_type = em_82546;
        break;
    case E1000_DEV_ID_82541EI:
    case E1000_DEV_ID_82541EP:
        hw->mac_type = em_82541;
        break;
    case E1000_DEV_ID_82547EI:
        hw->mac_type = em_82547;
        break;
    default:
        /* Should never have loaded on this device */
        return -E1000_ERR_MAC_TYPE;
    }


    return E1000_SUCCESS;
}
/******************************************************************************
 * Reset the transmit and receive units; mask and clear all interrupts.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
em_reset_hw(struct em_hw *hw)
{
    uint32_t ctrl;
    uint32_t ctrl_ext;
    uint32_t icr;
    uint32_t manc;
    uint32_t led_ctrl;

    DEBUGFUNC("em_reset_hw");

    /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
    if(hw->mac_type == em_82542_rev2_0) {
        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
        em_pci_clear_mwi(hw);
    }

    /* Clear interrupt mask to stop board from generating interrupts */
    DEBUGOUT("Masking off all interrupts\n");
    E1000_WRITE_REG(hw, IMC, 0xffffffff);

    /* Disable the Transmit and Receive units.  Then delay to allow
     * any pending transactions to complete before we hit the MAC with
     * the global reset.
     */
    E1000_WRITE_REG(hw, RCTL, 0);
    E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
    E1000_WRITE_FLUSH(hw);

    /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
    hw->tbi_compatibility_on = FALSE;

    /* Delay to allow any outstanding PCI transactions to complete before
     * resetting the device
     */
    msec_delay(10);

    /* Issue a global reset to the MAC.  This will reset the chip's
     * transmit, receive, DMA, and link units.  It will not effect
     * the current PCI configuration.  The global reset bit is self-
     * clearing, and should clear within a microsecond.
     */
    DEBUGOUT("Issuing a global reset to MAC\n");
    ctrl = E1000_READ_REG(hw, CTRL);

    /* Must reset the PHY before resetting the MAC */
    if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
        E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
	msec_delay(5);
    }

    switch(hw->mac_type) {
        case em_82544:
        case em_82540:
        case em_82545:
        case em_82546:
        case em_82541:
            /* These controllers can't ack the 64-bit write when issuing the
             * reset, so use IO-mapping as a workaround to issue the reset */
            E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
            break;
        default:
            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
            break;
    }

    /* Force a reload from the EEPROM if necessary */
    if(hw->mac_type < em_82540) {
        /* Wait for reset to complete */
        usec_delay(10);
        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        ctrl_ext |= E1000_CTRL_EXT_EE_RST;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        E1000_WRITE_FLUSH(hw);
        /* Wait for EEPROM reload */
        msec_delay(2);
    } else {
        /* Wait for EEPROM reload (it happens automatically) */
        msec_delay(5);
        /* Dissable HW ARPs on ASF enabled adapters */
        manc = E1000_READ_REG(hw, MANC);
        manc &= ~(E1000_MANC_ARP_EN);
        E1000_WRITE_REG(hw, MANC, manc);
    }

    if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
        em_phy_init_script(hw);

        /* Configure activity LED after PHY reset */
        led_ctrl = E1000_READ_REG(hw, LEDCTL);
        led_ctrl &= IGP_ACTIVITY_LED_MASK;
        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
    }

    /* Clear interrupt mask to stop board from generating interrupts */
    DEBUGOUT("Masking off all interrupts\n");
    E1000_WRITE_REG(hw, IMC, 0xffffffff);

    /* Clear any pending interrupt events. */
    icr = E1000_READ_REG(hw, ICR);

    /* If MWI was previously enabled, reenable it. */
    if(hw->mac_type == em_82542_rev2_0) {
        if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
            em_pci_set_mwi(hw);
    }
}

/******************************************************************************
 * Performs basic configuration of the adapter.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Assumes that the controller has previously been reset and is in a
 * post-reset uninitialized state. Initializes the receive address registers,
 * multicast table, and VLAN filter table. Calls routines to setup link
 * configuration and flow control settings. Clears all on-chip counters. Leaves
 * the transmit and receive units disabled and uninitialized.
 *****************************************************************************/
int32_t
em_init_hw(struct em_hw *hw)
{
    uint32_t ctrl, status;
    uint32_t i;
    int32_t ret_val;
    uint16_t pcix_cmd_word;
    uint16_t pcix_stat_hi_word;
    uint16_t cmd_mmrbc;
    uint16_t stat_mmrbc;

    DEBUGFUNC("em_init_hw");

    /* Initialize Identification LED */
    ret_val = em_id_led_init(hw);
    if(ret_val < 0) {
        DEBUGOUT("Error Initializing Identification LED\n");
        return ret_val;
    }

    /* Set the Media Type and exit with error if it is not valid. */
    if(hw->mac_type != em_82543) {
        /* tbi_compatibility is only valid on 82543 */
        hw->tbi_compatibility_en = FALSE;
    }

    if(hw->mac_type >= em_82543) {
        status = E1000_READ_REG(hw, STATUS);
        if(status & E1000_STATUS_TBIMODE) {
            hw->media_type = em_media_type_fiber;
            /* tbi_compatibility not valid on fiber */
            hw->tbi_compatibility_en = FALSE;
        } else {
            hw->media_type = em_media_type_copper;
        }
    } else {
        /* This is an 82542 (fiber only) */
        hw->media_type = em_media_type_fiber;
    }

    /* Disabling VLAN filtering. */
    DEBUGOUT("Initializing the IEEE VLAN\n");
    E1000_WRITE_REG(hw, VET, 0);

    em_clear_vfta(hw);

    /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
    if(hw->mac_type == em_82542_rev2_0) {
        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
        em_pci_clear_mwi(hw);
        E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
        E1000_WRITE_FLUSH(hw);
        msec_delay(5);
    }

    /* Setup the receive address. This involves initializing all of the Receive
     * Address Registers (RARs 0 - 15).
     */
    em_init_rx_addrs(hw);

    /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
    if(hw->mac_type == em_82542_rev2_0) {
        E1000_WRITE_REG(hw, RCTL, 0);
        E1000_WRITE_FLUSH(hw);
        msec_delay(1);
        if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
            em_pci_set_mwi(hw);
    }

    /* Zero out the Multicast HASH table */
    DEBUGOUT("Zeroing the MTA\n");
    for(i = 0; i < E1000_MC_TBL_SIZE; i++)
        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);

    /* Set the PCI priority bit correctly in the CTRL register.  This
     * determines if the adapter gives priority to receives, or if it
     * gives equal priority to transmits and receives.
     */
    if(hw->dma_fairness) {
        ctrl = E1000_READ_REG(hw, CTRL);
        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
    }

    /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
    if(hw->bus_type == em_bus_type_pcix) {
        em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
        em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
        cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
            PCIX_COMMAND_MMRBC_SHIFT;
        stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
            PCIX_STATUS_HI_MMRBC_SHIFT;
        if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
            stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
        if(cmd_mmrbc > stat_mmrbc) {
            pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
            pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
            em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
        }
    }

    /* Call a subroutine to configure the link and setup flow control. */
    ret_val = em_setup_link(hw);

    /* Set the transmit descriptor write-back policy */
    if(hw->mac_type > em_82544) {
        ctrl = E1000_READ_REG(hw, TXDCTL);
        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
        E1000_WRITE_REG(hw, TXDCTL, ctrl);
    }

    /* Clear all of the statistics registers (clear on read).  It is
     * important that we do this after we have tried to establish link
     * because the symbol error count will increment wildly if there
     * is no link.
     */
    em_clear_hw_cntrs(hw);

    return ret_val;
}

/******************************************************************************
 * Configures flow control and link settings.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Determines which flow control settings to use. Calls the apropriate media-
 * specific link configuration function. Configures the flow control settings.
 * Assuming the adapter has a valid link partner, a valid link should be
 * established. Assumes the hardware has previously been reset and the
 * transmitter and receiver are not enabled.
 *****************************************************************************/
int32_t
em_setup_link(struct em_hw *hw)
{
    uint32_t ctrl_ext;
    int32_t ret_val;
    uint16_t eeprom_data;

    DEBUGFUNC("em_setup_link");

    /* Read and store word 0x0F of the EEPROM. This word contains bits
     * that determine the hardware's default PAUSE (flow control) mode,
     * a bit that determines whether the HW defaults to enabling or
     * disabling auto-negotiation, and the direction of the
     * SW defined pins. If there is no SW over-ride of the flow
     * control setting, then the variable hw->fc will
     * be initialized based on a value in the EEPROM.
     */
    if(em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) {
        DEBUGOUT("EEPROM Read Error\n");
        return -E1000_ERR_EEPROM;
    }

    if(hw->fc == em_fc_default) {
        if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
            hw->fc = em_fc_none;
        else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
                EEPROM_WORD0F_ASM_DIR)
            hw->fc = em_fc_tx_pause;
        else
            hw->fc = em_fc_full;
    }

    /* We want to save off the original Flow Control configuration just
     * in case we get disconnected and then reconnected into a different
     * hub or switch with different Flow Control capabilities.
     */
    if(hw->mac_type == em_82542_rev2_0)
        hw->fc &= (~em_fc_tx_pause);

    if((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
        hw->fc &= (~em_fc_rx_pause);

    hw->original_fc = hw->fc;

    DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);

    /* Take the 4 bits from EEPROM word 0x0F that determine the initial
     * polarity value for the SW controlled pins, and setup the
     * Extended Device Control reg with that info.
     * This is needed because one of the SW controlled pins is used for
     * signal detection.  So this should be done before em_setup_pcs_link()
     * or em_phy_setup() is called.
     */
    if(hw->mac_type == em_82543) {
        ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
                    SWDPIO__EXT_SHIFT);
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
    }

    /* Call the necessary subroutine to configure the link. */
    ret_val = (hw->media_type == em_media_type_fiber) ?
              em_setup_fiber_link(hw) :
              em_setup_copper_link(hw);

    /* Initialize the flow control address, type, and PAUSE timer
     * registers to their default values.  This is done even if flow
     * control is disabled, because it does not hurt anything to
     * initialize these registers.
     */
    DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");

    E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
    E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
    E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
    E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);

    /* Set the flow control receive threshold registers.  Normally,
     * these registers will be set to a default threshold that may be
     * adjusted later by the driver's runtime code.  However, if the
     * ability to transmit pause frames in not enabled, then these
     * registers will be set to 0.
     */
    if(!(hw->fc & em_fc_tx_pause)) {
        E1000_WRITE_REG(hw, FCRTL, 0);
        E1000_WRITE_REG(hw, FCRTH, 0);
    } else {
        /* We need to set up the Receive Threshold high and low water marks
         * as well as (optionally) enabling the transmission of XON frames.
         */
        if(hw->fc_send_xon) {
            E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
        } else {
            E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
        }
    }
    return ret_val;
}

/******************************************************************************
 * Sets up link for a fiber based adapter
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Manipulates Physical Coding Sublayer functions in order to configure
 * link. Assumes the hardware has been previously reset and the transmitter
 * and receiver are not enabled.
 *****************************************************************************/
static int32_t
em_setup_fiber_link(struct em_hw *hw)
{
    uint32_t ctrl;
    uint32_t status;
    uint32_t txcw = 0;
    uint32_t i;
    uint32_t signal;
    int32_t ret_val;

    DEBUGFUNC("em_setup_fiber_link");

    /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
     * set when the optics detect a signal. On older adapters, it will be
     * cleared when there is a signal
     */
    ctrl = E1000_READ_REG(hw, CTRL);
    if(hw->mac_type > em_82544) signal = E1000_CTRL_SWDPIN1;
    else signal = 0;

    /* Take the link out of reset */
    ctrl &= ~(E1000_CTRL_LRST);

    em_config_collision_dist(hw);

    /* Check for a software override of the flow control settings, and setup
     * the device accordingly.  If auto-negotiation is enabled, then software
     * will have to set the "PAUSE" bits to the correct value in the Tranmsit
     * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
     * auto-negotiation is disabled, then software will have to manually
     * configure the two flow control enable bits in the CTRL register.
     *
     * The possible values of the "fc" parameter are:
     *      0:  Flow control is completely disabled
     *      1:  Rx flow control is enabled (we can receive pause frames, but
     *          not send pause frames).
     *      2:  Tx flow control is enabled (we can send pause frames but we do
     *          not support receiving pause frames).
     *      3:  Both Rx and TX flow control (symmetric) are enabled.
     */
    switch (hw->fc) {
    case em_fc_none:
        /* Flow control is completely disabled by a software over-ride. */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
        break;
    case em_fc_rx_pause:
        /* RX Flow control is enabled and TX Flow control is disabled by a
         * software over-ride. Since there really isn't a way to advertise
         * that we are capable of RX Pause ONLY, we will advertise that we
         * support both symmetric and asymmetric RX PAUSE. Later, we will
         *  disable the adapter's ability to send PAUSE frames.
         */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
        break;
    case em_fc_tx_pause:
        /* TX Flow control is enabled, and RX Flow control is disabled, by a
         * software over-ride.
         */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
        break;
    case em_fc_full:
        /* Flow control (both RX and TX) is enabled by a software over-ride. */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
        break;
    default:
        DEBUGOUT("Flow control param set incorrectly\n");
        return -E1000_ERR_CONFIG;
        break;
    }

    /* Since auto-negotiation is enabled, take the link out of reset (the link
     * will be in reset, because we previously reset the chip). This will
     * restart auto-negotiation.  If auto-neogtiation is successful then the
     * link-up status bit will be set and the flow control enable bits (RFCE
     * and TFCE) will be set according to their negotiated value.
     */
    DEBUGOUT("Auto-negotiation enabled\n");

    E1000_WRITE_REG(hw, TXCW, txcw);
    E1000_WRITE_REG(hw, CTRL, ctrl);
    E1000_WRITE_FLUSH(hw);

    hw->txcw = txcw;
    msec_delay(1);

    /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
     * indication in the Device Status Register.  Time-out if a link isn't
     * seen in 500 milliseconds seconds (Auto-negotiation should complete in
     * less than 500 milliseconds even if the other end is doing it in SW).
     */
    if((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
        DEBUGOUT("Looking for Link\n");
        for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
            msec_delay(10);
            status = E1000_READ_REG(hw, STATUS);
            if(status & E1000_STATUS_LU) break;
        }
        if(i == (LINK_UP_TIMEOUT / 10)) {
            /* AutoNeg failed to achieve a link, so we'll call
             * em_check_for_link. This routine will force the link up if we
             * detect a signal. This will allow us to communicate with
             * non-autonegotiating link partners.
             */
            DEBUGOUT("Never got a valid link from auto-neg!!!\n");
            hw->autoneg_failed = 1;
            ret_val = em_check_for_link(hw);
            if(ret_val < 0) {
                DEBUGOUT("Error while checking for link\n");
                return ret_val;
            }
            hw->autoneg_failed = 0;
        } else {
            hw->autoneg_failed = 0;
            DEBUGOUT("Valid Link Found\n");
        }
    } else {
        DEBUGOUT("No Signal Detected\n");
    }
    return 0;
}

/******************************************************************************
* Detects which PHY is present and the speed and duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
em_setup_copper_link(struct em_hw *hw)
{
    uint32_t ctrl;
    uint32_t led_ctrl;
    int32_t ret_val;
    uint16_t i;
    uint16_t phy_data;

    DEBUGFUNC("em_setup_copper_link");

    ctrl = E1000_READ_REG(hw, CTRL);
    /* With 82543, we need to force speed and duplex on the MAC equal to what
     * the PHY speed and duplex configuration is. In addition, we need to
     * perform a hardware reset on the PHY to take it out of reset.
     */
    if(hw->mac_type > em_82543) {
        ctrl |= E1000_CTRL_SLU;
        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
        E1000_WRITE_REG(hw, CTRL, ctrl);
    } else {
        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
        E1000_WRITE_REG(hw, CTRL, ctrl);
        em_phy_hw_reset(hw);
    }

    /* Make sure we have a valid PHY */
    ret_val = em_detect_gig_phy(hw);
    if(ret_val < 0) {
        DEBUGOUT("Error, did not detect valid phy.\n");
        return ret_val;
    }
    DEBUGOUT1("Phy ID = %x \n", hw->phy_id);

    if (hw->phy_type == em_phy_igp) {

        ret_val = em_phy_reset(hw);
        if(ret_val < 0) {
            DEBUGOUT("Error Resetting the PHY\n");
            return ret_val;
        }

        /* Wait 10ms for MAC to configure PHY from eeprom settings */
        msec_delay(15);

        if(em_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0000) < 0) {
            DEBUGOUT("PHY Write Error\n");
            return -E1000_ERR_PHY;
        }

        /* Configure activity LED after PHY reset */
        led_ctrl = E1000_READ_REG(hw, LEDCTL);
        led_ctrl &= IGP_ACTIVITY_LED_MASK;
        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);

        if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
            /* Disable SmartSpeed */
            if(em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                  &phy_data) < 0) {
                DEBUGOUT("PHY Read Error\n");
                return -E1000_ERR_PHY;
            }
            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
            if(em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                   phy_data) < 0) {
                DEBUGOUT("PHY Write Error\n");
                return -E1000_ERR_PHY;
            }
            /* Set auto Master/Slave resolution process */
            if(em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data) < 0) {
                DEBUGOUT("PHY Read Error\n");
                return -E1000_ERR_PHY;
            }
            phy_data &= ~CR_1000T_MS_ENABLE;
            if(em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data) < 0) {
                DEBUGOUT("PHY Write Error\n");
                return -E1000_ERR_PHY;
            }
        }

        if(em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }

        /* Force MDI for IGP PHY */
        phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX |
                      IGP01E1000_PSCR_FORCE_MDI_MDIX);

        hw->mdix = 1;

        if(em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data) < 0) {
            DEBUGOUT("PHY Write Error\n");
            return -E1000_ERR_PHY;
        }

    } else {
        /* Enable CRS on TX. This must be set for half-duplex operation. */
        if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }
        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;

        /* Options:
         *   MDI/MDI-X = 0 (default)
         *   0 - Auto for all speeds
         *   1 - MDI mode
         *   2 - MDI-X mode
         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
         */
        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;

        switch (hw->mdix) {
        case 1:
            phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
            break;
        case 2:
            phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
            break;
        case 3:
            phy_data |= M88E1000_PSCR_AUTO_X_1000T;
            break;
        case 0:
        default:
            phy_data |= M88E1000_PSCR_AUTO_X_MODE;
            break;
        }

        /* Options:
         *   disable_polarity_correction = 0 (default)
         *       Automatic Correction for Reversed Cable Polarity
         *   0 - Disabled
         *   1 - Enabled
         */
        phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
        if(hw->disable_polarity_correction == 1)
            phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
        if(em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
            DEBUGOUT("PHY Write Error\n");
            return -E1000_ERR_PHY;
        }

        /* Force TX_CLK in the Extended PHY Specific Control Register
         * to 25MHz clock.
         */
        if(em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }
        phy_data |= M88E1000_EPSCR_TX_CLK_25;

        if (hw->phy_revision < M88E1011_I_REV_4) {
            /* Configure Master and Slave downshift values */
            phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
                          M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
            phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
                         M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
            if(em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
                                   phy_data) < 0) {
                DEBUGOUT("PHY Write Error\n");
                return -E1000_ERR_PHY;
            }
        }

        /* SW Reset the PHY so all changes take effect */
        ret_val = em_phy_reset(hw);
        if(ret_val < 0) {
            DEBUGOUT("Error Resetting the PHY\n");
            return ret_val;
        }
    }

    /* Options:
     *   autoneg = 1 (default)
     *      PHY will advertise value(s) parsed from
     *      autoneg_advertised and fc
     *   autoneg = 0
     *      PHY will be set to 10H, 10F, 100H, or 100F
     *      depending on value parsed from forced_speed_duplex.
     */

    /* Is autoneg enabled?  This is enabled by default or by software override.
     * If so, call em_phy_setup_autoneg routine to parse the
     * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
     * user should have provided a speed/duplex override.  If so, then call
     * em_phy_force_speed_duplex to parse and set this up.
     */
    if(hw->autoneg) {
        /* Perform some bounds checking on the hw->autoneg_advertised
         * parameter.  If this variable is zero, then set it to the default.
         */
        hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;

        /* If autoneg_advertised is zero, we assume it was not defaulted
         * by the calling code so we set to advertise full capability.
         */
        if(hw->autoneg_advertised == 0)
            hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;

        DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
        ret_val = em_phy_setup_autoneg(hw);
        if(ret_val < 0) {
            DEBUGOUT("Error Setting up Auto-Negotiation\n");
            return ret_val;
        }
        DEBUGOUT("Restarting Auto-Neg\n");

        /* Restart auto-negotiation by setting the Auto Neg Enable bit and
         * the Auto Neg Restart bit in the PHY control register.
         */
        if(em_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }
        phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
        if(em_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
            DEBUGOUT("PHY Write Error\n");
            return -E1000_ERR_PHY;
        }

        /* Does the user want to wait for Auto-Neg to complete here, or
         * check at a later time (for example, callback routine).
         */
        if(hw->wait_autoneg_complete) {
            ret_val = em_wait_autoneg(hw);
            if(ret_val < 0) {
                DEBUGOUT("Error while waiting for autoneg to complete\n");
                return ret_val;
            }
        }
        hw->get_link_status = TRUE;
    } else {
        DEBUGOUT("Forcing speed and duplex\n");
        ret_val = em_phy_force_speed_duplex(hw);
        if(ret_val < 0) {
            DEBUGOUT("Error Forcing Speed and Duplex\n");
            return ret_val;
        }
    }

    /* Check link status. Wait up to 100 microseconds for link to become
     * valid.
     */
    for(i = 0; i < 10; i++) {
        if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }
        if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }
        if(phy_data & MII_SR_LINK_STATUS) {
            /* We have link, so we need to finish the config process:
             *   1) Set up the MAC to the current PHY speed/duplex
             *      if we are on 82543.  If we
             *      are on newer silicon, we only need to configure
             *      collision distance in the Transmit Control Register.
             *   2) Set up flow control on the MAC to that established with
             *      the link partner.
             */
            if(hw->mac_type >= em_82544) {
                em_config_collision_dist(hw);
            } else {
                ret_val = em_config_mac_to_phy(hw);
                if(ret_val < 0) {
                    DEBUGOUT("Error configuring MAC to PHY settings\n");
                    return ret_val;
                  }
            }
            ret_val = em_config_fc_after_link_up(hw);
            if(ret_val < 0) {
                DEBUGOUT("Error Configuring Flow Control\n");
                return ret_val;
            }
            DEBUGOUT("Valid link established!!!\n");
            return 0;
        }
        usec_delay(10);
    }

    DEBUGOUT("Unable to establish link!!!\n");
    return 0;
}

/******************************************************************************
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
em_phy_setup_autoneg(struct em_hw *hw)
{
    uint16_t mii_autoneg_adv_reg;
    uint16_t mii_1000t_ctrl_reg;

    DEBUGFUNC("em_phy_setup_autoneg");

    /* Read the MII Auto-Neg Advertisement Register (Address 4). */
    if(em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
        DEBUGOUT("PHY Read Error\n");
        return -E1000_ERR_PHY;
    }

    /* Read the MII 1000Base-T Control Register (Address 9). */
    if(em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
        DEBUGOUT("PHY Read Error\n");
        return -E1000_ERR_PHY;
    }

    /* Need to parse both autoneg_advertised and fc and set up
     * the appropriate PHY registers.  First we will parse for
     * autoneg_advertised software override.  Since we can advertise
     * a plethora of combinations, we need to check each bit
     * individually.
     */

    /* First we clear all the 10/100 mb speed bits in the Auto-Neg
     * Advertisement Register (Address 4) and the 1000 mb speed bits in
     * the  1000Base-T Control Register (Address 9).
     */
    mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
    mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;

    DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);

    /* Do we want to advertise 10 Mb Half Duplex? */
    if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
        DEBUGOUT("Advertise 10mb Half duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
    }

    /* Do we want to advertise 10 Mb Full Duplex? */
    if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
        DEBUGOUT("Advertise 10mb Full duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
    }

    /* Do we want to advertise 100 Mb Half Duplex? */
    if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
        DEBUGOUT("Advertise 100mb Half duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
    }

    /* Do we want to advertise 100 Mb Full Duplex? */
    if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
        DEBUGOUT("Advertise 100mb Full duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
    }

    /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
    if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
        DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
    }

    /* Do we want to advertise 1000 Mb Full Duplex? */
    if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
        DEBUGOUT("Advertise 1000mb Full duplex\n");
        mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
    }

    /* Check for a software override of the flow control settings, and
     * setup the PHY advertisement registers accordingly.  If
     * auto-negotiation is enabled, then software will have to set the
     * "PAUSE" bits to the correct value in the Auto-Negotiation
     * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
     *
     * The possible values of the "fc" parameter are:
     *      0:  Flow control is completely disabled
     *      1:  Rx flow control is enabled (we can receive pause frames
     *          but not send pause frames).
     *      2:  Tx flow control is enabled (we can send pause frames
     *          but we do not support receiving pause frames).
     *      3:  Both Rx and TX flow control (symmetric) are enabled.
     *  other:  No software override.  The flow control configuration
     *          in the EEPROM is used.
     */
    switch (hw->fc) {
    case em_fc_none: /* 0 */
        /* Flow control (RX & TX) is completely disabled by a
         * software over-ride.
         */
        mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
    case em_fc_rx_pause: /* 1 */
        /* RX Flow control is enabled, and TX Flow control is
         * disabled, by a software over-ride.
         */
        /* Since there really isn't a way to advertise that we are
         * capable of RX Pause ONLY, we will advertise that we
         * support both symmetric and asymmetric RX PAUSE.  Later
         * (in em_config_fc_after_link_up) we will disable the
         *hw's ability to send PAUSE frames.
         */
        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
    case em_fc_tx_pause: /* 2 */
        /* TX Flow control is enabled, and RX Flow control is
         * disabled, by a software over-ride.
         */
        mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
        mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
        break;
    case em_fc_full: /* 3 */
        /* Flow control (both RX and TX) is enabled by a software
         * over-ride.
         */
        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
    default:
        DEBUGOUT("Flow control param set incorrectly\n");
        return -E1000_ERR_CONFIG;
    }

    if(em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
        DEBUGOUT("PHY Write Error\n");
        return -E1000_ERR_PHY;
    }

    DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);

    if(em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
        DEBUGOUT("PHY Write Error\n");
        return -E1000_ERR_PHY;
    }
    return 0;
}

/******************************************************************************
* Force PHY speed and duplex settings to hw->forced_speed_duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
em_phy_force_speed_duplex(struct em_hw *hw)
{
    uint32_t ctrl;
    int32_t ret_val;
    uint16_t mii_ctrl_reg;
    uint16_t mii_status_reg;
    uint16_t phy_data;
    uint16_t i;

    DEBUGFUNC("em_phy_force_speed_duplex");

    /* Turn off Flow control if we are forcing speed and duplex. */
    hw->fc = em_fc_none;

    DEBUGOUT1("hw->fc = %d\n", hw->fc);

    /* Read the Device Control Register. */
    ctrl = E1000_READ_REG(hw, CTRL);

    /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
    ctrl &= ~(DEVICE_SPEED_MASK);

    /* Clear the Auto Speed Detect Enable bit. */
    ctrl &= ~E1000_CTRL_ASDE;

    /* Read the MII Control Register. */
    if(em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg) < 0) {
        DEBUGOUT("PHY Read Error\n");
        return -E1000_ERR_PHY;
    }

    /* We need to disable autoneg in order to force link and duplex. */

    mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;

    /* Are we forcing Full or Half Duplex? */
    if(hw->forced_speed_duplex == em_100_full ||
       hw->forced_speed_duplex == em_10_full) {
        /* We want to force full duplex so we SET the full duplex bits in the
         * Device and MII Control Registers.
         */
        ctrl |= E1000_CTRL_FD;
        mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
        DEBUGOUT("Full Duplex\n");
    } else {
        /* We want to force half duplex so we CLEAR the full duplex bits in
         * the Device and MII Control Registers.
         */
        ctrl &= ~E1000_CTRL_FD;
        mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
        DEBUGOUT("Half Duplex\n");
    }

    /* Are we forcing 100Mbps??? */
    if(hw->forced_speed_duplex == em_100_full ||
       hw->forced_speed_duplex == em_100_half) {
        /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
        ctrl |= E1000_CTRL_SPD_100;
        mii_ctrl_reg |= MII_CR_SPEED_100;
        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
        DEBUGOUT("Forcing 100mb ");
    } else {
        /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
        ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
        mii_ctrl_reg |= MII_CR_SPEED_10;
        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
        DEBUGOUT("Forcing 10mb ");
    }

    em_config_collision_dist(hw);

    /* Write the configured values back to the Device Control Reg. */
    E1000_WRITE_REG(hw, CTRL, ctrl);

    if (hw->phy_type == em_phy_m88) {
        if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }

        /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
         * forced whenever speed are duplex are forced.
         */
        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
        if(em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
            DEBUGOUT("PHY Write Error\n");
            return -E1000_ERR_PHY;
        }
        DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);

        /* Need to reset the PHY or these changes will be ignored */
        mii_ctrl_reg |= MII_CR_RESET;
    } else {
        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
         * forced whenever speed or duplex are forced.
         */
        if(em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }

        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;

        if(em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data) < 0) {
            DEBUGOUT("PHY Write Error\n");
            return -E1000_ERR_PHY;
        }
    }

    /* Write back the modified PHY MII control register. */
    if(em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg) < 0) {
        DEBUGOUT("PHY Write Error\n");
        return -E1000_ERR_PHY;
    }
    usec_delay(1);

    /* The wait_autoneg_complete flag may be a little misleading here.
     * Since we are forcing speed and duplex, Auto-Neg is not enabled.
     * But we do want to delay for a period while forcing only so we
     * don't generate false No Link messages.  So we will wait here
     * only if the user has set wait_autoneg_complete to 1, which is
     * the default.
     */
    if(hw->wait_autoneg_complete) {
        /* We will wait for autoneg to complete. */
        DEBUGOUT("Waiting for forced speed/duplex link.\n");
        mii_status_reg = 0;

        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
        for(i = PHY_FORCE_TIME; i > 0; i--) {
            /* Read the MII Status Register and wait for Auto-Neg Complete bit
             * to be set.
             */
            if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
                DEBUGOUT("PHY Read Error\n");
                return -E1000_ERR_PHY;
            }
            if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
                DEBUGOUT("PHY Read Error\n");
                return -E1000_ERR_PHY;
            }
            if(mii_status_reg & MII_SR_LINK_STATUS) break;
            msec_delay(100);
        }
        if(i == 0) { /* We didn't get link */
            /* Reset the DSP and wait again for link. */

            ret_val = em_phy_reset_dsp(hw);
            if(ret_val < 0) {
                DEBUGOUT("Error Resetting PHY DSP\n");
                return ret_val;
            }
        }
        /* This loop will early-out if the link condition has been met.  */
        for(i = PHY_FORCE_TIME; i > 0; i--) {
            if(mii_status_reg & MII_SR_LINK_STATUS) break;
            msec_delay(100);
            /* Read the MII Status Register and wait for Auto-Neg Complete bit
             * to be set.
             */
            if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
                DEBUGOUT("PHY Read Error\n");
                return -E1000_ERR_PHY;
            }
            if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
                DEBUGOUT("PHY Read Error\n");
                return -E1000_ERR_PHY;
            }
        }
    }

    if (hw->phy_type == em_phy_m88) {
        /* Because we reset the PHY above, we need to re-force TX_CLK in the
         * Extended PHY Specific Control Register to 25MHz clock.  This value
         * defaults back to a 2.5MHz clock when the PHY is reset.
         */
        if(em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }
        phy_data |= M88E1000_EPSCR_TX_CLK_25;
        if(em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
            DEBUGOUT("PHY Write Error\n");
            return -E1000_ERR_PHY;
        }

        /* In addition, because of the s/w reset above, we need to enable CRS on
         * TX.  This must be set for both full and half duplex operation.
         */
        if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }
        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
        if(em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
            DEBUGOUT("PHY Write Error\n");
            return -E1000_ERR_PHY;
        }
    }
    return 0;
}

/******************************************************************************
* Sets the collision distance in the Transmit Control register
*
* hw - Struct containing variables accessed by shared code
*
* Link should have been established previously. Reads the speed and duplex
* information from the Device Status register.
******************************************************************************/
void
em_config_collision_dist(struct em_hw *hw)
{
    uint32_t tctl;

    DEBUGFUNC("em_config_collision_dist");

    tctl = E1000_READ_REG(hw, TCTL);

    tctl &= ~E1000_TCTL_COLD;
    tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;

    E1000_WRITE_REG(hw, TCTL, tctl);
    E1000_WRITE_FLUSH(hw);
}

/******************************************************************************
* Sets MAC speed and duplex settings to reflect the those in the PHY
*
* hw - Struct containing variables accessed by shared code
* mii_reg - data to write to the MII control register
*
* The contents of the PHY register containing the needed information need to
* be passed in.
******************************************************************************/
static int32_t
em_config_mac_to_phy(struct em_hw *hw)
{
    uint32_t ctrl;
    uint16_t phy_data;

    DEBUGFUNC("em_config_mac_to_phy");

    /* Read the Device Control Register and set the bits to Force Speed
     * and Duplex.
     */
    ctrl = E1000_READ_REG(hw, CTRL);
    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
    ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);

    /* Set up duplex in the Device Control and Transmit Control
     * registers depending on negotiated values.
     */
    if (hw->phy_type == em_phy_igp) {
        if(em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }
        if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD;
        else ctrl &= ~E1000_CTRL_FD;

        em_config_collision_dist(hw);

        /* Set up speed in the Device Control register depending on
         * negotiated values.
         */
        if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
           IGP01E1000_PSSR_SPEED_1000MBPS)
            ctrl |= E1000_CTRL_SPD_1000;
        else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
                IGP01E1000_PSSR_SPEED_100MBPS)
            ctrl |= E1000_CTRL_SPD_100;
    } else {
        if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }
        if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD;
        else ctrl &= ~E1000_CTRL_FD;

        em_config_collision_dist(hw);

        /* Set up speed in the Device Control register depending on
         * negotiated values.
         */
        if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
            ctrl |= E1000_CTRL_SPD_1000;
        else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
            ctrl |= E1000_CTRL_SPD_100;
    }
    /* Write the configured values back to the Device Control Reg. */
    E1000_WRITE_REG(hw, CTRL, ctrl);
    return 0;
}

/******************************************************************************
 * Forces the MAC's flow control settings.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Sets the TFCE and RFCE bits in the device control register to reflect
 * the adapter settings. TFCE and RFCE need to be explicitly set by
 * software when a Copper PHY is used because autonegotiation is managed
 * by the PHY rather than the MAC. Software must also configure these
 * bits when link is forced on a fiber connection.
 *****************************************************************************/
static int32_t
em_force_mac_fc(struct em_hw *hw)
{
    uint32_t ctrl;

    DEBUGFUNC("em_force_mac_fc");

    /* Get the current configuration of the Device Control Register */
    ctrl = E1000_READ_REG(hw, CTRL);

    /* Because we didn't get link via the internal auto-negotiation
     * mechanism (we either forced link or we got link via PHY
     * auto-neg), we have to manually enable/disable transmit an
     * receive flow control.
     *
     * The "Case" statement below enables/disable flow control
     * according to the "hw->fc" parameter.
     *
     * The possible values of the "fc" parameter are:
     *      0:  Flow control is completely disabled
     *      1:  Rx flow control is enabled (we can receive pause
     *          frames but not send pause frames).
     *      2:  Tx flow control is enabled (we can send pause frames
     *          frames but we do not receive pause frames).
     *      3:  Both Rx and TX flow control (symmetric) is enabled.
     *  other:  No other values should be possible at this point.
     */

    switch (hw->fc) {
    case em_fc_none:
        ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
        break;
    case em_fc_rx_pause:
        ctrl &= (~E1000_CTRL_TFCE);
        ctrl |= E1000_CTRL_RFCE;
        break;
    case em_fc_tx_pause:
        ctrl &= (~E1000_CTRL_RFCE);
        ctrl |= E1000_CTRL_TFCE;
        break;
    case em_fc_full:
        ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
        break;
    default:
        DEBUGOUT("Flow control param set incorrectly\n");
        return -E1000_ERR_CONFIG;
    }

    /* Disable TX Flow Control for 82542 (rev 2.0) */
    if(hw->mac_type == em_82542_rev2_0)
        ctrl &= (~E1000_CTRL_TFCE);

    E1000_WRITE_REG(hw, CTRL, ctrl);
    return 0;
}

/******************************************************************************
 * Configures flow control settings after link is established
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Should be called immediately after a valid link has been established.
 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
 * and autonegotiation is enabled, the MAC flow control settings will be set
 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
 *****************************************************************************/
int32_t
em_config_fc_after_link_up(struct em_hw *hw)
{
    int32_t ret_val;
    uint16_t mii_status_reg;
    uint16_t mii_nway_adv_reg;
    uint16_t mii_nway_lp_ability_reg;
    uint16_t speed;
    uint16_t duplex;

    DEBUGFUNC("em_config_fc_after_link_up");

    /* Check for the case where we have fiber media and auto-neg failed
     * so we had to force link.  In this case, we need to force the
     * configuration of the MAC to match the "fc" parameter.
     */
    if(((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) ||
       ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) {
        ret_val = em_force_mac_fc(hw);
        if(ret_val < 0) {
            DEBUGOUT("Error forcing flow control settings\n");
            return ret_val;
        }
    }

    /* Check for the case where we have copper media and auto-neg is
     * enabled.  In this case, we need to check and see if Auto-Neg
     * has completed, and if so, how the PHY and link partner has
     * flow control configured.
     */
    if((hw->media_type == em_media_type_copper) && hw->autoneg) {
        /* Read the MII Status Register and check to see if AutoNeg
         * has completed.  We read this twice because this reg has
         * some "sticky" (latched) bits.
         */
        if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
            DEBUGOUT("PHY Read Error \n");
            return -E1000_ERR_PHY;
        }
        if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
            DEBUGOUT("PHY Read Error \n");
            return -E1000_ERR_PHY;
        }

        if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
            /* The AutoNeg process has completed, so we now need to
             * read both the Auto Negotiation Advertisement Register
             * (Address 4) and the Auto_Negotiation Base Page Ability
             * Register (Address 5) to determine how flow control was
             * negotiated.
             */
            if(em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
                DEBUGOUT("PHY Read Error\n");
                return -E1000_ERR_PHY;
            }
            if(em_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg) < 0) {
                DEBUGOUT("PHY Read Error\n");
                return -E1000_ERR_PHY;
            }

            /* Two bits in the Auto Negotiation Advertisement Register
             * (Address 4) and two bits in the Auto Negotiation Base
             * Page Ability Register (Address 5) determine flow control
             * for both the PHY and the link partner.  The following
             * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
             * 1999, describes these PAUSE resolution bits and how flow
             * control is determined based upon these settings.
             * NOTE:  DC = Don't Care
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
             *-------|---------|-------|---------|--------------------
             *   0   |    0    |  DC   |   DC    | em_fc_none
             *   0   |    1    |   0   |   DC    | em_fc_none
             *   0   |    1    |   1   |    0    | em_fc_none
             *   0   |    1    |   1   |    1    | em_fc_tx_pause
             *   1   |    0    |   0   |   DC    | em_fc_none
             *   1   |   DC    |   1   |   DC    | em_fc_full
             *   1   |    1    |   0   |    0    | em_fc_none
             *   1   |    1    |   0   |    1    | em_fc_rx_pause
             *
             */
            /* Are both PAUSE bits set to 1?  If so, this implies
             * Symmetric Flow Control is enabled at both ends.  The
             * ASM_DIR bits are irrelevant per the spec.
             *
             * For Symmetric Flow Control:
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
             *-------|---------|-------|---------|--------------------
             *   1   |   DC    |   1   |   DC    | em_fc_full
             *
             */
            if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
               (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
                /* Now we need to check if the user selected RX ONLY
                 * of pause frames.  In this case, we had to advertise
                 * FULL flow control because we could not advertise RX
                 * ONLY. Hence, we must now check to see if we need to
                 * turn OFF  the TRANSMISSION of PAUSE frames.
                 */
                if(hw->original_fc == em_fc_full) {
                    hw->fc = em_fc_full;
                    DEBUGOUT("Flow Control = FULL.\r\n");
                } else {
                    hw->fc = em_fc_rx_pause;
                    DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
                }
            }
            /* For receiving PAUSE frames ONLY.
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
             *-------|---------|-------|---------|--------------------
             *   0   |    1    |   1   |    1    | em_fc_tx_pause
             *
             */
            else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                    (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
                    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
                    (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
                hw->fc = em_fc_tx_pause;
                DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
            }
            /* For transmitting PAUSE frames ONLY.
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
             *-------|---------|-------|---------|--------------------
             *   1   |    1    |   0   |    1    | em_fc_rx_pause
             *
             */
            else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                    (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
                    !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
                    (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
                hw->fc = em_fc_rx_pause;
                DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
            }
            /* Per the IEEE spec, at this point flow control should be
             * disabled.  However, we want to consider that we could
             * be connected to a legacy switch that doesn't advertise
             * desired flow control, but can be forced on the link
             * partner.  So if we advertised no flow control, that is
             * what we will resolve to.  If we advertised some kind of
             * receive capability (Rx Pause Only or Full Flow Control)
             * and the link partner advertised none, we will configure
             * ourselves to enable Rx Flow Control only.  We can do
             * this safely for two reasons:  If the link partner really
             * didn't want flow control enabled, and we enable Rx, no
             * harm done since we won't be receiving any PAUSE frames
             * anyway.  If the intent on the link partner was to have
             * flow control enabled, then by us enabling RX only, we
             * can at least receive pause frames and process them.
             * This is a good idea because in most cases, since we are
             * predominantly a server NIC, more times than not we will
             * be asked to delay transmission of packets than asking
             * our link partner to pause transmission of frames.
             */
            else if(hw->original_fc == em_fc_none ||
                    hw->original_fc == em_fc_tx_pause) {
                hw->fc = em_fc_none;
                DEBUGOUT("Flow Control = NONE.\r\n");
            } else {
                hw->fc = em_fc_rx_pause;
                DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
            }

            /* Now we need to do one last check...  If we auto-
             * negotiated to HALF DUPLEX, flow control should not be
             * enabled per IEEE 802.3 spec.
             */
            em_get_speed_and_duplex(hw, &speed, &duplex);

            if(duplex == HALF_DUPLEX)
                hw->fc = em_fc_none;

            /* Now we call a subroutine to actually force the MAC
             * controller to use the correct flow control settings.
             */
            ret_val = em_force_mac_fc(hw);
            if(ret_val < 0) {
                DEBUGOUT("Error forcing flow control settings\n");
                return ret_val;
             }
        } else {
            DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
        }
    }
    return 0;
}

/******************************************************************************
 * Checks to see if the link status of the hardware has changed.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Called by any function that needs to check the link status of the adapter.
 *****************************************************************************/
int32_t
em_check_for_link(struct em_hw *hw)
{
    uint32_t rxcw;
    uint32_t ctrl;
    uint32_t status;
    uint32_t rctl;
    uint32_t signal;
    int32_t ret_val;
    uint16_t phy_data;
    uint16_t lp_capability;

    DEBUGFUNC("em_check_for_link");

    /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
     * set when the optics detect a signal. On older adapters, it will be
     * cleared when there is a signal
     */
    if(hw->mac_type > em_82544) signal = E1000_CTRL_SWDPIN1;
    else signal = 0;

    ctrl = E1000_READ_REG(hw, CTRL);
    status = E1000_READ_REG(hw, STATUS);
    rxcw = E1000_READ_REG(hw, RXCW);

    /* If we have a copper PHY then we only want to go out to the PHY
     * registers to see if Auto-Neg has completed and/or if our link
     * status has changed.  The get_link_status flag will be set if we
     * receive a Link Status Change interrupt or we have Rx Sequence
     * Errors.
     */
    if((hw->media_type == em_media_type_copper) && hw->get_link_status) {
        /* First we want to see if the MII Status Register reports
         * link.  If so, then we want to get the current speed/duplex
         * of the PHY.
         * Read the register twice since the link bit is sticky.
         */
        if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }
        if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }

        if(phy_data & MII_SR_LINK_STATUS) {
            hw->get_link_status = FALSE;
            /* Check if there was DownShift, must be checked immediately after
             * link-up */
            em_check_downshift(hw);

        } else {
            /* No link detected */
            return 0;
        }

        /* If we are forcing speed/duplex, then we simply return since
         * we have already determined whether we have link or not.
         */
        if(!hw->autoneg) return -E1000_ERR_CONFIG;

        /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
         * have Si on board that is 82544 or newer, Auto
         * Speed Detection takes care of MAC speed/duplex
         * configuration.  So we only need to configure Collision
         * Distance in the MAC.  Otherwise, we need to force
         * speed/duplex on the MAC to the current PHY speed/duplex
         * settings.
         */
        if(hw->mac_type >= em_82544)
            em_config_collision_dist(hw);
        else {
            ret_val = em_config_mac_to_phy(hw);
            if(ret_val < 0) {
                DEBUGOUT("Error configuring MAC to PHY settings\n");
                return ret_val;
            }
        }

        /* Configure Flow Control now that Auto-Neg has completed. First, we
         * need to restore the desired flow control settings because we may
         * have had to re-autoneg with a different link partner.
         */
        ret_val = em_config_fc_after_link_up(hw);
        if(ret_val < 0) {
            DEBUGOUT("Error configuring flow control\n");
            return ret_val;
        }

        /* At this point we know that we are on copper and we have
         * auto-negotiated link.  These are conditions for checking the link
         * parter capability register.  We use the link partner capability to
         * determine if TBI Compatibility needs to be turned on or off.  If
         * the link partner advertises any speed in addition to Gigabit, then
         * we assume that they are GMII-based, and TBI compatibility is not
         * needed. If no other speeds are advertised, we assume the link
         * partner is TBI-based, and we turn on TBI Compatibility.
         */
        if(hw->tbi_compatibility_en) {
            if(em_read_phy_reg(hw, PHY_LP_ABILITY, &lp_capability) < 0) {
                DEBUGOUT("PHY Read Error\n");
                return -E1000_ERR_PHY;
            }
            if(lp_capability & (NWAY_LPAR_10T_HD_CAPS |
                                NWAY_LPAR_10T_FD_CAPS |
                                NWAY_LPAR_100TX_HD_CAPS |
                                NWAY_LPAR_100TX_FD_CAPS |
                                NWAY_LPAR_100T4_CAPS)) {
                /* If our link partner advertises anything in addition to
                 * gigabit, we do not need to enable TBI compatibility.
                 */
                if(hw->tbi_compatibility_on) {
                    /* If we previously were in the mode, turn it off. */
                    rctl = E1000_READ_REG(hw, RCTL);
                    rctl &= ~E1000_RCTL_SBP;
                    E1000_WRITE_REG(hw, RCTL, rctl);
                    hw->tbi_compatibility_on = FALSE;
                }
            } else {
                /* If TBI compatibility is was previously off, turn it on. For
                 * compatibility with a TBI link partner, we will store bad
                 * packets. Some frames have an additional byte on the end and
                 * will look like CRC errors to to the hardware.
                 */
                if(!hw->tbi_compatibility_on) {
                    hw->tbi_compatibility_on = TRUE;
                    rctl = E1000_READ_REG(hw, RCTL);
                    rctl |= E1000_RCTL_SBP;
                    E1000_WRITE_REG(hw, RCTL, rctl);
                }
            }
        }
    }
    /* If we don't have link (auto-negotiation failed or link partner cannot
     * auto-negotiate), the cable is plugged in (we have signal), and our
     * link partner is not trying to auto-negotiate with us (we are receiving
     * idles or data), we need to force link up. We also need to give
     * auto-negotiation time to complete, in case the cable was just plugged
     * in. The autoneg_failed flag does this.
     */
    else if((hw->media_type == em_media_type_fiber) &&
            (!(status & E1000_STATUS_LU)) &&
            ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
            (!(rxcw & E1000_RXCW_C))) {
        if(hw->autoneg_failed == 0) {
            hw->autoneg_failed = 1;
            return 0;
        }
        DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");

        /* Disable auto-negotiation in the TXCW register */
        E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));

        /* Force link-up and also force full-duplex. */
        ctrl = E1000_READ_REG(hw, CTRL);
        ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
        E1000_WRITE_REG(hw, CTRL, ctrl);

        /* Configure Flow Control after forcing link up. */
        ret_val = em_config_fc_after_link_up(hw);
        if(ret_val < 0) {
            DEBUGOUT("Error configuring flow control\n");
            return ret_val;
        }
    }
    /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
     * auto-negotiation in the TXCW register and disable forced link in the
     * Device Control register in an attempt to auto-negotiate with our link
     * partner.
     */
    else if((hw->media_type == em_media_type_fiber) &&
              (ctrl & E1000_CTRL_SLU) &&
              (rxcw & E1000_RXCW_C)) {
        DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
        E1000_WRITE_REG(hw, TXCW, hw->txcw);
        E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
    }
    return 0;
}

/******************************************************************************
 * Detects the current speed and duplex settings of the hardware.
 *
 * hw - Struct containing variables accessed by shared code
 * speed - Speed of the connection
 * duplex - Duplex setting of the connection
 *****************************************************************************/
void
em_get_speed_and_duplex(struct em_hw *hw,
                           uint16_t *speed,
                           uint16_t *duplex)
{
    uint32_t status;

    DEBUGFUNC("em_get_speed_and_duplex");

    if(hw->mac_type >= em_82543) {
        status = E1000_READ_REG(hw, STATUS);
        if(status & E1000_STATUS_SPEED_1000) {
            *speed = SPEED_1000;
            DEBUGOUT("1000 Mbs, ");
        } else if(status & E1000_STATUS_SPEED_100) {
            *speed = SPEED_100;
            DEBUGOUT("100 Mbs, ");
        } else {
            *speed = SPEED_10;
            DEBUGOUT("10 Mbs, ");
        }

        if(status & E1000_STATUS_FD) {
            *duplex = FULL_DUPLEX;
            DEBUGOUT("Full Duplex\r\n");
        } else {
            *duplex = HALF_DUPLEX;
            DEBUGOUT(" Half Duplex\r\n");
        }
    } else {
        DEBUGOUT("1000 Mbs, Full Duplex\r\n");
        *speed = SPEED_1000;
        *duplex = FULL_DUPLEX;
    }
}

/******************************************************************************
* Blocks until autoneg completes or times out (~4.5 seconds)
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
em_wait_autoneg(struct em_hw *hw)
{
    uint16_t i;
    uint16_t phy_data;

    DEBUGFUNC("em_wait_autoneg");
    DEBUGOUT("Waiting for Auto-Neg to complete.\n");

    /* We will wait for autoneg to complete or 4.5 seconds to expire. */
    for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
        /* Read the MII Status Register and wait for Auto-Neg
         * Complete bit to be set.
         */
        if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }
        if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }
        if(phy_data & MII_SR_AUTONEG_COMPLETE) {
            return 0;
        }
        msec_delay(100);
    }
    return 0;
}

/******************************************************************************
* Raises the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
em_raise_mdi_clk(struct em_hw *hw,
                    uint32_t *ctrl)
{
    /* Raise the clock input to the Management Data Clock (by setting the MDC
     * bit), and then delay 2 microseconds.
     */
    E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
    E1000_WRITE_FLUSH(hw);
    usec_delay(2);
}

/******************************************************************************
* Lowers the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
em_lower_mdi_clk(struct em_hw *hw,
                    uint32_t *ctrl)
{
    /* Lower the clock input to the Management Data Clock (by clearing the MDC
     * bit), and then delay 2 microseconds.
     */
    E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
    E1000_WRITE_FLUSH(hw);
    usec_delay(2);
}

/******************************************************************************
* Shifts data bits out to the PHY
*
* hw - Struct containing variables accessed by shared code
* data - Data to send out to the PHY
* count - Number of bits to shift out
*
* Bits are shifted out in MSB to LSB order.
******************************************************************************/
static void
em_shift_out_mdi_bits(struct em_hw *hw,
                         uint32_t data,
                         uint16_t count)
{
    uint32_t ctrl;
    uint32_t mask;

    /* We need to shift "count" number of bits out to the PHY. So, the value
     * in the "data" parameter will be shifted out to the PHY one bit at a
     * time. In order to do this, "data" must be broken down into bits.
     */
    mask = 0x01;
    mask <<= (count - 1);

    ctrl = E1000_READ_REG(hw, CTRL);

    /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
    ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);

    while(mask) {
        /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
         * then raising and lowering the Management Data Clock. A "0" is
         * shifted out to the PHY by setting the MDIO bit to "0" and then
         * raising and lowering the clock.
         */
        if(data & mask) ctrl |= E1000_CTRL_MDIO;
        else ctrl &= ~E1000_CTRL_MDIO;

        E1000_WRITE_REG(hw, CTRL, ctrl);
        E1000_WRITE_FLUSH(hw);

        usec_delay(2);

        em_raise_mdi_clk(hw, &ctrl);
        em_lower_mdi_clk(hw, &ctrl);

        mask = mask >> 1;
    }
}

/******************************************************************************
* Shifts data bits in from the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Bits are shifted in in MSB to LSB order.
******************************************************************************/
static uint16_t
em_shift_in_mdi_bits(struct em_hw *hw)
{
    uint32_t ctrl;
    uint16_t data = 0;
    uint8_t i;

    /* In order to read a register from the PHY, we need to shift in a total
     * of 18 bits from the PHY. The first two bit (turnaround) times are used
     * to avoid contention on the MDIO pin when a read operation is performed.
     * These two bits are ignored by us and thrown away. Bits are "shifted in"
     * by raising the input to the Management Data Clock (setting the MDC bit),
     * and then reading the value of the MDIO bit.
     */
    ctrl = E1000_READ_REG(hw, CTRL);

    /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
    ctrl &= ~E1000_CTRL_MDIO_DIR;
    ctrl &= ~E1000_CTRL_MDIO;

    E1000_WRITE_REG(hw, CTRL, ctrl);
    E1000_WRITE_FLUSH(hw);

    /* Raise and Lower the clock before reading in the data. This accounts for
     * the turnaround bits. The first clock occurred when we clocked out the
     * last bit of the Register Address.
     */
    em_raise_mdi_clk(hw, &ctrl);
    em_lower_mdi_clk(hw, &ctrl);

    for(data = 0, i = 0; i < 16; i++) {
        data = data << 1;
        em_raise_mdi_clk(hw, &ctrl);
        ctrl = E1000_READ_REG(hw, CTRL);
        /* Check to see if we shifted in a "1". */
        if(ctrl & E1000_CTRL_MDIO) data |= 1;
        em_lower_mdi_clk(hw, &ctrl);
    }

    em_raise_mdi_clk(hw, &ctrl);
    em_lower_mdi_clk(hw, &ctrl);

    return data;
}

/*****************************************************************************
* Reads the value from a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
******************************************************************************/
int32_t
em_read_phy_reg(struct em_hw *hw,
                   uint32_t reg_addr,
                   uint16_t *phy_data)
{
    uint32_t i;
    uint32_t mdic = 0;
    const uint32_t phy_addr = 1;

    DEBUGFUNC("em_read_phy_reg");

    if(reg_addr > MAX_PHY_REG_ADDRESS) {
        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
        return -E1000_ERR_PARAM;
    }

    if(hw->mac_type > em_82543) {
        /* Set up Op-code, Phy Address, and register address in the MDI
         * Control register.  The MAC will take care of interfacing with the
         * PHY to retrieve the desired data.
         */
        mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
                (phy_addr << E1000_MDIC_PHY_SHIFT) |
                (E1000_MDIC_OP_READ));

        E1000_WRITE_REG(hw, MDIC, mdic);

        /* Poll the ready bit to see if the MDI read completed */
        for(i = 0; i < 64; i++) {
            usec_delay(10);
            mdic = E1000_READ_REG(hw, MDIC);
            if(mdic & E1000_MDIC_READY) break;
        }
        if(!(mdic & E1000_MDIC_READY)) {
            DEBUGOUT("MDI Read did not complete\n");
            return -E1000_ERR_PHY;
        }
        if(mdic & E1000_MDIC_ERROR) {
            DEBUGOUT("MDI Error\n");
            return -E1000_ERR_PHY;
        }
        *phy_data = (uint16_t) mdic;
    } else {
        /* We must first send a preamble through the MDIO pin to signal the
         * beginning of an MII instruction.  This is done by sending 32
         * consecutive "1" bits.
         */
        em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);

        /* Now combine the next few fields that are required for a read
         * operation.  We use this method instead of calling the
         * em_shift_out_mdi_bits routine five different times. The format of
         * a MII read instruction consists of a shift out of 14 bits and is
         * defined as follows:
         *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
         * followed by a shift in of 18 bits.  This first two bits shifted in
         * are TurnAround bits used to avoid contention on the MDIO pin when a
         * READ operation is performed.  These two bits are thrown away
         * followed by a shift in of 16 bits which contains the desired data.
         */
        mdic = ((reg_addr) | (phy_addr << 5) |
                (PHY_OP_READ << 10) | (PHY_SOF << 12));

        em_shift_out_mdi_bits(hw, mdic, 14);

        /* Now that we've shifted out the read command to the MII, we need to
         * "shift in" the 16-bit value (18 total bits) of the requested PHY
         * register address.
         */
        *phy_data = em_shift_in_mdi_bits(hw);
    }
    return 0;
}

/******************************************************************************
* Writes a value to a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
******************************************************************************/
int32_t
em_write_phy_reg(struct em_hw *hw,
                    uint32_t reg_addr,
                    uint16_t phy_data)
{
    uint32_t i;
    uint32_t mdic = 0;
    const uint32_t phy_addr = 1;

    DEBUGFUNC("em_write_phy_reg");

    if(reg_addr > MAX_PHY_REG_ADDRESS) {
        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
        return -E1000_ERR_PARAM;
    }

    if(hw->mac_type > em_82543) {
        /* Set up Op-code, Phy Address, register address, and data intended
         * for the PHY register in the MDI Control register.  The MAC will take
         * care of interfacing with the PHY to send the desired data.
         */
        mdic = (((uint32_t) phy_data) |
                (reg_addr << E1000_MDIC_REG_SHIFT) |
                (phy_addr << E1000_MDIC_PHY_SHIFT) |
                (E1000_MDIC_OP_WRITE));

        E1000_WRITE_REG(hw, MDIC, mdic);

        /* Poll the ready bit to see if the MDI read completed */
        for(i = 0; i < 64; i++) {
            usec_delay(10);
            mdic = E1000_READ_REG(hw, MDIC);
            if(mdic & E1000_MDIC_READY) break;
        }
        if(!(mdic & E1000_MDIC_READY)) {
            DEBUGOUT("MDI Write did not complete\n");
            return -E1000_ERR_PHY;
        }
    } else {
        /* We'll need to use the SW defined pins to shift the write command
         * out to the PHY. We first send a preamble to the PHY to signal the
         * beginning of the MII instruction.  This is done by sending 32
         * consecutive "1" bits.
         */
        em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);

        /* Now combine the remaining required fields that will indicate a
         * write operation. We use this method instead of calling the
         * em_shift_out_mdi_bits routine for each field in the command. The
         * format of a MII write instruction is as follows:
         * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
         */
        mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
                (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
        mdic <<= 16;
        mdic |= (uint32_t) phy_data;

        em_shift_out_mdi_bits(hw, mdic, 32);
    }

    return 0;
}

/******************************************************************************
* Returns the PHY to the power-on reset state
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
void
em_phy_hw_reset(struct em_hw *hw)
{
    uint32_t ctrl, ctrl_ext;
    uint32_t led_ctrl;

    DEBUGFUNC("em_phy_hw_reset");

    DEBUGOUT("Resetting Phy...\n");

    if(hw->mac_type > em_82543) {
        /* Read the device control register and assert the E1000_CTRL_PHY_RST
         * bit. Then, take it out of reset.
         */
        ctrl = E1000_READ_REG(hw, CTRL);
        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
        E1000_WRITE_FLUSH(hw);
        msec_delay(10);
        E1000_WRITE_REG(hw, CTRL, ctrl);
        E1000_WRITE_FLUSH(hw);
    } else {
        /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
         * bit to put the PHY into reset. Then, take it out of reset.
         */
        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
        ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        E1000_WRITE_FLUSH(hw);
        msec_delay(10);
        ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        E1000_WRITE_FLUSH(hw);
    }
    usec_delay(150);

    if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
        if(em_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0000) < 0) {
            DEBUGOUT("PHY Write Error\n");
            return;
        }

        /* Configure activity LED after PHY reset */
        led_ctrl = E1000_READ_REG(hw, LEDCTL);
        led_ctrl &= IGP_ACTIVITY_LED_MASK;
        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
    }
}

/******************************************************************************
* Resets the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 of the MII Control regiser
******************************************************************************/
int32_t
em_phy_reset(struct em_hw *hw)
{
    uint16_t phy_data;

    DEBUGFUNC("em_phy_reset");

    if(em_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
        DEBUGOUT("PHY Read Error\n");
        return -E1000_ERR_PHY;
    }
    phy_data |= MII_CR_RESET;
    if(em_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
        DEBUGOUT("PHY Write Error\n");
        return -E1000_ERR_PHY;
    }
    usec_delay(1);
    if (hw->phy_type == em_phy_igp) {
        em_phy_init_script(hw);
    }
    return 0;
}

/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
em_detect_gig_phy(struct em_hw *hw)
{
    uint16_t phy_id_high, phy_id_low;
    boolean_t match = FALSE;
    int32_t phy_init_status;

    DEBUGFUNC("em_detect_gig_phy");

    /* Read the PHY ID Registers to identify which PHY is onboard. */
    if(em_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
        DEBUGOUT("PHY Read Error\n");
        return -E1000_ERR_PHY;
    }
    hw->phy_id = (uint32_t) (phy_id_high << 16);
    usec_delay(20);
    if(em_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
        DEBUGOUT("PHY Read Error\n");
        return -E1000_ERR_PHY;
    }
    hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
    hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;

    switch(hw->mac_type) {
    case em_82543:
        if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
        break;
    case em_82544:
        if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
        break;
    case em_82540:
    case em_82545:
    case em_82546:
        if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
        break;
    case em_82541:
    case em_82547:
        if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
        break;
    default:
        DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
        return -E1000_ERR_CONFIG;
    }
    phy_init_status = em_set_phy_type(hw);

    if ((match) && (phy_init_status == E1000_SUCCESS)) {
        DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
        return 0;
    }
    DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
    return -E1000_ERR_PHY;
}

/******************************************************************************
* Resets the PHY's DSP
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
em_phy_reset_dsp(struct em_hw *hw)
{
    int32_t ret_val = -E1000_ERR_PHY;
    DEBUGFUNC("em_phy_reset_dsp");

    do {
        if(em_write_phy_reg(hw, 29, 0x001d) < 0) break;
        if(em_write_phy_reg(hw, 30, 0x00c1) < 0) break;
        if(em_write_phy_reg(hw, 30, 0x0000) < 0) break;
        ret_val = 0;
    } while(0);

    if(ret_val < 0) DEBUGOUT("PHY Write Error\n");
    return ret_val;
}

/******************************************************************************
* Get PHY information from various PHY registers for igp PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
em_phy_igp_get_info(struct em_hw *hw, struct em_phy_info *phy_info)
{
    uint16_t phy_data, polarity, min_length, max_length, average;

    DEBUGFUNC("em_phy_igp_get_info");

    /* The downshift status is checked only once, after link is established,
     * and it stored in the hw->speed_downgraded parameter. */
    phy_info->downshift = hw->speed_downgraded;

    /* IGP01E1000 does not need to support it. */
    phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_normal;

    /* IGP01E1000 always correct polarity reversal */
    phy_info->polarity_correction = em_polarity_reversal_enabled;

    /* Check polarity status */
    if(em_check_polarity(hw, &polarity) < 0)
        return -E1000_ERR_PHY;

    phy_info->cable_polarity = polarity;

    if(em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data) < 0)
        return -E1000_ERR_PHY;

    phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
                          IGP01E1000_PSSR_MDIX_SHIFT;

    if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
       IGP01E1000_PSSR_SPEED_1000MBPS) {
        /* Local/Remote Receiver Information are only valid at 1000 Mbps */
        if(em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data) < 0)
            return -E1000_ERR_PHY;

        phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
                             SR_1000T_LOCAL_RX_STATUS_SHIFT;
        phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
                              SR_1000T_REMOTE_RX_STATUS_SHIFT;

        /* Get cable length */
        if(em_get_cable_length(hw, &min_length, &max_length) < 0)
            return -E1000_ERR_PHY;

        /* transalte to old method */
        average = (max_length + min_length) / 2;

        if(average <= em_igp_cable_length_50)
            phy_info->cable_length = em_cable_length_50;
        else if(average <= em_igp_cable_length_80)
            phy_info->cable_length = em_cable_length_50_80;
        else if(average <= em_igp_cable_length_110)
            phy_info->cable_length = em_cable_length_80_110;
        else if(average <= em_igp_cable_length_140)
            phy_info->cable_length = em_cable_length_110_140;
        else
            phy_info->cable_length = em_cable_length_140;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
* Get PHY information from various PHY registers fot m88 PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
em_phy_m88_get_info(struct em_hw *hw, struct em_phy_info *phy_info)
{
    uint16_t phy_data, polarity;

    DEBUGFUNC("em_phy_m88_get_info");

    /* The downshift status is checked only once, after link is established,
     * and it stored in the hw->speed_downgraded parameter. */
    phy_info->downshift = hw->speed_downgraded;

    if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0)
        return -E1000_ERR_PHY;

    phy_info->extended_10bt_distance =
        (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
        M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
    phy_info->polarity_correction =
        (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
        M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;

    /* Check polarity status */
    if(em_check_polarity(hw, &polarity) < 0)
        return -E1000_ERR_PHY;

    phy_info->cable_polarity = polarity;

    if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0)
        return -E1000_ERR_PHY;

    phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
                          M88E1000_PSSR_MDIX_SHIFT;

    if(phy_data & M88E1000_PSSR_1000MBS) {
        /* Cable Length Estimation and Local/Remote Receiver Informatoion
         * are only valid at 1000 Mbps
         */
        phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
                                  M88E1000_PSSR_CABLE_LENGTH_SHIFT);

        if(em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data) < 0)
            return -E1000_ERR_PHY;

        phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
                             SR_1000T_LOCAL_RX_STATUS_SHIFT;

        phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
                              SR_1000T_REMOTE_RX_STATUS_SHIFT;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
* Get PHY information from various PHY registers
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
em_phy_get_info(struct em_hw *hw,
                   struct em_phy_info *phy_info)
{
    uint16_t phy_data;

    DEBUGFUNC("em_phy_get_info");

    phy_info->cable_length = em_cable_length_undefined;
    phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_undefined;
    phy_info->cable_polarity = em_rev_polarity_undefined;
    phy_info->downshift = em_downshift_undefined;
    phy_info->polarity_correction = em_polarity_reversal_undefined;
    phy_info->mdix_mode = em_auto_x_mode_undefined;
    phy_info->local_rx = em_1000t_rx_status_undefined;
    phy_info->remote_rx = em_1000t_rx_status_undefined;

    if(hw->media_type != em_media_type_copper) {
        DEBUGOUT("PHY info is only valid for copper media\n");
        return -E1000_ERR_CONFIG;
    }

    if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
        DEBUGOUT("PHY Read Error\n");
        return -E1000_ERR_PHY;
    }
    if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
        DEBUGOUT("PHY Read Error\n");
        return -E1000_ERR_PHY;
    }
    if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
        DEBUGOUT("PHY info is only valid if link is up\n");
        return -E1000_ERR_CONFIG;
    }

    if (hw->phy_type == em_phy_igp)
        return em_phy_igp_get_info(hw, phy_info);
    else
        return em_phy_m88_get_info(hw, phy_info);
}

int32_t
em_validate_mdi_setting(struct em_hw *hw)
{
    DEBUGFUNC("em_validate_mdi_settings");

    if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
        DEBUGOUT("Invalid MDI setting detected\n");
        hw->mdix = 1;
        return -E1000_ERR_CONFIG;
    }
    return 0;
}


/******************************************************************************
 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
 * is configured.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
em_init_eeprom_params(struct em_hw *hw)
{
    struct em_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd = E1000_READ_REG(hw, EECD);
    uint16_t eeprom_size;

    DEBUGFUNC("em_init_eeprom_params");

    switch (hw->mac_type) {
    case em_82542_rev2_0:
    case em_82542_rev2_1:
    case em_82543:
    case em_82544:
        eeprom->type = em_eeprom_microwire;
        eeprom->word_size = 64;
        eeprom->opcode_bits = 3;
        eeprom->address_bits = 6;
        eeprom->delay_usec = 50;
        break;
    case em_82540:
    case em_82545:
    case em_82546:
        eeprom->type = em_eeprom_microwire;
        eeprom->opcode_bits = 3;
        eeprom->delay_usec = 50;
        if(eecd & E1000_EECD_SIZE) {
            eeprom->word_size = 256;
            eeprom->address_bits = 8;
        } else {
            eeprom->word_size = 64;
            eeprom->address_bits = 6;
        }
        break;
    case em_82541:
    case em_82547:
    default:
        if (eecd & E1000_EECD_TYPE) {
            eeprom->type = em_eeprom_spi;
            eeprom->opcode_bits = 8;
            eeprom->delay_usec = 1;
            if (eecd & E1000_EECD_ADDR_BITS) {
                eeprom->page_size = 32;
                eeprom->address_bits = 16;
            } else {
                eeprom->page_size = 8;
                eeprom->address_bits = 8;
            }
        } else {
            eeprom->type = em_eeprom_microwire;
            eeprom->opcode_bits = 3;
            eeprom->delay_usec = 50;
            if (eecd & E1000_EECD_ADDR_BITS) {
                eeprom->word_size = 256;
                eeprom->address_bits = 8;
            } else {
                eeprom->word_size = 64;
                eeprom->address_bits = 6;
            }
        }
        break;
    }

    if (eeprom->type == em_eeprom_spi) {
        eeprom->word_size = 64;
        if (em_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) {
            eeprom_size &= EEPROM_SIZE_MASK;

            switch (eeprom_size) {
                case EEPROM_SIZE_16KB:
                    eeprom->word_size = 8192;
                    break;
                case EEPROM_SIZE_8KB:
                    eeprom->word_size = 4096;
                    break;
                case EEPROM_SIZE_4KB:
                    eeprom->word_size = 2048;
                    break;
                case EEPROM_SIZE_2KB:
                    eeprom->word_size = 1024;
                    break;
                case EEPROM_SIZE_1KB:
                    eeprom->word_size = 512;
                    break;
                case EEPROM_SIZE_512B:
                    eeprom->word_size = 256;
                    break;
                case EEPROM_SIZE_128B:
                default:
                    eeprom->word_size = 64;
                    break;
            }
        }
    }
}

/******************************************************************************
 * Raises the EEPROM's clock input.
 *
 * hw - Struct containing variables accessed by shared code
 * eecd - EECD's current value
 *****************************************************************************/
static void
em_raise_ee_clk(struct em_hw *hw,
                   uint32_t *eecd)
{
    /* Raise the clock input to the EEPROM (by setting the SK bit), and then
     * wait <delay> microseconds.
     */
    *eecd = *eecd | E1000_EECD_SK;
    E1000_WRITE_REG(hw, EECD, *eecd);
    E1000_WRITE_FLUSH(hw);
    usec_delay(hw->eeprom.delay_usec);
}

/******************************************************************************
 * Lowers the EEPROM's clock input.
 *
 * hw - Struct containing variables accessed by shared code
 * eecd - EECD's current value
 *****************************************************************************/
static void
em_lower_ee_clk(struct em_hw *hw,
                   uint32_t *eecd)
{
    /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
     * wait 50 microseconds.
     */
    *eecd = *eecd & ~E1000_EECD_SK;
    E1000_WRITE_REG(hw, EECD, *eecd);
    E1000_WRITE_FLUSH(hw);
    usec_delay(hw->eeprom.delay_usec);
}

/******************************************************************************
 * Shift data bits out to the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * data - data to send to the EEPROM
 * count - number of bits to shift out
 *****************************************************************************/
static void
em_shift_out_ee_bits(struct em_hw *hw,
                        uint16_t data,
                        uint16_t count)
{
    struct em_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd;
    uint32_t mask;

    /* We need to shift "count" bits out to the EEPROM. So, value in the
     * "data" parameter will be shifted out to the EEPROM one bit at a time.
     * In order to do this, "data" must be broken down into bits.
     */
    mask = 0x01 << (count - 1);
    eecd = E1000_READ_REG(hw, EECD);
    if (eeprom->type == em_eeprom_microwire) {
        eecd &= ~E1000_EECD_DO;
    } else if (eeprom->type == em_eeprom_spi) {
        eecd |= E1000_EECD_DO;
    }
    do {
        /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
         * and then raising and then lowering the clock (the SK bit controls
         * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
         * by setting "DI" to "0" and then raising and then lowering the clock.
         */
        eecd &= ~E1000_EECD_DI;

        if(data & mask)
            eecd |= E1000_EECD_DI;

        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);

        usec_delay(eeprom->delay_usec);

        em_raise_ee_clk(hw, &eecd);
        em_lower_ee_clk(hw, &eecd);

        mask = mask >> 1;

    } while(mask);

    /* We leave the "DI" bit set to "0" when we leave this routine. */
    eecd &= ~E1000_EECD_DI;
    E1000_WRITE_REG(hw, EECD, eecd);
}

/******************************************************************************
 * Shift data bits in from the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static uint16_t
em_shift_in_ee_bits(struct em_hw *hw, uint16_t count)
{
    uint32_t eecd;
    uint32_t i;
    uint16_t data;

    /* In order to read a register from the EEPROM, we need to shift 'count'
     * bits in from the EEPROM. Bits are "shifted in" by raising the clock
     * input to the EEPROM (setting the SK bit), and then reading the value of
     * the "DO" bit.  During this "shifting in" process the "DI" bit should
     * always be clear.
     */

    eecd = E1000_READ_REG(hw, EECD);

    eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
    data = 0;

    for(i = 0; i < count; i++) {
        data = data << 1;
        em_raise_ee_clk(hw, &eecd);

        eecd = E1000_READ_REG(hw, EECD);

        eecd &= ~(E1000_EECD_DI);
        if(eecd & E1000_EECD_DO)
            data |= 1;

        em_lower_ee_clk(hw, &eecd);
    }

    return data;
}

/******************************************************************************
 * Prepares EEPROM for access
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
 * function should be called before issuing a command to the EEPROM.
 *****************************************************************************/
static int32_t
em_acquire_eeprom(struct em_hw *hw)
{
    struct em_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd, i=0;

    DEBUGFUNC("em_acquire_eeprom");

    eecd = E1000_READ_REG(hw, EECD);

    /* Request EEPROM Access */
    if(hw->mac_type > em_82544) {
        eecd |= E1000_EECD_REQ;
        E1000_WRITE_REG(hw, EECD, eecd);
        eecd = E1000_READ_REG(hw, EECD);
        while((!(eecd & E1000_EECD_GNT)) &&
              (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
            i++;
            usec_delay(5);
            eecd = E1000_READ_REG(hw, EECD);
        }
        if(!(eecd & E1000_EECD_GNT)) {
            eecd &= ~E1000_EECD_REQ;
            E1000_WRITE_REG(hw, EECD, eecd);
            DEBUGOUT("Could not acquire EEPROM grant\n");
            return -E1000_ERR_EEPROM;
        }
    }

    /* Setup EEPROM for Read/Write */

    if (eeprom->type == em_eeprom_microwire) {
        /* Clear SK and DI */
        eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
        E1000_WRITE_REG(hw, EECD, eecd);

        /* Set CS */
        eecd |= E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
    } else if (eeprom->type == em_eeprom_spi) {
        /* Clear SK and CS */
        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
        E1000_WRITE_REG(hw, EECD, eecd);
        usec_delay(1);
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Returns EEPROM to a "standby" state
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
em_standby_eeprom(struct em_hw *hw)
{
    struct em_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd;

    eecd = E1000_READ_REG(hw, EECD);

    if(eeprom->type == em_eeprom_microwire) {
        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        usec_delay(eeprom->delay_usec);

        /* Clock high */
        eecd |= E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        usec_delay(eeprom->delay_usec);

        /* Select EEPROM */
        eecd |= E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        usec_delay(eeprom->delay_usec);

        /* Clock low */
        eecd &= ~E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        usec_delay(eeprom->delay_usec);
    } else if(eeprom->type == em_eeprom_spi) {
        /* Toggle CS to flush commands */
        eecd |= E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        usec_delay(eeprom->delay_usec);
        eecd &= ~E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        usec_delay(eeprom->delay_usec);
    }
}

/******************************************************************************
 * Terminates a command by inverting the EEPROM's chip select pin
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
em_release_eeprom(struct em_hw *hw)
{
    uint32_t eecd;

    DEBUGFUNC("em_release_eeprom");

    eecd = E1000_READ_REG(hw, EECD);

    if (hw->eeprom.type == em_eeprom_spi) {
        eecd |= E1000_EECD_CS;  /* Pull CS high */
        eecd &= ~E1000_EECD_SK; /* Lower SCK */

        E1000_WRITE_REG(hw, EECD, eecd);

        usec_delay(hw->eeprom.delay_usec);
    } else if(hw->eeprom.type == em_eeprom_microwire) {
        /* cleanup eeprom */

        /* CS on Microwire is active-high */
        eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);

        E1000_WRITE_REG(hw, EECD, eecd);

        /* Rising edge of clock */
        eecd |= E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        usec_delay(hw->eeprom.delay_usec);

        /* Falling edge of clock */
        eecd &= ~E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        usec_delay(hw->eeprom.delay_usec);
    }

    /* Stop requesting EEPROM access */
    if(hw->mac_type > em_82544) {
        eecd &= ~E1000_EECD_REQ;
        E1000_WRITE_REG(hw, EECD, eecd);
    }
}

/******************************************************************************
 * Reads a 16 bit word from the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
em_spi_eeprom_ready(struct em_hw *hw)
{
    uint16_t retry_count = 0;
    uint8_t spi_stat_reg;

    DEBUGFUNC("em_spi_eeprom_ready");

    /* Read "Status Register" repeatedly until the LSB is cleared.  The
     * EEPROM will signal that the command has been completed by clearing
     * bit 0 of the internal status register.  If it's not cleared within
     * 5 milliseconds, then error out.
     */
    retry_count = 0;
    do {
        em_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
                                hw->eeprom.opcode_bits);
        spi_stat_reg = (uint8_t)em_shift_in_ee_bits(hw, 8);
        if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
            break;

        usec_delay(5);
        retry_count += 5;

    } while(retry_count < EEPROM_MAX_RETRY_SPI);

    /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
     * only 0-5mSec on 5V devices)
     */
    if(retry_count >= EEPROM_MAX_RETRY_SPI) {
        DEBUGOUT("SPI EEPROM Status error\n");
        return -E1000_ERR_EEPROM;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Reads a 16 bit word from the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of  word in the EEPROM to read
 * data - word read from the EEPROM
 * words - number of words to read
 *****************************************************************************/
int32_t
em_read_eeprom(struct em_hw *hw,
                  uint16_t offset,
                  uint16_t words,
                  uint16_t *data)
{
    struct em_eeprom_info *eeprom = &hw->eeprom;
    uint32_t i = 0;

    DEBUGFUNC("em_read_eeprom");

    /* A check for invalid values:  offset too large, too many words, and not
     * enough words.
     */
    if((offset > eeprom->word_size) || (words > eeprom->word_size - offset) ||
       (words == 0)) {
        DEBUGOUT("\"words\" parameter out of bounds\n");
        return -E1000_ERR_EEPROM;
    }

    /* Prepare the EEPROM for reading  */
    if (em_acquire_eeprom(hw) != E1000_SUCCESS)
        return -E1000_ERR_EEPROM;

    if(eeprom->type == em_eeprom_spi) {
        uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;

        if(em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;

        em_standby_eeprom(hw);

        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
        if((eeprom->address_bits == 8) && (offset >= 128))
            read_opcode |= EEPROM_A8_OPCODE_SPI;

        /* Send the READ command (opcode + addr)  */
        em_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
        em_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
    }
    else if(eeprom->type == em_eeprom_microwire) {
        /* Send the READ command (opcode + addr)  */
        em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
                                eeprom->opcode_bits);
        em_shift_out_ee_bits(hw, offset, eeprom->address_bits);
    }

    /* Read the data.  The address of the eeprom internally increments with
     * each word (microwire) or byte (spi) being read, saving on the overhead
     * of eeprom setup and tear-down.  The address counter will roll over if
     * reading beyond the size of the eeprom, thus allowing the entire memory
     * to be read starting from any offset. */
    for (i = 0; i < words; i++) {
        uint16_t word_in = em_shift_in_ee_bits(hw, 16);
        if (eeprom->type == em_eeprom_spi)
            word_in = (word_in >> 8) | (word_in << 8);
        data[i] = word_in;
    }

    /* End this read operation */
    em_release_eeprom(hw);

    return 0;
}

/******************************************************************************
 * Verifies that the EEPROM has a valid checksum
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
 * valid.
 *****************************************************************************/
int32_t
em_validate_eeprom_checksum(struct em_hw *hw)
{
    uint16_t checksum = 0;
    uint16_t i, eeprom_data;

    DEBUGFUNC("em_validate_eeprom_checksum");

    for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
        if(em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
            DEBUGOUT("EEPROM Read Error\n");
            return -E1000_ERR_EEPROM;
        }
        checksum += eeprom_data;
    }

    if(checksum == (uint16_t) EEPROM_SUM) {
        return 0;
    } else {
        DEBUGOUT("EEPROM Checksum Invalid\n");
        return -E1000_ERR_EEPROM;
    }
}

/******************************************************************************
 * Calculates the EEPROM checksum and writes it to the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
 * Writes the difference to word offset 63 of the EEPROM.
 *****************************************************************************/
int32_t
em_update_eeprom_checksum(struct em_hw *hw)
{
    uint16_t checksum = 0;
    uint16_t i, eeprom_data;

    DEBUGFUNC("em_update_eeprom_checksum");

    for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
        if(em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
            DEBUGOUT("EEPROM Read Error\n");
            return -E1000_ERR_EEPROM;
        }
        checksum += eeprom_data;
    }
    checksum = (uint16_t) EEPROM_SUM - checksum;
    if(em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
        DEBUGOUT("EEPROM Write Error\n");
        return -E1000_ERR_EEPROM;
    }
    return 0;
}

/******************************************************************************
 * Parent function for writing words to the different EEPROM types.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset within the EEPROM to be written to
 * words - number of words to write
 * data - 16 bit word to be written to the EEPROM
 *
 * If em_update_eeprom_checksum is not called after this function, the
 * EEPROM will most likely contain an invalid checksum.
 *****************************************************************************/
int32_t
em_write_eeprom(struct em_hw *hw,
                   uint16_t offset,
                   uint16_t words,
                   uint16_t *data)
{
    struct em_eeprom_info *eeprom = &hw->eeprom;
    int32_t status = 0;

    DEBUGFUNC("em_write_eeprom");

    /* A check for invalid values:  offset too large, too many words, and not
     * enough words.
     */
    if((offset > eeprom->word_size) || (words > eeprom->word_size - offset) ||
       (words == 0)) {
        DEBUGOUT("\"words\" parameter out of bounds\n");
        return -E1000_ERR_EEPROM;
    }

    /* Prepare the EEPROM for writing  */
    if (em_acquire_eeprom(hw) != E1000_SUCCESS)
        return -E1000_ERR_EEPROM;

    if(eeprom->type == em_eeprom_microwire)
        status = em_write_eeprom_microwire(hw, offset, words, data);
    else
        status = em_write_eeprom_spi(hw, offset, words, data);

    /* Done with writing */
    em_release_eeprom(hw);

    return status;
}

/******************************************************************************
 * Writes a 16 bit word to a given offset in an SPI EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset within the EEPROM to be written to
 * words - number of words to write
 * data - pointer to array of 8 bit words to be written to the EEPROM
 *
 *****************************************************************************/
int32_t
em_write_eeprom_spi(struct em_hw *hw,
                       uint16_t offset,
                       uint16_t words,
                       uint16_t *data)
{
    struct em_eeprom_info *eeprom = &hw->eeprom;
    uint16_t widx = 0;

    DEBUGFUNC("em_write_eeprom_spi");

    while (widx < words) {
        uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;

        if(em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;

        em_standby_eeprom(hw);

        /*  Send the WRITE ENABLE command (8 bit opcode )  */
        em_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
                                    eeprom->opcode_bits);

        em_standby_eeprom(hw);

        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
        if((eeprom->address_bits == 8) && (offset >= 128))
            write_opcode |= EEPROM_A8_OPCODE_SPI;

        /* Send the Write command (8-bit opcode + addr) */
        em_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);

        em_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
                                eeprom->address_bits);

        /* Send the data */

        /* Loop to allow for up to whole page write (32 bytes) of eeprom */
        while (widx < words) {
            uint16_t word_out = data[widx];
            word_out = (word_out >> 8) | (word_out << 8);
            em_shift_out_ee_bits(hw, word_out, 16);
            widx++;

            /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
             * operation, while the smaller eeproms are capable of an 8-byte
             * PAGE WRITE operation.  Break the inner loop to pass new address
             */
            if((((offset + widx)*2) % eeprom->page_size) == 0) {
                em_standby_eeprom(hw);
                break;
            }
        }
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset within the EEPROM to be written to
 * words - number of words to write
 * data - pointer to array of 16 bit words to be written to the EEPROM
 *
 *****************************************************************************/
int32_t
em_write_eeprom_microwire(struct em_hw *hw,
                             uint16_t offset,
                             uint16_t words,
                             uint16_t *data)
{
    struct em_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd;
    uint16_t words_written = 0;
    uint16_t i = 0;

    DEBUGFUNC("em_write_eeprom_microwire");

    /* Send the write enable command to the EEPROM (3-bit opcode plus
     * 6/8-bit dummy address beginning with 11).  It's less work to include
     * the 11 of the dummy address as part of the opcode than it is to shift
     * it over the correct number of bits for the address.  This puts the
     * EEPROM into write/erase mode.
     */
    em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
                            (uint16_t)(eeprom->opcode_bits + 2));

    em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));

    /* Prepare the EEPROM */
    em_standby_eeprom(hw);

    while (words_written < words) {
        /* Send the Write command (3-bit opcode + addr) */
        em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
                                eeprom->opcode_bits);

        em_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
                                eeprom->address_bits);

        /* Send the data */
        em_shift_out_ee_bits(hw, data[words_written], 16);

        /* Toggle the CS line.  This in effect tells the EEPROM to execute
         * the previous command.
         */
        em_standby_eeprom(hw);

        /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
         * signal that the command has been completed by raising the DO signal.
         * If DO does not go high in 10 milliseconds, then error out.
         */
        for(i = 0; i < 200; i++) {
            eecd = E1000_READ_REG(hw, EECD);
            if(eecd & E1000_EECD_DO) break;
            usec_delay(50);
        }
        if(i == 200) {
            DEBUGOUT("EEPROM Write did not complete\n");
            return -E1000_ERR_EEPROM;
        }

        /* Recover from write */
        em_standby_eeprom(hw);

        words_written++;
    }

    /* Send the write disable command to the EEPROM (3-bit opcode plus
     * 6/8-bit dummy address beginning with 10).  It's less work to include
     * the 10 of the dummy address as part of the opcode than it is to shift
     * it over the correct number of bits for the address.  This takes the
     * EEPROM out of write/erase mode.
     */
    em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
                            (uint16_t)(eeprom->opcode_bits + 2));

    em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));

    return 0;
}

/******************************************************************************
 * Reads the adapter's part number from the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 * part_num - Adapter's part number
 *****************************************************************************/
int32_t
em_read_part_num(struct em_hw *hw,
                    uint32_t *part_num)
{
    uint16_t offset = EEPROM_PBA_BYTE_1;
    uint16_t eeprom_data;

    DEBUGFUNC("em_read_part_num");

    /* Get word 0 from EEPROM */
    if(em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
        DEBUGOUT("EEPROM Read Error\n");
        return -E1000_ERR_EEPROM;
    }
    /* Save word 0 in upper half of part_num */
    *part_num = (uint32_t) (eeprom_data << 16);

    /* Get word 1 from EEPROM */
    if(em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
        DEBUGOUT("EEPROM Read Error\n");
        return -E1000_ERR_EEPROM;
    }
    /* Save word 1 in lower half of part_num */
    *part_num |= eeprom_data;

    return 0;
}

/******************************************************************************
 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
 * second function of dual function devices
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
em_read_mac_addr(struct em_hw * hw)
{
    uint16_t offset;
    uint16_t eeprom_data, i;

    DEBUGFUNC("em_read_mac_addr");

    for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
        offset = i >> 1;
        if(em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
            DEBUGOUT("EEPROM Read Error\n");
            return -E1000_ERR_EEPROM;
        }
        hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
        hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
    }
    if((hw->mac_type == em_82546) &&
       (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
        if(hw->perm_mac_addr[5] & 0x01)
            hw->perm_mac_addr[5] &= ~(0x01);
        else
            hw->perm_mac_addr[5] |= 0x01;
    }
    for(i = 0; i < NODE_ADDRESS_SIZE; i++)
        hw->mac_addr[i] = hw->perm_mac_addr[i];
    return 0;
}

/******************************************************************************
 * Initializes receive address filters.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Places the MAC address in receive address register 0 and clears the rest
 * of the receive addresss registers. Clears the multicast table. Assumes
 * the receiver is in reset when the routine is called.
 *****************************************************************************/
void
em_init_rx_addrs(struct em_hw *hw)
{
    uint32_t i;
    uint32_t addr_low;
    uint32_t addr_high;

    DEBUGFUNC("em_init_rx_addrs");

    /* Setup the receive address. */
    DEBUGOUT("Programming MAC Address into RAR[0]\n");
    addr_low = (hw->mac_addr[0] |
                (hw->mac_addr[1] << 8) |
                (hw->mac_addr[2] << 16) | (hw->mac_addr[3] << 24));

    addr_high = (hw->mac_addr[4] |
                 (hw->mac_addr[5] << 8) | E1000_RAH_AV);

    E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
    E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);

    /* Zero out the other 15 receive addresses. */
    DEBUGOUT("Clearing RAR[1-15]\n");
    for(i = 1; i < E1000_RAR_ENTRIES; i++) {
        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
    }
}

/******************************************************************************
 * Updates the MAC's list of multicast addresses.
 *
 * hw - Struct containing variables accessed by shared code
 * mc_addr_list - the list of new multicast addresses
 * mc_addr_count - number of addresses
 * pad - number of bytes between addresses in the list
 *
 * The given list replaces any existing list. Clears the last 15 receive
 * address registers and the multicast table. Uses receive address registers
 * for the first 15 multicast addresses, and hashes the rest into the
 * multicast table.
 *****************************************************************************/
void
em_mc_addr_list_update(struct em_hw *hw,
                          uint8_t *mc_addr_list,
                          uint32_t mc_addr_count,
                          uint32_t pad)
{
    uint32_t hash_value;
    uint32_t i;
    uint32_t rar_used_count = 1; /* RAR[0] is used for our MAC address */

    DEBUGFUNC("em_mc_addr_list_update");

    /* Set the new number of MC addresses that we are being requested to use. */
    hw->num_mc_addrs = mc_addr_count;

    /* Clear RAR[1-15] */
    DEBUGOUT(" Clearing RAR[1-15]\n");
    for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) {
        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
    }

    /* Clear the MTA */
    DEBUGOUT(" Clearing MTA\n");
    for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) {
        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
    }

    /* Add the new addresses */
    for(i = 0; i < mc_addr_count; i++) {
        DEBUGOUT(" Adding the multicast addresses:\n");
        DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);

        hash_value = em_hash_mc_addr(hw,
                                        mc_addr_list +
                                        (i * (ETH_LENGTH_OF_ADDRESS + pad)));

        DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);

        /* Place this multicast address in the RAR if there is room, *
         * else put it in the MTA
         */
        if(rar_used_count < E1000_RAR_ENTRIES) {
            em_rar_set(hw,
                          mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
                          rar_used_count);
            rar_used_count++;
        } else {
            em_mta_set(hw, hash_value);
        }
    }
    DEBUGOUT("MC Update Complete\n");
}

/******************************************************************************
 * Hashes an address to determine its location in the multicast table
 *
 * hw - Struct containing variables accessed by shared code
 * mc_addr - the multicast address to hash
 *****************************************************************************/
uint32_t
em_hash_mc_addr(struct em_hw *hw,
                   uint8_t *mc_addr)
{
    uint32_t hash_value = 0;

    /* The portion of the address that is used for the hash table is
     * determined by the mc_filter_type setting.
     */
    switch (hw->mc_filter_type) {
    /* [0] [1] [2] [3] [4] [5]
     * 01  AA  00  12  34  56
     * LSB                 MSB
     */
    case 0:
        /* [47:36] i.e. 0x563 for above example address */
        hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
        break;
    case 1:
        /* [46:35] i.e. 0xAC6 for above example address */
        hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
        break;
    case 2:
        /* [45:34] i.e. 0x5D8 for above example address */
        hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
        break;
    case 3:
        /* [43:32] i.e. 0x634 for above example address */
        hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
        break;
    }

    hash_value &= 0xFFF;
    return hash_value;
}

/******************************************************************************
 * Sets the bit in the multicast table corresponding to the hash value.
 *
 * hw - Struct containing variables accessed by shared code
 * hash_value - Multicast address hash value
 *****************************************************************************/
void
em_mta_set(struct em_hw *hw,
              uint32_t hash_value)
{
    uint32_t hash_bit, hash_reg;
    uint32_t mta;
    uint32_t temp;

    /* The MTA is a register array of 128 32-bit registers.
     * It is treated like an array of 4096 bits.  We want to set
     * bit BitArray[hash_value]. So we figure out what register
     * the bit is in, read it, OR in the new bit, then write
     * back the new value.  The register is determined by the
     * upper 7 bits of the hash value and the bit within that
     * register are determined by the lower 5 bits of the value.
     */
    hash_reg = (hash_value >> 5) & 0x7F;
    hash_bit = hash_value & 0x1F;

    mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);

    mta |= (1 << hash_bit);

    /* If we are on an 82544 and we are trying to write an odd offset
     * in the MTA, save off the previous entry before writing and
     * restore the old value after writing.
     */
    if((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
        temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
        E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
    } else {
        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
    }
}

/******************************************************************************
 * Puts an ethernet address into a receive address register.
 *
 * hw - Struct containing variables accessed by shared code
 * addr - Address to put into receive address register
 * index - Receive address register to write
 *****************************************************************************/
void
em_rar_set(struct em_hw *hw,
              uint8_t *addr,
              uint32_t index)
{
    uint32_t rar_low, rar_high;

    /* HW expects these in little endian so we reverse the byte order
     * from network order (big endian) to little endian
     */
    rar_low = ((uint32_t) addr[0] |
               ((uint32_t) addr[1] << 8) |
               ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));

    rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV);

    E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
    E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
}

/******************************************************************************
 * Writes a value to the specified offset in the VLAN filter table.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - Offset in VLAN filer table to write
 * value - Value to write into VLAN filter table
 *****************************************************************************/
void
em_write_vfta(struct em_hw *hw,
                 uint32_t offset,
                 uint32_t value)
{
    uint32_t temp;

    if((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) {
        temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
        E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
    } else {
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
    }
}

/******************************************************************************
 * Clears the VLAN filer table
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
em_clear_vfta(struct em_hw *hw)
{
    uint32_t offset;

    for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
}

static int32_t
em_id_led_init(struct em_hw * hw)
{
    uint32_t ledctl;
    const uint32_t ledctl_mask = 0x000000FF;
    const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
    const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
    uint16_t eeprom_data, i, temp;
    const uint16_t led_mask = 0x0F;

    DEBUGFUNC("em_id_led_init");

    if(hw->mac_type < em_82540) {
        /* Nothing to do */
        return 0;
    }

    ledctl = E1000_READ_REG(hw, LEDCTL);
    hw->ledctl_default = ledctl;
    hw->ledctl_mode1 = hw->ledctl_default;
    hw->ledctl_mode2 = hw->ledctl_default;

    if(em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
        DEBUGOUT("EEPROM Read Error\n");
        return -E1000_ERR_EEPROM;
    }
    if((eeprom_data== ID_LED_RESERVED_0000) ||
       (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
    for(i = 0; i < 4; i++) {
        temp = (eeprom_data >> (i << 2)) & led_mask;
        switch(temp) {
        case ID_LED_ON1_DEF2:
        case ID_LED_ON1_ON2:
        case ID_LED_ON1_OFF2:
            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode1 |= ledctl_on << (i << 3);
            break;
        case ID_LED_OFF1_DEF2:
        case ID_LED_OFF1_ON2:
        case ID_LED_OFF1_OFF2:
            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode1 |= ledctl_off << (i << 3);
            break;
        default:
            /* Do nothing */
            break;
        }
        switch(temp) {
        case ID_LED_DEF1_ON2:
        case ID_LED_ON1_ON2:
        case ID_LED_OFF1_ON2:
            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode2 |= ledctl_on << (i << 3);
            break;
        case ID_LED_DEF1_OFF2:
        case ID_LED_ON1_OFF2:
        case ID_LED_OFF1_OFF2:
            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode2 |= ledctl_off << (i << 3);
            break;
        default:
            /* Do nothing */
            break;
        }
    }
    return 0;
}

/******************************************************************************
 * Prepares SW controlable LED for use and saves the current state of the LED.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
em_setup_led(struct em_hw *hw)
{
    uint32_t ledctl;

    DEBUGFUNC("em_setup_led");

    switch(hw->device_id) {
    case E1000_DEV_ID_82542:
    case E1000_DEV_ID_82543GC_FIBER:
    case E1000_DEV_ID_82543GC_COPPER:
    case E1000_DEV_ID_82544EI_COPPER:
    case E1000_DEV_ID_82544EI_FIBER:
    case E1000_DEV_ID_82544GC_COPPER:
    case E1000_DEV_ID_82544GC_LOM:
        /* No setup necessary */
        break;
    case E1000_DEV_ID_82545EM_FIBER:
    case E1000_DEV_ID_82546EB_FIBER:
        ledctl = E1000_READ_REG(hw, LEDCTL);
        /* Save current LEDCTL settings */
        hw->ledctl_default = ledctl;
        /* Turn off LED0 */
        ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
                    E1000_LEDCTL_LED0_BLINK |
                    E1000_LEDCTL_LED0_MODE_MASK);
        ledctl |= (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT);
        E1000_WRITE_REG(hw, LEDCTL, ledctl);
        break;
    case E1000_DEV_ID_82540EP:
    case E1000_DEV_ID_82540EP_LOM:
    case E1000_DEV_ID_82540EP_LP:
    case E1000_DEV_ID_82540EM:
    case E1000_DEV_ID_82540EM_LOM:
    case E1000_DEV_ID_82545EM_COPPER:
    case E1000_DEV_ID_82546EB_COPPER:
    case E1000_DEV_ID_82546EB_QUAD_COPPER:
    case E1000_DEV_ID_82541EI:
    case E1000_DEV_ID_82541EP:
    case E1000_DEV_ID_82547EI:
        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
        break;
    default:
        DEBUGOUT("Invalid device ID\n");
        return -E1000_ERR_CONFIG;
    }
    return 0;
}

/******************************************************************************
 * Restores the saved state of the SW controlable LED.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
em_cleanup_led(struct em_hw *hw)
{
    DEBUGFUNC("em_cleanup_led");

    switch(hw->device_id) {
    case E1000_DEV_ID_82542:
    case E1000_DEV_ID_82543GC_FIBER:
    case E1000_DEV_ID_82543GC_COPPER:
    case E1000_DEV_ID_82544EI_COPPER:
    case E1000_DEV_ID_82544EI_FIBER:
    case E1000_DEV_ID_82544GC_COPPER:
    case E1000_DEV_ID_82544GC_LOM:
        /* No cleanup necessary */
        break;
    case E1000_DEV_ID_82540EP:
    case E1000_DEV_ID_82540EP_LOM:
    case E1000_DEV_ID_82540EP_LP:
    case E1000_DEV_ID_82540EM:
    case E1000_DEV_ID_82540EM_LOM:
    case E1000_DEV_ID_82545EM_COPPER:
    case E1000_DEV_ID_82545EM_FIBER:
    case E1000_DEV_ID_82546EB_COPPER:
    case E1000_DEV_ID_82546EB_FIBER:
    case E1000_DEV_ID_82546EB_QUAD_COPPER:
    case E1000_DEV_ID_82541EI:
    case E1000_DEV_ID_82541EP:
    case E1000_DEV_ID_82547EI:
        /* Restore LEDCTL settings */
        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
        break;
    default:
        DEBUGOUT("Invalid device ID\n");
        return -E1000_ERR_CONFIG;
    }
    return 0;
}

/******************************************************************************
 * Turns on the software controllable LED
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
em_led_on(struct em_hw *hw)
{
    uint32_t ctrl;

    DEBUGFUNC("em_led_on");

    switch(hw->device_id) {
    case E1000_DEV_ID_82542:
    case E1000_DEV_ID_82543GC_FIBER:
    case E1000_DEV_ID_82543GC_COPPER:
    case E1000_DEV_ID_82544EI_FIBER:
        ctrl = E1000_READ_REG(hw, CTRL);
        /* Set SW Defineable Pin 0 to turn on the LED */
        ctrl |= E1000_CTRL_SWDPIN0;
        ctrl |= E1000_CTRL_SWDPIO0;
        E1000_WRITE_REG(hw, CTRL, ctrl);
        break;
    case E1000_DEV_ID_82544EI_COPPER:
    case E1000_DEV_ID_82544GC_COPPER:
    case E1000_DEV_ID_82544GC_LOM:
    case E1000_DEV_ID_82545EM_FIBER:
    case E1000_DEV_ID_82546EB_FIBER:
        ctrl = E1000_READ_REG(hw, CTRL);
        /* Clear SW Defineable Pin 0 to turn on the LED */
        ctrl &= ~E1000_CTRL_SWDPIN0;
        ctrl |= E1000_CTRL_SWDPIO0;
        E1000_WRITE_REG(hw, CTRL, ctrl);
        break;
    case E1000_DEV_ID_82540EP:
    case E1000_DEV_ID_82540EP_LOM:
    case E1000_DEV_ID_82540EP_LP:
    case E1000_DEV_ID_82540EM:
    case E1000_DEV_ID_82540EM_LOM:
    case E1000_DEV_ID_82545EM_COPPER:
    case E1000_DEV_ID_82546EB_COPPER:
    case E1000_DEV_ID_82546EB_QUAD_COPPER:
    case E1000_DEV_ID_82541EI:
    case E1000_DEV_ID_82541EP:
    case E1000_DEV_ID_82547EI:
        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
        break;
    default:
        DEBUGOUT("Invalid device ID\n");
        return -E1000_ERR_CONFIG;
    }
    return 0;
}

/******************************************************************************
 * Turns off the software controllable LED
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
em_led_off(struct em_hw *hw)
{
    uint32_t ctrl;

    DEBUGFUNC("em_led_off");

    switch(hw->device_id) {
    case E1000_DEV_ID_82542:
    case E1000_DEV_ID_82543GC_FIBER:
    case E1000_DEV_ID_82543GC_COPPER:
    case E1000_DEV_ID_82544EI_FIBER:
        ctrl = E1000_READ_REG(hw, CTRL);
        /* Clear SW Defineable Pin 0 to turn off the LED */
        ctrl &= ~E1000_CTRL_SWDPIN0;
        ctrl |= E1000_CTRL_SWDPIO0;
        E1000_WRITE_REG(hw, CTRL, ctrl);
        break;
    case E1000_DEV_ID_82544EI_COPPER:
    case E1000_DEV_ID_82544GC_COPPER:
    case E1000_DEV_ID_82544GC_LOM:
    case E1000_DEV_ID_82545EM_FIBER:
    case E1000_DEV_ID_82546EB_FIBER:
        ctrl = E1000_READ_REG(hw, CTRL);
        /* Set SW Defineable Pin 0 to turn off the LED */
        ctrl |= E1000_CTRL_SWDPIN0;
        ctrl |= E1000_CTRL_SWDPIO0;
        E1000_WRITE_REG(hw, CTRL, ctrl);
        break;
    case E1000_DEV_ID_82540EP:
    case E1000_DEV_ID_82540EP_LOM:
    case E1000_DEV_ID_82540EP_LP:
    case E1000_DEV_ID_82540EM:
    case E1000_DEV_ID_82540EM_LOM:
    case E1000_DEV_ID_82545EM_COPPER:
    case E1000_DEV_ID_82546EB_COPPER:
    case E1000_DEV_ID_82546EB_QUAD_COPPER:
    case E1000_DEV_ID_82541EI:
    case E1000_DEV_ID_82541EP:
    case E1000_DEV_ID_82547EI:
        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
        break;
    default:
        DEBUGOUT("Invalid device ID\n");
        return -E1000_ERR_CONFIG;
    }
    return 0;
}

/******************************************************************************
 * Clears all hardware statistics counters.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
em_clear_hw_cntrs(struct em_hw *hw)
{
    volatile uint32_t temp;

    temp = E1000_READ_REG(hw, CRCERRS);
    temp = E1000_READ_REG(hw, SYMERRS);
    temp = E1000_READ_REG(hw, MPC);
    temp = E1000_READ_REG(hw, SCC);
    temp = E1000_READ_REG(hw, ECOL);
    temp = E1000_READ_REG(hw, MCC);
    temp = E1000_READ_REG(hw, LATECOL);
    temp = E1000_READ_REG(hw, COLC);
    temp = E1000_READ_REG(hw, DC);
    temp = E1000_READ_REG(hw, SEC);
    temp = E1000_READ_REG(hw, RLEC);
    temp = E1000_READ_REG(hw, XONRXC);
    temp = E1000_READ_REG(hw, XONTXC);
    temp = E1000_READ_REG(hw, XOFFRXC);
    temp = E1000_READ_REG(hw, XOFFTXC);
    temp = E1000_READ_REG(hw, FCRUC);
    temp = E1000_READ_REG(hw, PRC64);
    temp = E1000_READ_REG(hw, PRC127);
    temp = E1000_READ_REG(hw, PRC255);
    temp = E1000_READ_REG(hw, PRC511);
    temp = E1000_READ_REG(hw, PRC1023);
    temp = E1000_READ_REG(hw, PRC1522);
    temp = E1000_READ_REG(hw, GPRC);
    temp = E1000_READ_REG(hw, BPRC);
    temp = E1000_READ_REG(hw, MPRC);
    temp = E1000_READ_REG(hw, GPTC);
    temp = E1000_READ_REG(hw, GORCL);
    temp = E1000_READ_REG(hw, GORCH);
    temp = E1000_READ_REG(hw, GOTCL);
    temp = E1000_READ_REG(hw, GOTCH);
    temp = E1000_READ_REG(hw, RNBC);
    temp = E1000_READ_REG(hw, RUC);
    temp = E1000_READ_REG(hw, RFC);
    temp = E1000_READ_REG(hw, ROC);
    temp = E1000_READ_REG(hw, RJC);
    temp = E1000_READ_REG(hw, TORL);
    temp = E1000_READ_REG(hw, TORH);
    temp = E1000_READ_REG(hw, TOTL);
    temp = E1000_READ_REG(hw, TOTH);
    temp = E1000_READ_REG(hw, TPR);
    temp = E1000_READ_REG(hw, TPT);
    temp = E1000_READ_REG(hw, PTC64);
    temp = E1000_READ_REG(hw, PTC127);
    temp = E1000_READ_REG(hw, PTC255);
    temp = E1000_READ_REG(hw, PTC511);
    temp = E1000_READ_REG(hw, PTC1023);
    temp = E1000_READ_REG(hw, PTC1522);
    temp = E1000_READ_REG(hw, MPTC);
    temp = E1000_READ_REG(hw, BPTC);

    if(hw->mac_type < em_82543) return;

    temp = E1000_READ_REG(hw, ALGNERRC);
    temp = E1000_READ_REG(hw, RXERRC);
    temp = E1000_READ_REG(hw, TNCRS);
    temp = E1000_READ_REG(hw, CEXTERR);
    temp = E1000_READ_REG(hw, TSCTC);
    temp = E1000_READ_REG(hw, TSCTFC);

    if(hw->mac_type <= em_82544) return;

    temp = E1000_READ_REG(hw, MGTPRC);
    temp = E1000_READ_REG(hw, MGTPDC);
    temp = E1000_READ_REG(hw, MGTPTC);
}

/******************************************************************************
 * Resets Adaptive IFS to its default state.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Call this after em_init_hw. You may override the IFS defaults by setting
 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
 * before calling this function.
 *****************************************************************************/
void
em_reset_adaptive(struct em_hw *hw)
{
    DEBUGFUNC("em_reset_adaptive");

    if(hw->adaptive_ifs) {
        if(!hw->ifs_params_forced) {
            hw->current_ifs_val = 0;
            hw->ifs_min_val = IFS_MIN;
            hw->ifs_max_val = IFS_MAX;
            hw->ifs_step_size = IFS_STEP;
            hw->ifs_ratio = IFS_RATIO;
        }
        hw->in_ifs_mode = FALSE;
        E1000_WRITE_REG(hw, AIT, 0);
    } else {
        DEBUGOUT("Not in Adaptive IFS mode!\n");
    }
}

/******************************************************************************
 * Called during the callback/watchdog routine to update IFS value based on
 * the ratio of transmits to collisions.
 *
 * hw - Struct containing variables accessed by shared code
 * tx_packets - Number of transmits since last callback
 * total_collisions - Number of collisions since last callback
 *****************************************************************************/
void
em_update_adaptive(struct em_hw *hw)
{
    DEBUGFUNC("em_update_adaptive");

    if(hw->adaptive_ifs) {
        if((hw->collision_delta * hw->ifs_ratio) >
           hw->tx_packet_delta) {
            if(hw->tx_packet_delta > MIN_NUM_XMITS) {
                hw->in_ifs_mode = TRUE;
                if(hw->current_ifs_val < hw->ifs_max_val) {
                    if(hw->current_ifs_val == 0)
                        hw->current_ifs_val = hw->ifs_min_val;
                    else
                        hw->current_ifs_val += hw->ifs_step_size;
                    E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
                }
            }
        } else {
            if((hw->in_ifs_mode == TRUE) &&
               (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
                hw->current_ifs_val = 0;
                hw->in_ifs_mode = FALSE;
                E1000_WRITE_REG(hw, AIT, 0);
            }
        }
    } else {
        DEBUGOUT("Not in Adaptive IFS mode!\n");
    }
}

/******************************************************************************
 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
 *
 * hw - Struct containing variables accessed by shared code
 * frame_len - The length of the frame in question
 * mac_addr - The Ethernet destination address of the frame in question
 *****************************************************************************/
void
em_tbi_adjust_stats(struct em_hw *hw,
                       struct em_hw_stats *stats,
                       uint32_t frame_len,
                       uint8_t *mac_addr)
{
    uint64_t carry_bit;

    /* First adjust the frame length. */
    frame_len--;
    /* We need to adjust the statistics counters, since the hardware
     * counters overcount this packet as a CRC error and undercount
     * the packet as a good packet
     */
    /* This packet should not be counted as a CRC error.    */
    stats->crcerrs--;
    /* This packet does count as a Good Packet Received.    */
    stats->gprc++;

    /* Adjust the Good Octets received counters             */
    carry_bit = 0x80000000 & stats->gorcl;
    stats->gorcl += frame_len;
    /* If the high bit of Gorcl (the low 32 bits of the Good Octets
     * Received Count) was one before the addition,
     * AND it is zero after, then we lost the carry out,
     * need to add one to Gorch (Good Octets Received Count High).
     * This could be simplified if all environments supported
     * 64-bit integers.
     */
    if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
        stats->gorch++;
    /* Is this a broadcast or multicast?  Check broadcast first,
     * since the test for a multicast frame will test positive on
     * a broadcast frame.
     */
    if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
        /* Broadcast packet */
        stats->bprc++;
    else if(*mac_addr & 0x01)
        /* Multicast packet */
        stats->mprc++;

    if(frame_len == hw->max_frame_size) {
        /* In this case, the hardware has overcounted the number of
         * oversize frames.
         */
        if(stats->roc > 0)
            stats->roc--;
    }

    /* Adjust the bin counters when the extra byte put the frame in the
     * wrong bin. Remember that the frame_len was adjusted above.
     */
    if(frame_len == 64) {
        stats->prc64++;
        stats->prc127--;
    } else if(frame_len == 127) {
        stats->prc127++;
        stats->prc255--;
    } else if(frame_len == 255) {
        stats->prc255++;
        stats->prc511--;
    } else if(frame_len == 511) {
        stats->prc511++;
        stats->prc1023--;
    } else if(frame_len == 1023) {
        stats->prc1023++;
        stats->prc1522--;
    } else if(frame_len == 1522) {
        stats->prc1522++;
    }
}

/******************************************************************************
 * Gets the current PCI bus type, speed, and width of the hardware
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
em_get_bus_info(struct em_hw *hw)
{
    uint32_t status;

    if(hw->mac_type < em_82543) {
        hw->bus_type = em_bus_type_unknown;
        hw->bus_speed = em_bus_speed_unknown;
        hw->bus_width = em_bus_width_unknown;
        return;
    }

    status = E1000_READ_REG(hw, STATUS);
    hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
                   em_bus_type_pcix : em_bus_type_pci;

    if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
        hw->bus_speed = (hw->bus_type == em_bus_type_pci) ?
                        em_bus_speed_66 : em_bus_speed_120;
    } else if(hw->bus_type == em_bus_type_pci) {
        hw->bus_speed = (status & E1000_STATUS_PCI66) ?
                        em_bus_speed_66 : em_bus_speed_33;
    } else {
        switch (status & E1000_STATUS_PCIX_SPEED) {
        case E1000_STATUS_PCIX_SPEED_66:
            hw->bus_speed = em_bus_speed_66;
            break;
        case E1000_STATUS_PCIX_SPEED_100:
            hw->bus_speed = em_bus_speed_100;
            break;
        case E1000_STATUS_PCIX_SPEED_133:
            hw->bus_speed = em_bus_speed_133;
            break;
        default:
            hw->bus_speed = em_bus_speed_reserved;
            break;
        }
    }
    hw->bus_width = (status & E1000_STATUS_BUS64) ?
                    em_bus_width_64 : em_bus_width_32;
}
/******************************************************************************
 * Reads a value from one of the devices registers using port I/O (as opposed
 * memory mapped I/O). Only 82544 and newer devices support port I/O.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset to read from
 *****************************************************************************/
uint32_t
em_read_reg_io(struct em_hw *hw,
                  uint32_t offset)
{
    uint32_t io_addr = hw->io_base;
    uint32_t io_data = hw->io_base + 4;

    em_io_write(hw, io_addr, offset);
    return em_io_read(hw, io_data);
}

/******************************************************************************
 * Writes a value to one of the devices registers using port I/O (as opposed to
 * memory mapped I/O). Only 82544 and newer devices support port I/O.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset to write to
 * value - value to write
 *****************************************************************************/
void
em_write_reg_io(struct em_hw *hw,
                   uint32_t offset,
                   uint32_t value)
{
    uint32_t io_addr = hw->io_base;
    uint32_t io_data = hw->io_base + 4;

    em_io_write(hw, io_addr, offset);
    em_io_write(hw, io_data, value);
}


/******************************************************************************
 * Estimates the cable length.
 *
 * hw - Struct containing variables accessed by shared code
 * min_length - The estimated minimum length
 * max_length - The estimated maximum length
 *
 * returns: E1000_SUCCESS / -E1000_ERR_XXX
 *
 * This function always returns a ranged length (minimum & maximum).
 * So for M88 phy's, this function interprets the one value returned from the
 * register to the minimum and maximum range.
 * For IGP phy's, the function calculates the range by the AGC registers.
 *****************************************************************************/
int32_t
em_get_cable_length(struct em_hw *hw, uint16_t *min_length,
                       uint16_t *max_length)
{
    uint16_t agc_value = 0;
    uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
    uint16_t i, phy_data;

    DEBUGFUNC("em_get_cable_length");

    *min_length = *max_length = 0;

    /* Use old method for Phy older than IGP */
    if(hw->phy_type == em_phy_m88) {
        if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0)
            return -E1000_ERR_PHY;

        /* Convert the enum value to ranged values */
        switch((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
               M88E1000_PSSR_CABLE_LENGTH_SHIFT) {
        case em_cable_length_50:
            *min_length = 0;
            *max_length = em_igp_cable_length_50;
            break;
        case em_cable_length_50_80:
            *min_length = em_igp_cable_length_50;
            *max_length = em_igp_cable_length_80;
            break;
        case em_cable_length_80_110:
            *min_length = em_igp_cable_length_80;
            *max_length = em_igp_cable_length_110;
            break;
        case em_cable_length_110_140:
            *min_length = em_igp_cable_length_110;
            *max_length = em_igp_cable_length_140;
            break;
        case em_cable_length_140:
            *min_length = em_igp_cable_length_140;
            *max_length = em_igp_cable_length_170;
            break;
        default:
            return -E1000_ERR_PHY;
            break;
        }
    } else if(hw->phy_type == em_phy_igp) { /* For IGP PHY */
        uint16_t agc_reg_array[IGP01E1000_PHY_AGC_NUM] = {IGP01E1000_PHY_AGC_A,
                                                          IGP01E1000_PHY_AGC_B,
                                                          IGP01E1000_PHY_AGC_C,
                                                          IGP01E1000_PHY_AGC_D};
        /* Read the AGC registers for all channels */
        for(i = 0; i < IGP01E1000_PHY_AGC_NUM; i++) {
            if(em_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
                                   agc_reg_array[i]) != E1000_SUCCESS)
                return -E1000_ERR_PHY;
            if(em_read_phy_reg(hw, agc_reg_array[i] &
                                  IGP01E1000_PHY_PAGE_SELECT, &phy_data) !=
                                  E1000_SUCCESS)
                return -E1000_ERR_PHY;

            cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;

            /* Array bound check. */
            if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
               (cur_agc == 0))
                return -E1000_ERR_PHY;

            agc_value += cur_agc;

            /* Update minimal AGC value. */
            if(min_agc > cur_agc)
                min_agc = cur_agc;
        }

        /* Return to page 0 */
        if(em_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0) !=
           E1000_SUCCESS)
            return -E1000_ERR_PHY;

        /* Remove the minimal AGC result for length < 50m */
        if(agc_value < IGP01E1000_PHY_AGC_NUM * em_igp_cable_length_50) {
            agc_value -= min_agc;

            /* Get the average length of the remaining 3 channels */
            agc_value /= (IGP01E1000_PHY_AGC_NUM - 1);
        } else {
            /* Get the average length of all the 4 channels. */
            agc_value /= IGP01E1000_PHY_AGC_NUM;
        }

        /* Set the range of the calculated length. */
        *min_length = ((em_igp_cable_length_table[agc_value] -
                       IGP01E1000_AGC_RANGE) > 0) ?
                       (em_igp_cable_length_table[agc_value] -
                       IGP01E1000_AGC_RANGE) : 0;
        *max_length = em_igp_cable_length_table[agc_value] +
                      IGP01E1000_AGC_RANGE;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Check the cable polarity
 *
 * hw - Struct containing variables accessed by shared code
 * polarity - output parameter : 0 - Polarity is not reversed
 *                               1 - Polarity is reversed.
 *
 * returns: E1000_SUCCESS / -E1000_ERR_XXX
 *
 * For phy's older then IGP, this function simply reads the polarity bit in the
 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
 * IGP01E1000_PHY_PCS_INIT_REG.
 *****************************************************************************/
int32_t
em_check_polarity(struct em_hw *hw, uint16_t *polarity)
{
    uint16_t phy_data;

    DEBUGFUNC("em_check_polarity");

    if(hw->phy_type == em_phy_m88) {
        /* return the Polarity bit in the Status register. */
        if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0)
            return -E1000_ERR_PHY;
        *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
                    M88E1000_PSSR_REV_POLARITY_SHIFT;
    } else if(hw->phy_type == em_phy_igp) {
        /* Read the Status register to check the speed */
        if(em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data) < 0)
            return -E1000_ERR_PHY;

        /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
         * find the polarity status */
        if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
           IGP01E1000_PSSR_SPEED_1000MBPS) {

            /* Read the GIG initialization PCS register (0x00B4) */
            if(em_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
                                   IGP01E1000_PHY_PCS_INIT_REG) < 0)
                return -E1000_ERR_PHY;

            if(em_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
                                  IGP01E1000_PHY_PAGE_SELECT, &phy_data) < 0)
                return -E1000_ERR_PHY;

            /* Return to page 0 */
            if(em_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0) !=
               E1000_SUCCESS)
                return -E1000_ERR_PHY;

            /* Check the polarity bits */
            *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
        } else {
            /* For 10 Mbps, read the polarity bit in the status register. (for
             * 100 Mbps this bit is always 0) */
            *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
        }
    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Check if Downshift occured
 *
 * hw - Struct containing variables accessed by shared code
 * downshift - output parameter : 0 - No Downshift ocured.
 *                                1 - Downshift ocured.
 *
 * returns: E1000_SUCCESS / -E1000_ERR_XXX
 *
 * For phy's older then IGP, this function reads the Downshift bit in the Phy
 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
 * Link Health register.  In IGP this bit is latched high, so the driver must
 * read it immediately after link is established.
 *****************************************************************************/
int32_t
em_check_downshift(struct em_hw *hw)
{
    uint16_t phy_data;

    DEBUGFUNC("em_check_downshift");

    if(hw->phy_type == em_phy_igp) {
        if(em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }
        hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
    }
    else if(hw->phy_type == em_phy_m88) {
        if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
            DEBUGOUT("PHY Read Error\n");
            return -E1000_ERR_PHY;
        }
        hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
                                M88E1000_PSSR_DOWNSHIFT_SHIFT;
    }
    return E1000_SUCCESS;
}