1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
|
/* $OpenBSD: if_ice.c,v 1.9 2024/11/15 15:43:49 stsp Exp $ */
/* Copyright (c) 2024, Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Ported from FreeBSD ice(4) by Stefan Sperling in 2024.
*
* Copyright (c) 2024 Stefan Sperling <stsp@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/atomic.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/rwlock.h>
#include <sys/mutex.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <sys/intrmap.h>
#include <sys/kernel.h>
#include <sys/refcnt.h>
#include <sys/task.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#define STRUCT_HACK_VAR_LEN
/**
* ice_struct_size - size of struct with C99 flexible array member
* @ptr: pointer to structure
* @field: flexible array member (last member of the structure)
* @num: number of elements of that flexible array member
*/
#define ice_struct_size(ptr, field, num) \
(sizeof(*(ptr)) + sizeof(*(ptr)->field) * (num))
#define FLEX_ARRAY_SIZE(_ptr, _mem, cnt) ((cnt) * sizeof(_ptr->_mem[0]))
#include "if_icereg.h"
#include "if_icevar.h"
/**
* @var ice_driver_version
* @brief driver version string
*
* Driver version information, used as part of the driver information
* sent to the firmware at load.
*
* @var ice_major_version
* @brief driver major version number
*
* @var ice_minor_version
* @brief driver minor version number
*
* @var ice_patch_version
* @brief driver patch version number
*
* @var ice_rc_version
* @brief driver release candidate version number
*/
const char ice_driver_version[] = "1.39.13-k";
const uint8_t ice_major_version = 1;
const uint8_t ice_minor_version = 39;
const uint8_t ice_patch_version = 13;
const uint8_t ice_rc_version = 0;
typedef void *ice_match_t;
static const struct pci_matchid ice_devices[] = {
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_E810_XXV_SFP },
#if 0 /* no hardware available for testing: */
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_E810_XXV_QSFP },
#endif
};
int
ice_match(struct device *parent, ice_match_t match __unused, void *aux)
{
struct pci_attach_args *pa = aux;
return pci_matchbyid(pa, ice_devices, nitems(ice_devices));
}
#define ICE_DEBUG
#ifdef ICE_DEBUG
#define DPRINTF(x...) do { if (ice_debug) printf(x); } while(0)
#define DNPRINTF(n,x...) do { if (ice_debug & n) printf(x); } while(0)
#define ICE_DBG_TRACE (1UL << 0) /* for function-trace only */
#define ICE_DBG_INIT (1UL << 1)
#define ICE_DBG_RELEASE (1UL << 2)
#define ICE_DBG_FW_LOG (1UL << 3)
#define ICE_DBG_LINK (1UL << 4)
#define ICE_DBG_PHY (1UL << 5)
#define ICE_DBG_QCTX (1UL << 6)
#define ICE_DBG_NVM (1UL << 7)
#define ICE_DBG_LAN (1UL << 8)
#define ICE_DBG_FLOW (1UL << 9)
#define ICE_DBG_DCB (1UL << 10)
#define ICE_DBG_DIAG (1UL << 11)
#define ICE_DBG_FD (1UL << 12)
#define ICE_DBG_SW (1UL << 13)
#define ICE_DBG_SCHED (1UL << 14)
#define ICE_DBG_RDMA (1UL << 15)
#define ICE_DBG_PKG (1UL << 16)
#define ICE_DBG_RES (1UL << 17)
#define ICE_DBG_AQ_MSG (1UL << 24)
#define ICE_DBG_AQ_DESC (1UL << 25)
#define ICE_DBG_AQ_DESC_BUF (1UL << 26)
#define ICE_DBG_AQ_CMD (1UL << 27)
#define ICE_DBG_AQ (ICE_DBG_AQ_MSG | \
ICE_DBG_AQ_DESC | \
ICE_DBG_AQ_DESC_BUF | \
ICE_DBG_AQ_CMD)
#define ICE_DBG_PARSER (1UL << 28)
#define ICE_DBG_USER (1UL << 31)
uint32_t ice_debug = 0xffffffff & ~(ICE_DBG_AQ);
#else
#define DPRINTF(x...)
#define DNPRINTF(n,x...)
#endif
#define ICE_READ(hw, reg) \
bus_space_read_4((hw)->hw_sc->sc_st, (hw)->hw_sc->sc_sh, (reg))
#define ICE_WRITE(hw, reg, val) \
bus_space_write_4((hw)->hw_sc->sc_st, (hw)->hw_sc->sc_sh, (reg), (val))
#define ice_flush(_hw) ICE_READ((_hw), GLGEN_STAT)
/* Data type manipulation macros. */
#define ICE_HI_DWORD(x) ((uint32_t)((((x) >> 16) >> 16) & 0xFFFFFFFF))
#define ICE_LO_DWORD(x) ((uint32_t)((x) & 0xFFFFFFFF))
#define ICE_HI_WORD(x) ((uint16_t)(((x) >> 16) & 0xFFFF))
#define ICE_LO_WORD(x) ((uint16_t)((x) & 0xFFFF))
#define ICE_HI_BYTE(x) ((uint8_t)(((x) >> 8) & 0xFF))
#define ICE_LO_BYTE(x) ((uint8_t)((x) & 0xFF))
uint16_t ice_lock_count;
/**
* @enum feat_list
* @brief driver feature enumeration
*
* Enumeration of possible device driver features that can be enabled or
* disabled. Each possible value represents a different feature which can be
* enabled or disabled.
*
* The driver stores a bitmap of the features that the device and OS are
* capable of, as well as another bitmap indicating which features are
* currently enabled for that device.
*/
enum feat_list {
ICE_FEATURE_SRIOV,
ICE_FEATURE_RSS,
ICE_FEATURE_NETMAP,
ICE_FEATURE_FDIR,
ICE_FEATURE_MSI,
ICE_FEATURE_MSIX,
ICE_FEATURE_RDMA,
ICE_FEATURE_SAFE_MODE,
ICE_FEATURE_LENIENT_LINK_MODE,
ICE_FEATURE_LINK_MGMT_VER_1,
ICE_FEATURE_LINK_MGMT_VER_2,
ICE_FEATURE_HEALTH_STATUS,
ICE_FEATURE_FW_LOGGING,
ICE_FEATURE_HAS_PBA,
ICE_FEATURE_DCB,
ICE_FEATURE_TX_BALANCE,
ICE_FEATURE_DUAL_NAC,
ICE_FEATURE_TEMP_SENSOR,
/* Must be last entry */
ICE_FEATURE_COUNT
};
struct ice_intr_vector {
struct ice_softc *iv_sc;
struct ice_rx_queue *iv_rxq;
struct ice_tx_queue *iv_txq;
int iv_qid;
void *iv_ihc;
char iv_name[16];
pci_intr_handle_t ih;
};
#define ICE_MAX_VECTORS 8 /* XXX this is pretty arbitrary */
struct ice_softc {
struct device sc_dev;
struct arpcom sc_ac;
struct ifmedia media;
bus_space_tag_t sc_st;
bus_space_handle_t sc_sh;
bus_size_t sc_sz;
bus_dma_tag_t sc_dmat;
pci_product_id_t sc_pid;
pci_chipset_tag_t sc_pct;
pcitag_t sc_pcitag;
pci_intr_handle_t sc_ih;
void *sc_ihc;
unsigned int sc_nmsix_max;
unsigned int sc_nmsix;
unsigned int sc_nqueues;
struct intrmap *sc_intrmap;
struct ice_intr_vector *sc_vectors;
size_t sc_nvectors;
struct task sc_admin_task;
struct timeout sc_admin_timer;
unsigned int sc_dead;
enum ice_state state;
struct ice_hw hw;
struct ice_vsi pf_vsi; /* Main PF VSI */
/* Tri-state feature flags (capable/enabled) */
ice_declare_bitmap(feat_cap, ICE_FEATURE_COUNT);
ice_declare_bitmap(feat_en, ICE_FEATURE_COUNT);
struct ice_resmgr os_imgr;
/* isc_* fields inherited from FreeBSD iflib struct if_softc_ctx */
int isc_vectors;
int isc_nrxqsets;
int isc_ntxqsets;
int isc_msix_bar;
int isc_tx_nsegments;
int isc_ntxd[8];
int isc_nrxd[8];
uint32_t isc_txqsizes[8];
uint32_t isc_rxqsizes[8];
uint8_t isc_txd_size[8];
uint8_t isc_rxd_size[8];
int isc_tx_tso_segments_max;
int isc_tx_tso_size_max;
int isc_tx_tso_segsize_max;
int isc_tx_csum_flags;
int isc_capabilities;
int isc_capenable;
int isc_rss_table_size;
int isc_rss_table_mask;
int isc_nrxqsets_max;
int isc_ntxqsets_max;
uint16_t isc_rxd_buf_size[8]; /* set at init time by driver, 0
means use iflib-calculated size
based on isc_max_frame_size */
uint16_t isc_max_frame_size; /* set at init time by driver */
uint16_t isc_min_frame_size; /* set at init time by driver, only used if
IFLIB_NEED_ETHER_PAD is set. */
uint32_t isc_pause_frames; /* set by driver for iflib_timer to detect */
int isc_disable_msix;
/* Tx/Rx queue managers */
struct ice_resmgr tx_qmgr;
struct ice_resmgr rx_qmgr;
struct ice_vsi **all_vsi; /* Array of VSI pointers */
uint16_t num_available_vsi; /* Size of VSI array */
/* Interrupt allocation manager */
struct ice_resmgr dev_imgr;
uint16_t *pf_imap;
int lan_vectors;
/* NVM link override settings */
struct ice_link_default_override_tlv ldo_tlv;
bool link_up;
int rebuild_ticks;
int sw_intr[ICE_MAX_VECTORS];
};
/**
* ice_driver_is_detaching - Check if the driver is detaching/unloading
* @sc: device private softc
*
* Returns true if the driver is detaching, false otherwise.
*
* @remark on newer kernels, take advantage of iflib_in_detach in order to
* report detachment correctly as early as possible.
*
* @remark this function is used by various code paths that want to avoid
* running if the driver is about to be removed. This includes sysctls and
* other driver access points. Note that it does not fully resolve
* detach-based race conditions as it is possible for a thread to race with
* iflib_in_detach.
*/
bool
ice_driver_is_detaching(struct ice_softc *sc)
{
return (ice_test_state(&sc->state, ICE_STATE_DETACHING) || sc->sc_dead);
}
/*
* ice_usec_delay - Delay for the specified number of microseconds
* @time: microseconds to delay
* @sleep: if true, sleep where possible
*
* If sleep is true, sleep so that another thread can execute.
* Otherwise, use DELAY to spin the thread instead.
*/
void
ice_usec_delay(uint32_t time, bool sleep)
{
if (sleep && !cold)
tsleep_nsec(&sleep, 0, "icedly", USEC_TO_NSEC(time));
else
DELAY(time);
}
/*
* ice_msec_delay - Delay for the specified number of milliseconds
* @time: milliseconds to delay
* @sleep: if true, sleep where possible
*
* If sleep is true, sleep so that another thread can execute.
* Otherwise, use DELAY to spin the thread instead.
*/
void
ice_msec_delay(uint32_t time, bool sleep)
{
if (sleep && !cold)
tsleep_nsec(&sleep, 0, "icedly", MSEC_TO_NSEC(time));
else
DELAY(time * 1000);
}
/**
* ice_aq_str - Convert an AdminQ error into a string
* @aq_err: the AQ error code to convert
*
* Convert the AdminQ status into its string name, if known. Otherwise, format
* the error as an integer.
*/
const char *
ice_aq_str(enum ice_aq_err aq_err)
{
static char buf[ICE_STR_BUF_LEN];
const char *str = NULL;
switch (aq_err) {
case ICE_AQ_RC_OK:
str = "OK";
break;
case ICE_AQ_RC_EPERM:
str = "AQ_RC_EPERM";
break;
case ICE_AQ_RC_ENOENT:
str = "AQ_RC_ENOENT";
break;
case ICE_AQ_RC_ESRCH:
str = "AQ_RC_ESRCH";
break;
case ICE_AQ_RC_EINTR:
str = "AQ_RC_EINTR";
break;
case ICE_AQ_RC_EIO:
str = "AQ_RC_EIO";
break;
case ICE_AQ_RC_ENXIO:
str = "AQ_RC_ENXIO";
break;
case ICE_AQ_RC_E2BIG:
str = "AQ_RC_E2BIG";
break;
case ICE_AQ_RC_EAGAIN:
str = "AQ_RC_EAGAIN";
break;
case ICE_AQ_RC_ENOMEM:
str = "AQ_RC_ENOMEM";
break;
case ICE_AQ_RC_EACCES:
str = "AQ_RC_EACCES";
break;
case ICE_AQ_RC_EFAULT:
str = "AQ_RC_EFAULT";
break;
case ICE_AQ_RC_EBUSY:
str = "AQ_RC_EBUSY";
break;
case ICE_AQ_RC_EEXIST:
str = "AQ_RC_EEXIST";
break;
case ICE_AQ_RC_EINVAL:
str = "AQ_RC_EINVAL";
break;
case ICE_AQ_RC_ENOTTY:
str = "AQ_RC_ENOTTY";
break;
case ICE_AQ_RC_ENOSPC:
str = "AQ_RC_ENOSPC";
break;
case ICE_AQ_RC_ENOSYS:
str = "AQ_RC_ENOSYS";
break;
case ICE_AQ_RC_ERANGE:
str = "AQ_RC_ERANGE";
break;
case ICE_AQ_RC_EFLUSHED:
str = "AQ_RC_EFLUSHED";
break;
case ICE_AQ_RC_BAD_ADDR:
str = "AQ_RC_BAD_ADDR";
break;
case ICE_AQ_RC_EMODE:
str = "AQ_RC_EMODE";
break;
case ICE_AQ_RC_EFBIG:
str = "AQ_RC_EFBIG";
break;
case ICE_AQ_RC_ESBCOMP:
str = "AQ_RC_ESBCOMP";
break;
case ICE_AQ_RC_ENOSEC:
str = "AQ_RC_ENOSEC";
break;
case ICE_AQ_RC_EBADSIG:
str = "AQ_RC_EBADSIG";
break;
case ICE_AQ_RC_ESVN:
str = "AQ_RC_ESVN";
break;
case ICE_AQ_RC_EBADMAN:
str = "AQ_RC_EBADMAN";
break;
case ICE_AQ_RC_EBADBUF:
str = "AQ_RC_EBADBUF";
break;
case ICE_AQ_RC_EACCES_BMCU:
str = "AQ_RC_EACCES_BMCU";
break;
}
if (str)
snprintf(buf, ICE_STR_BUF_LEN, "%s", str);
else
snprintf(buf, ICE_STR_BUF_LEN, "%d", aq_err);
return buf;
}
/**
* ice_status_str - convert status err code to a string
* @status: the status error code to convert
*
* Convert the status code into its string name if known.
*
* Otherwise, use the scratch space to format the status code into a number.
*/
const char *
ice_status_str(enum ice_status status)
{
static char buf[ICE_STR_BUF_LEN];
const char *str = NULL;
switch (status) {
case ICE_SUCCESS:
str = "OK";
break;
case ICE_ERR_PARAM:
str = "ICE_ERR_PARAM";
break;
case ICE_ERR_NOT_IMPL:
str = "ICE_ERR_NOT_IMPL";
break;
case ICE_ERR_NOT_READY:
str = "ICE_ERR_NOT_READY";
break;
case ICE_ERR_NOT_SUPPORTED:
str = "ICE_ERR_NOT_SUPPORTED";
break;
case ICE_ERR_BAD_PTR:
str = "ICE_ERR_BAD_PTR";
break;
case ICE_ERR_INVAL_SIZE:
str = "ICE_ERR_INVAL_SIZE";
break;
case ICE_ERR_DEVICE_NOT_SUPPORTED:
str = "ICE_ERR_DEVICE_NOT_SUPPORTED";
break;
case ICE_ERR_RESET_FAILED:
str = "ICE_ERR_RESET_FAILED";
break;
case ICE_ERR_FW_API_VER:
str = "ICE_ERR_FW_API_VER";
break;
case ICE_ERR_NO_MEMORY:
str = "ICE_ERR_NO_MEMORY";
break;
case ICE_ERR_CFG:
str = "ICE_ERR_CFG";
break;
case ICE_ERR_OUT_OF_RANGE:
str = "ICE_ERR_OUT_OF_RANGE";
break;
case ICE_ERR_ALREADY_EXISTS:
str = "ICE_ERR_ALREADY_EXISTS";
break;
case ICE_ERR_NVM:
str = "ICE_ERR_NVM";
break;
case ICE_ERR_NVM_CHECKSUM:
str = "ICE_ERR_NVM_CHECKSUM";
break;
case ICE_ERR_BUF_TOO_SHORT:
str = "ICE_ERR_BUF_TOO_SHORT";
break;
case ICE_ERR_NVM_BLANK_MODE:
str = "ICE_ERR_NVM_BLANK_MODE";
break;
case ICE_ERR_IN_USE:
str = "ICE_ERR_IN_USE";
break;
case ICE_ERR_MAX_LIMIT:
str = "ICE_ERR_MAX_LIMIT";
break;
case ICE_ERR_RESET_ONGOING:
str = "ICE_ERR_RESET_ONGOING";
break;
case ICE_ERR_HW_TABLE:
str = "ICE_ERR_HW_TABLE";
break;
case ICE_ERR_FW_DDP_MISMATCH:
str = "ICE_ERR_FW_DDP_MISMATCH";
break;
case ICE_ERR_DOES_NOT_EXIST:
str = "ICE_ERR_DOES_NOT_EXIST";
break;
case ICE_ERR_AQ_ERROR:
str = "ICE_ERR_AQ_ERROR";
break;
case ICE_ERR_AQ_TIMEOUT:
str = "ICE_ERR_AQ_TIMEOUT";
break;
case ICE_ERR_AQ_FULL:
str = "ICE_ERR_AQ_FULL";
break;
case ICE_ERR_AQ_NO_WORK:
str = "ICE_ERR_AQ_NO_WORK";
break;
case ICE_ERR_AQ_EMPTY:
str = "ICE_ERR_AQ_EMPTY";
break;
case ICE_ERR_AQ_FW_CRITICAL:
str = "ICE_ERR_AQ_FW_CRITICAL";
break;
}
if (str)
snprintf(buf, ICE_STR_BUF_LEN, "%s", str);
else
snprintf(buf, ICE_STR_BUF_LEN, "%d", status);
return buf;
}
/**
* ice_mdd_tx_tclan_str - Convert MDD Tx TCLAN event to a string
* @event: the MDD event number to convert
*
* Convert the Tx TCLAN event value from the GL_MDET_TX_TCLAN register into
* a human readable string for logging of MDD events.
*/
const char *
ice_mdd_tx_tclan_str(uint8_t event)
{
static char buf[ICE_STR_BUF_LEN];
const char *str = NULL;
switch (event) {
case 0:
str = "Wrong descriptor format/order";
break;
case 1:
str = "Descriptor fetch failed";
break;
case 2:
str = "Tail descriptor not EOP/NOP";
break;
case 3:
str = "False scheduling error";
break;
case 4:
str = "Tail value larger than ring len";
break;
case 5:
str = "Too many data commands";
break;
case 6:
str = "Zero packets sent in quanta";
break;
case 7:
str = "Packet too small or too big";
break;
case 8:
str = "TSO length doesn't match sum";
break;
case 9:
str = "TSO tail reached before TLEN";
break;
case 10:
str = "TSO max 3 descs for headers";
break;
case 11:
str = "EOP on header descriptor";
break;
case 12:
str = "MSS is 0 or TLEN is 0";
break;
case 13:
str = "CTX desc invalid IPSec fields";
break;
case 14:
str = "Quanta invalid # of SSO packets";
break;
case 15:
str = "Quanta bytes exceeds pkt_len*64";
break;
case 16:
str = "Quanta exceeds max_cmds_in_sq";
break;
case 17:
str = "incoherent last_lso_quanta";
break;
case 18:
str = "incoherent TSO TLEN";
break;
case 19:
str = "Quanta: too many descriptors";
break;
case 20:
str = "Quanta: # of packets mismatch";
break;
default:
break;
}
if (str)
snprintf(buf, ICE_STR_BUF_LEN, "%s", str);
else {
snprintf(buf, ICE_STR_BUF_LEN,
"Unknown Tx TCLAN event %u", event);
}
return buf;
}
/**
* ice_mdd_tx_pqm_str - Convert MDD Tx PQM event to a string
* @event: the MDD event number to convert
*
* Convert the Tx PQM event value from the GL_MDET_TX_PQM register into
* a human readable string for logging of MDD events.
*/
const char *
ice_mdd_tx_pqm_str(uint8_t event)
{
static char buf[ICE_STR_BUF_LEN];
const char *str = NULL;
switch (event) {
case 0:
str = "PCI_DUMMY_COMP";
break;
case 1:
str = "PCI_UR_COMP";
break;
/* Index 2 is unused */
case 3:
str = "RCV_SH_BE_LSO";
break;
case 4:
str = "Q_FL_MNG_EPY_CH";
break;
case 5:
str = "Q_EPY_MNG_FL_CH";
break;
case 6:
str = "LSO_NUMDESCS_ZERO";
break;
case 7:
str = "LSO_LENGTH_ZERO";
break;
case 8:
str = "LSO_MSS_BELOW_MIN";
break;
case 9:
str = "LSO_MSS_ABOVE_MAX";
break;
case 10:
str = "LSO_HDR_SIZE_ZERO";
break;
case 11:
str = "RCV_CNT_BE_LSO";
break;
case 12:
str = "SKIP_ONE_QT_ONLY";
break;
case 13:
str = "LSO_PKTCNT_ZERO";
break;
case 14:
str = "SSO_LENGTH_ZERO";
break;
case 15:
str = "SSO_LENGTH_EXCEED";
break;
case 16:
str = "SSO_PKTCNT_ZERO";
break;
case 17:
str = "SSO_PKTCNT_EXCEED";
break;
case 18:
str = "SSO_NUMDESCS_ZERO";
break;
case 19:
str = "SSO_NUMDESCS_EXCEED";
break;
case 20:
str = "TAIL_GT_RING_LENGTH";
break;
case 21:
str = "RESERVED_DBL_TYPE";
break;
case 22:
str = "ILLEGAL_HEAD_DROP_DBL";
break;
case 23:
str = "LSO_OVER_COMMS_Q";
break;
case 24:
str = "ILLEGAL_VF_QNUM";
break;
case 25:
str = "QTAIL_GT_RING_LENGTH";
break;
default:
break;
}
if (str)
snprintf(buf, ICE_STR_BUF_LEN, "%s", str);
else {
snprintf(buf, ICE_STR_BUF_LEN,
"Unknown Tx PQM event %u", event);
}
return buf;
}
/**
* ice_mdd_rx_str - Convert MDD Rx queue event to a string
* @event: the MDD event number to convert
*
* Convert the Rx queue event value from the GL_MDET_RX register into a human
* readable string for logging of MDD events.
*/
const char *
ice_mdd_rx_str(uint8_t event)
{
static char buf[ICE_STR_BUF_LEN];
const char *str = NULL;
switch (event) {
case 1:
str = "Descriptor fetch failed";
break;
default:
break;
}
if (str)
snprintf(buf, ICE_STR_BUF_LEN, "%s", str);
else
snprintf(buf, ICE_STR_BUF_LEN, "Unknown Rx event %u", event);
return buf;
}
/* Memory types */
enum ice_memset_type {
ICE_NONDMA_MEM = 0,
ICE_DMA_MEM
};
/* Memcpy types */
enum ice_memcpy_type {
ICE_NONDMA_TO_NONDMA = 0,
ICE_NONDMA_TO_DMA,
ICE_DMA_TO_DMA,
ICE_DMA_TO_NONDMA
};
/*
* ice_calloc - Allocate an array of elementes
* @hw: the hardware private structure
* @count: number of elements to allocate
* @size: the size of each element
*
* Allocate memory for an array of items equal to size. Note that the OS
* compatibility layer assumes all allocation functions will provide zero'd
* memory.
*/
static inline void *
ice_calloc(struct ice_hw __unused *hw, size_t count, size_t size)
{
return mallocarray(count, size, M_DEVBUF, M_ZERO | M_NOWAIT);
}
/*
* ice_malloc - Allocate memory of a specified size
* @hw: the hardware private structure
* @size: the size to allocate
*
* Allocates memory of the specified size. Note that the OS compatibility
* layer assumes that all allocations will provide zero'd memory.
*/
static inline void *
ice_malloc(struct ice_hw __unused *hw, size_t size)
{
return malloc(size, M_DEVBUF, M_ZERO | M_NOWAIT);
}
/*
* ice_memdup - Allocate a copy of some other memory
* @hw: private hardware structure
* @src: the source to copy from
* @size: allocation size
*
* Allocate memory of the specified size, and copy bytes from the src to fill
* it. We don't need to zero this memory as we immediately initialize it by
* copying from the src pointer.
*/
static inline void *
ice_memdup(struct ice_hw __unused *hw, const void *src, size_t size)
{
void *dst = malloc(size, M_DEVBUF, M_NOWAIT);
if (dst != NULL)
memcpy(dst, src, size);
return dst;
}
/*
* ice_free - Free previously allocated memory
* @hw: the hardware private structure
* @mem: pointer to the memory to free
*
* Free memory that was previously allocated by ice_calloc, ice_malloc, or
* ice_memdup.
*/
static inline void
ice_free(struct ice_hw __unused *hw, void *mem)
{
free(mem, M_DEVBUF, 0);
}
/**
* ice_set_ctrlq_len - Configure ctrlq lengths for a device
* @hw: the device hardware structure
*
* Configures the control queues for the given device, setting up the
* specified lengths, prior to initializing hardware.
*/
void
ice_set_ctrlq_len(struct ice_hw *hw)
{
hw->adminq.num_rq_entries = ICE_AQ_LEN;
hw->adminq.num_sq_entries = ICE_AQ_LEN;
hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
hw->mailboxq.num_rq_entries = ICE_MBXQ_LEN;
hw->mailboxq.num_sq_entries = ICE_MBXQ_LEN;
hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
}
enum ice_fw_modes
ice_get_fw_mode(struct ice_hw *hw)
{
#define ICE_FW_MODE_DBG_M (1 << 0)
#define ICE_FW_MODE_REC_M (1 << 1)
#define ICE_FW_MODE_ROLLBACK_M (1 << 2)
uint32_t fw_mode;
/* check the current FW mode */
fw_mode = ICE_READ(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_MODES_M;
if (fw_mode & ICE_FW_MODE_DBG_M)
return ICE_FW_MODE_DBG;
else if (fw_mode & ICE_FW_MODE_REC_M)
return ICE_FW_MODE_REC;
else if (fw_mode & ICE_FW_MODE_ROLLBACK_M)
return ICE_FW_MODE_ROLLBACK;
else
return ICE_FW_MODE_NORMAL;
}
void
ice_set_mac_type(struct ice_hw *hw)
{
struct ice_softc *sc = hw->hw_sc;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
switch (sc->sc_pid) {
#if 0
case ICE_DEV_ID_E810C_BACKPLANE:
case ICE_DEV_ID_E810C_QSFP:
case ICE_DEV_ID_E810C_SFP:
case ICE_DEV_ID_E810_XXV_BACKPLANE:
case ICE_DEV_ID_E810_XXV_QSFP:
case ICE_DEV_ID_E810_XXV_SFP:
#endif
case PCI_PRODUCT_INTEL_E810_XXV_SFP:
hw->mac_type = ICE_MAC_E810;
break;
#if 0
case ICE_DEV_ID_E822C_10G_BASE_T:
case ICE_DEV_ID_E822C_BACKPLANE:
case ICE_DEV_ID_E822C_QSFP:
case ICE_DEV_ID_E822C_SFP:
case ICE_DEV_ID_E822C_SGMII:
case ICE_DEV_ID_E822L_10G_BASE_T:
case ICE_DEV_ID_E822L_BACKPLANE:
case ICE_DEV_ID_E822L_SFP:
case ICE_DEV_ID_E822L_SGMII:
case ICE_DEV_ID_E823L_10G_BASE_T:
case ICE_DEV_ID_E823L_1GBE:
case ICE_DEV_ID_E823L_BACKPLANE:
case ICE_DEV_ID_E823L_QSFP:
case ICE_DEV_ID_E823L_SFP:
case ICE_DEV_ID_E823C_10G_BASE_T:
case ICE_DEV_ID_E823C_BACKPLANE:
case ICE_DEV_ID_E823C_QSFP:
case ICE_DEV_ID_E823C_SFP:
case ICE_DEV_ID_E823C_SGMII:
hw->mac_type = ICE_MAC_GENERIC;
break;
#endif
default:
hw->mac_type = ICE_MAC_UNKNOWN;
break;
}
DNPRINTF(ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
}
enum ice_status
ice_check_reset(struct ice_hw *hw)
{
uint32_t cnt, reg = 0, grst_timeout, uld_mask, reset_wait_cnt;
/* Poll for Device Active state in case a recent CORER, GLOBR,
* or EMPR has occurred. The grst delay value is in 100ms units.
* Add 1sec for outstanding AQ commands that can take a long time.
*/
grst_timeout = ((ICE_READ(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
GLGEN_RSTCTL_GRSTDEL_S) + 10;
for (cnt = 0; cnt < grst_timeout; cnt++) {
ice_msec_delay(100, true);
reg = ICE_READ(hw, GLGEN_RSTAT);
if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
break;
}
if (cnt == grst_timeout) {
DNPRINTF(ICE_DBG_INIT, "Global reset polling failed to complete.\n");
return ICE_ERR_RESET_FAILED;
}
#define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
GLNVM_ULD_PCIER_DONE_1_M |\
GLNVM_ULD_CORER_DONE_M |\
GLNVM_ULD_GLOBR_DONE_M |\
GLNVM_ULD_POR_DONE_M |\
GLNVM_ULD_POR_DONE_1_M |\
GLNVM_ULD_PCIER_DONE_2_M)
uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.iwarp ?
GLNVM_ULD_PE_DONE_M : 0);
reset_wait_cnt = ICE_PF_RESET_WAIT_COUNT;
/* Device is Active; check Global Reset processes are done */
for (cnt = 0; cnt < reset_wait_cnt; cnt++) {
reg = ICE_READ(hw, GLNVM_ULD) & uld_mask;
if (reg == uld_mask) {
DNPRINTF(ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
break;
}
ice_msec_delay(10, true);
}
if (cnt == reset_wait_cnt) {
DNPRINTF(ICE_DBG_INIT, "Wait for Reset Done timed out. "
"GLNVM_ULD = 0x%x\n", reg);
return ICE_ERR_RESET_FAILED;
}
return ICE_SUCCESS;
}
/*
* ice_pf_reset - Reset the PF
*
* If a global reset has been triggered, this function checks
* for its completion and then issues the PF reset
*/
enum ice_status
ice_pf_reset(struct ice_hw *hw)
{
uint32_t cnt, reg, reset_wait_cnt, cfg_lock_timeout;
/* If at function entry a global reset was already in progress, i.e.
* state is not 'device active' or any of the reset done bits are not
* set in GLNVM_ULD, there is no need for a PF Reset; poll until the
* global reset is done.
*/
if ((ICE_READ(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
(ICE_READ(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
/* poll on global reset currently in progress until done */
if (ice_check_reset(hw))
return ICE_ERR_RESET_FAILED;
return ICE_SUCCESS;
}
/* Reset the PF */
reg = ICE_READ(hw, PFGEN_CTRL);
ICE_WRITE(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
/* Wait for the PFR to complete. The wait time is the global config lock
* timeout plus the PFR timeout which will account for a possible reset
* that is occurring during a download package operation.
*/
reset_wait_cnt = ICE_PF_RESET_WAIT_COUNT;
cfg_lock_timeout = ICE_GLOBAL_CFG_LOCK_TIMEOUT;
for (cnt = 0; cnt < cfg_lock_timeout + reset_wait_cnt; cnt++) {
reg = ICE_READ(hw, PFGEN_CTRL);
if (!(reg & PFGEN_CTRL_PFSWR_M))
break;
ice_msec_delay(1, true);
}
if (cnt == cfg_lock_timeout + reset_wait_cnt) {
DNPRINTF(ICE_DBG_INIT, "PF reset polling failed to complete.\n");
return ICE_ERR_RESET_FAILED;
}
return ICE_SUCCESS;
}
/**
* ice_reset - Perform different types of reset
*
* If anything other than a PF reset is triggered, PXE mode is restored.
* This has to be cleared using ice_clear_pxe_mode again, once the AQ
* interface has been restored in the rebuild flow.
*/
enum ice_status
ice_reset(struct ice_hw *hw, enum ice_reset_req req)
{
uint32_t val = 0;
switch (req) {
case ICE_RESET_PFR:
return ice_pf_reset(hw);
case ICE_RESET_CORER:
DNPRINTF(ICE_DBG_INIT, "CoreR requested\n");
val = GLGEN_RTRIG_CORER_M;
break;
case ICE_RESET_GLOBR:
DNPRINTF(ICE_DBG_INIT, "GlobalR requested\n");
val = GLGEN_RTRIG_GLOBR_M;
break;
default:
return ICE_ERR_PARAM;
}
val |= ICE_READ(hw, GLGEN_RTRIG);
ICE_WRITE(hw, GLGEN_RTRIG, val);
ice_flush(hw);
/* wait for the FW to be ready */
return ice_check_reset(hw);
}
/*
* ice_get_itr_intrl_gran
*
* Determines the ITR/INTRL granularities based on the maximum aggregate
* bandwidth according to the device's configuration during power-on.
*/
void
ice_get_itr_intrl_gran(struct ice_hw *hw)
{
uint8_t max_agg_bw = (ICE_READ(hw, GL_PWR_MODE_CTL) &
GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
GL_PWR_MODE_CTL_CAR_MAX_BW_S;
switch (max_agg_bw) {
case ICE_MAX_AGG_BW_200G:
case ICE_MAX_AGG_BW_100G:
case ICE_MAX_AGG_BW_50G:
hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
break;
case ICE_MAX_AGG_BW_25G:
hw->itr_gran = ICE_ITR_GRAN_MAX_25;
hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
break;
}
}
/*
* ice_destroy_ctrlq_locks - Destroy locks for a control queue
* @cq: pointer to the control queue
*
* Destroys the send and receive queue locks for a given control queue.
*/
void
ice_destroy_ctrlq_locks(struct ice_ctl_q_info *cq)
{
#if 0
ice_destroy_lock(&cq->sq_lock);
ice_destroy_lock(&cq->rq_lock);
#endif
}
/* Returns true if Queue is enabled else false. */
bool
ice_check_sq_alive(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
/* check both queue-length and queue-enable fields */
if (cq->sq.len && cq->sq.len_mask && cq->sq.len_ena_mask)
return (ICE_READ(hw, cq->sq.len) & (cq->sq.len_mask |
cq->sq.len_ena_mask)) ==
(cq->num_sq_entries | cq->sq.len_ena_mask);
return false;
}
#define ICE_CQ_INIT_REGS(qinfo, prefix) \
do { \
(qinfo)->sq.head = prefix##_ATQH; \
(qinfo)->sq.tail = prefix##_ATQT; \
(qinfo)->sq.len = prefix##_ATQLEN; \
(qinfo)->sq.bah = prefix##_ATQBAH; \
(qinfo)->sq.bal = prefix##_ATQBAL; \
(qinfo)->sq.len_mask = prefix##_ATQLEN_ATQLEN_M; \
(qinfo)->sq.len_ena_mask = prefix##_ATQLEN_ATQENABLE_M; \
(qinfo)->sq.len_crit_mask = prefix##_ATQLEN_ATQCRIT_M; \
(qinfo)->sq.head_mask = prefix##_ATQH_ATQH_M; \
(qinfo)->rq.head = prefix##_ARQH; \
(qinfo)->rq.tail = prefix##_ARQT; \
(qinfo)->rq.len = prefix##_ARQLEN; \
(qinfo)->rq.bah = prefix##_ARQBAH; \
(qinfo)->rq.bal = prefix##_ARQBAL; \
(qinfo)->rq.len_mask = prefix##_ARQLEN_ARQLEN_M; \
(qinfo)->rq.len_ena_mask = prefix##_ARQLEN_ARQENABLE_M; \
(qinfo)->rq.len_crit_mask = prefix##_ARQLEN_ARQCRIT_M; \
(qinfo)->rq.head_mask = prefix##_ARQH_ARQH_M; \
} while (0)
/*
* ice_adminq_init_regs - Initialize AdminQ registers
*
* This assumes the alloc_sq and alloc_rq functions have already been called
*/
void
ice_adminq_init_regs(struct ice_hw *hw)
{
struct ice_ctl_q_info *cq = &hw->adminq;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
ICE_CQ_INIT_REGS(cq, PF_FW);
}
/*
* ice_mailbox_init_regs - Initialize Mailbox registers
*
* This assumes the alloc_sq and alloc_rq functions have already been called
*/
void
ice_mailbox_init_regs(struct ice_hw *hw)
{
struct ice_ctl_q_info *cq = &hw->mailboxq;
ICE_CQ_INIT_REGS(cq, PF_MBX);
}
/*
* ice_free_dma_mem - Free DMA memory allocated by ice_alloc_dma_mem
* @hw: the hardware private structure
* @mem: DMA memory to free
*
* Release the bus DMA tag and map, and free the DMA memory associated with
* it.
*/
void
ice_free_dma_mem(struct ice_hw __unused *hw, struct ice_dma_mem *mem)
{
if (mem->map != NULL) {
if (mem->va != NULL) {
bus_dmamap_sync(mem->tag, mem->map, 0, mem->size,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(mem->tag, mem->map);
bus_dmamem_unmap(mem->tag, mem->va, mem->size);
bus_dmamem_free(mem->tag, &mem->seg, 1);
mem->va = NULL;
}
bus_dmamap_destroy(mem->tag, mem->map);
mem->map = NULL;
mem->pa = 0L;
}
}
/* ice_alloc_dma_mem - Request OS to allocate DMA memory */
void *
ice_alloc_dma_mem(struct ice_hw *hw, struct ice_dma_mem *mem, uint64_t size)
{
struct ice_softc *sc = hw->hw_sc;
int nsegs = 0, err;
caddr_t va;
mem->tag = sc->sc_dmat;
err = bus_dmamap_create(mem->tag, size, 1, size, 0, BUS_DMA_NOWAIT,
&mem->map);
if (err)
goto fail;
err = bus_dmamem_alloc(mem->tag, size, 1, 0, &mem->seg, 1, &nsegs,
BUS_DMA_NOWAIT | BUS_DMA_ZERO);
if (err || nsegs != 1)
goto fail_1;
err = bus_dmamem_map(mem->tag, &mem->seg, nsegs, size, &va,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
if (err)
goto fail_2;
mem->va = va;
mem->size = size;
err = bus_dmamap_load(mem->tag, mem->map, mem->va, size, NULL,
BUS_DMA_NOWAIT);
if (err)
goto fail_3;
bus_dmamap_sync(mem->tag, mem->map, 0, size, BUS_DMASYNC_PREWRITE);
mem->pa = mem->map->dm_segs[0].ds_addr;
return (mem->va);
fail_3:
bus_dmamem_unmap(mem->tag, mem->va, size);
fail_2:
bus_dmamem_free(mem->tag, &mem->seg, nsegs);
fail_1:
bus_dmamap_destroy(mem->tag, mem->map);
fail:
mem->map = NULL;
mem->tag = NULL;
mem->va = NULL;
mem->pa = 0L;
mem->size = 0;
return (NULL);
}
/* ice_alloc_ctrlq_sq_ring - Allocate Control Transmit Queue (ATQ) rings */
enum ice_status
ice_alloc_ctrlq_sq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
size_t size = cq->num_sq_entries * sizeof(struct ice_aq_desc);
cq->sq.desc_buf.va = ice_alloc_dma_mem(hw, &cq->sq.desc_buf, size);
if (!cq->sq.desc_buf.va)
return ICE_ERR_NO_MEMORY;
return ICE_SUCCESS;
}
/* ice_alloc_ctrlq_rq_ring - Allocate Control Receive Queue (ARQ) rings */
enum ice_status
ice_alloc_ctrlq_rq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
size_t size = cq->num_rq_entries * sizeof(struct ice_aq_desc);
cq->rq.desc_buf.va = ice_alloc_dma_mem(hw, &cq->rq.desc_buf, size);
if (!cq->rq.desc_buf.va)
return ICE_ERR_NO_MEMORY;
return ICE_SUCCESS;
}
/* ice_alloc_sq_bufs - Allocate empty buffer structs for the ATQ */
enum ice_status
ice_alloc_sq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
int i;
/* No mapped memory needed yet, just the buffer info structures */
cq->sq.dma_head = ice_calloc(hw, cq->num_sq_entries,
sizeof(cq->sq.desc_buf));
if (!cq->sq.dma_head)
return ICE_ERR_NO_MEMORY;
cq->sq.r.sq_bi = (struct ice_dma_mem *)cq->sq.dma_head;
/* allocate the mapped buffers */
for (i = 0; i < cq->num_sq_entries; i++) {
struct ice_dma_mem *bi;
bi = &cq->sq.r.sq_bi[i];
bi->va = ice_alloc_dma_mem(hw, bi, cq->sq_buf_size);
if (!bi->va)
goto unwind_alloc_sq_bufs;
}
return ICE_SUCCESS;
unwind_alloc_sq_bufs:
/* don't try to free the one that failed... */
i--;
for (; i >= 0; i--)
ice_free_dma_mem(hw, &cq->sq.r.sq_bi[i]);
cq->sq.r.sq_bi = NULL;
ice_free(hw, cq->sq.dma_head);
cq->sq.dma_head = NULL;
return ICE_ERR_NO_MEMORY;
}
/*
* ice_free_cq_ring - Free control queue ring
* @hw: pointer to the hardware structure
* @ring: pointer to the specific control queue ring
*
* This assumes the posted buffers have already been cleaned
* and de-allocated
*/
void
ice_free_cq_ring(struct ice_hw *hw, struct ice_ctl_q_ring *ring)
{
ice_free_dma_mem(hw, &ring->desc_buf);
}
/* ice_alloc_rq_bufs - Allocate pre-posted buffers for the ARQ */
enum ice_status
ice_alloc_rq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
int i;
/*
* We'll be allocating the buffer info memory first, then we can
* allocate the mapped buffers for the event processing
*/
cq->rq.dma_head = ice_calloc(hw, cq->num_rq_entries,
sizeof(cq->rq.desc_buf));
if (!cq->rq.dma_head)
return ICE_ERR_NO_MEMORY;
cq->rq.r.rq_bi = (struct ice_dma_mem *)cq->rq.dma_head;
/* allocate the mapped buffers */
for (i = 0; i < cq->num_rq_entries; i++) {
struct ice_aq_desc *desc;
struct ice_dma_mem *bi;
bi = &cq->rq.r.rq_bi[i];
bi->va = ice_alloc_dma_mem(hw, bi, cq->rq_buf_size);
if (!bi->va)
goto unwind_alloc_rq_bufs;
/* now configure the descriptors for use */
desc = ICE_CTL_Q_DESC(cq->rq, i);
desc->flags = htole16(ICE_AQ_FLAG_BUF);
if (cq->rq_buf_size > ICE_AQ_LG_BUF)
desc->flags |= htole16(ICE_AQ_FLAG_LB);
desc->opcode = 0;
/* This is in accordance with control queue design, there is no
* register for buffer size configuration
*/
desc->datalen = htole16(bi->size);
desc->retval = 0;
desc->cookie_high = 0;
desc->cookie_low = 0;
desc->params.generic.addr_high = htole32(ICE_HI_DWORD(bi->pa));
desc->params.generic.addr_low = htole32(ICE_LO_DWORD(bi->pa));
desc->params.generic.param0 = 0;
desc->params.generic.param1 = 0;
}
return ICE_SUCCESS;
unwind_alloc_rq_bufs:
/* don't try to free the one that failed... */
i--;
for (; i >= 0; i--)
ice_free_dma_mem(hw, &cq->rq.r.rq_bi[i]);
cq->rq.r.rq_bi = NULL;
ice_free(hw, cq->rq.dma_head);
cq->rq.dma_head = NULL;
return ICE_ERR_NO_MEMORY;
}
enum ice_status
ice_cfg_cq_regs(struct ice_hw *hw, struct ice_ctl_q_ring *ring,
uint16_t num_entries)
{
/* Clear Head and Tail */
ICE_WRITE(hw, ring->head, 0);
ICE_WRITE(hw, ring->tail, 0);
/* set starting point */
ICE_WRITE(hw, ring->len, (num_entries | ring->len_ena_mask));
ICE_WRITE(hw, ring->bal, ICE_LO_DWORD(ring->desc_buf.pa));
ICE_WRITE(hw, ring->bah, ICE_HI_DWORD(ring->desc_buf.pa));
/* Check one register to verify that config was applied */
if (ICE_READ(hw, ring->bal) != ICE_LO_DWORD(ring->desc_buf.pa))
return ICE_ERR_AQ_ERROR;
return ICE_SUCCESS;
}
/**
* ice_cfg_sq_regs - configure Control ATQ registers
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* Configure base address and length registers for the transmit queue
*/
enum ice_status
ice_cfg_sq_regs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
return ice_cfg_cq_regs(hw, &cq->sq, cq->num_sq_entries);
}
/*
* ice_cfg_rq_regs - configure Control ARQ register
* Configure base address and length registers for the receive (event queue)
*/
enum ice_status
ice_cfg_rq_regs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
enum ice_status status;
status = ice_cfg_cq_regs(hw, &cq->rq, cq->num_rq_entries);
if (status)
return status;
/* Update tail in the HW to post pre-allocated buffers */
ICE_WRITE(hw, cq->rq.tail, (uint32_t)(cq->num_rq_entries - 1));
return ICE_SUCCESS;
}
#define ICE_FREE_CQ_BUFS(hw, qi, ring) \
do { \
/* free descriptors */ \
if ((qi)->ring.r.ring##_bi) { \
int i; \
\
for (i = 0; i < (qi)->num_##ring##_entries; i++) \
if ((qi)->ring.r.ring##_bi[i].pa) \
ice_free_dma_mem((hw), \
&(qi)->ring.r.ring##_bi[i]); \
} \
/* free DMA head */ \
ice_free(hw, (qi)->ring.dma_head); \
} while (0)
/*
* ice_init_sq - main initialization routine for Control ATQ
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* This is the main initialization routine for the Control Send Queue
* Prior to calling this function, the driver *MUST* set the following fields
* in the cq->structure:
* - cq->num_sq_entries
* - cq->sq_buf_size
*
* Do *NOT* hold the lock when calling this as the memory allocation routines
* called are not going to be atomic context safe
*/
enum ice_status
ice_init_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
enum ice_status ret_code;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
if (cq->sq.count > 0) {
/* queue already initialized */
ret_code = ICE_ERR_NOT_READY;
goto init_ctrlq_exit;
}
/* verify input for valid configuration */
if (!cq->num_sq_entries || !cq->sq_buf_size) {
ret_code = ICE_ERR_CFG;
goto init_ctrlq_exit;
}
cq->sq.next_to_use = 0;
cq->sq.next_to_clean = 0;
/* allocate the ring memory */
ret_code = ice_alloc_ctrlq_sq_ring(hw, cq);
if (ret_code)
goto init_ctrlq_exit;
/* allocate buffers in the rings */
ret_code = ice_alloc_sq_bufs(hw, cq);
if (ret_code)
goto init_ctrlq_free_rings;
/* initialize base registers */
ret_code = ice_cfg_sq_regs(hw, cq);
if (ret_code)
goto init_ctrlq_free_rings;
/* success! */
cq->sq.count = cq->num_sq_entries;
return ICE_SUCCESS;
init_ctrlq_free_rings:
ICE_FREE_CQ_BUFS(hw, cq, sq);
ice_free_cq_ring(hw, &cq->sq);
init_ctrlq_exit:
return ret_code;
}
/*
* ice_init_rq - initialize receive side of a control queue
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* The main initialization routine for Receive side of a control queue.
* Prior to calling this function, the driver *MUST* set the following fields
* in the cq->structure:
* - cq->num_rq_entries
* - cq->rq_buf_size
*
* Do *NOT* hold the lock when calling this as the memory allocation routines
* called are not going to be atomic context safe
*/
enum ice_status
ice_init_rq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
enum ice_status ret_code;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
if (cq->rq.count > 0) {
/* queue already initialized */
ret_code = ICE_ERR_NOT_READY;
goto init_ctrlq_exit;
}
/* verify input for valid configuration */
if (!cq->num_rq_entries || !cq->rq_buf_size) {
ret_code = ICE_ERR_CFG;
goto init_ctrlq_exit;
}
cq->rq.next_to_use = 0;
cq->rq.next_to_clean = 0;
/* allocate the ring memory */
ret_code = ice_alloc_ctrlq_rq_ring(hw, cq);
if (ret_code)
goto init_ctrlq_exit;
/* allocate buffers in the rings */
ret_code = ice_alloc_rq_bufs(hw, cq);
if (ret_code)
goto init_ctrlq_free_rings;
/* initialize base registers */
ret_code = ice_cfg_rq_regs(hw, cq);
if (ret_code)
goto init_ctrlq_free_rings;
/* success! */
cq->rq.count = cq->num_rq_entries;
goto init_ctrlq_exit;
init_ctrlq_free_rings:
ICE_FREE_CQ_BUFS(hw, cq, rq);
ice_free_cq_ring(hw, &cq->rq);
init_ctrlq_exit:
return ret_code;
}
/*
* Decide if we should retry the send command routine for the ATQ, depending
* on the opcode.
*/
bool
ice_should_retry_sq_send_cmd(uint16_t opcode)
{
switch (opcode) {
case ice_aqc_opc_dnl_get_status:
case ice_aqc_opc_dnl_run:
case ice_aqc_opc_dnl_call:
case ice_aqc_opc_dnl_read_sto:
case ice_aqc_opc_dnl_write_sto:
case ice_aqc_opc_dnl_set_breakpoints:
case ice_aqc_opc_dnl_read_log:
case ice_aqc_opc_get_link_topo:
case ice_aqc_opc_done_alt_write:
case ice_aqc_opc_lldp_stop:
case ice_aqc_opc_lldp_start:
case ice_aqc_opc_lldp_filter_ctrl:
return true;
}
return false;
}
/* based on libsa/hexdump.c */
void
ice_hexdump(const void *addr, size_t size)
{
const unsigned char *line, *end;
int byte;
end = (const char *)addr + size;
for (line = addr; line < end; line += 16) {
DPRINTF("%08lx ", (unsigned long)line);
for (byte = 0; byte < 16; byte++) {
if (&line[byte] < end)
DPRINTF("%02x ", line[byte]);
else
DPRINTF(" ");
if (byte == 7)
DPRINTF(" ");
}
DPRINTF(" |");
for (byte = 0; byte < 16; byte++) {
if (&line[byte] < end) {
if (line[byte] >= ' ' && line[byte] <= '~')
DPRINTF("%c", line[byte]);
else
DPRINTF(".");
} else
break;
}
DPRINTF("|\n");
}
DPRINTF("%08lx\n", (unsigned long)end);
}
/**
* ice_debug_array - Format and print an array of values to the console
* @hw: private hardware structure
* @mask: the debug message type
* @groupsize: preferred size in bytes to print each chunk
* @buf: the array buffer to print
* @len: size of the array buffer
*
* Format the given array as a series of uint8_t values with hexadecimal
* notation and log the contents to the console log.
*
* TODO: Currently only supports a group size of 1, due to the way hexdump is
* implemented.
*/
void
ice_debug_array(struct ice_hw *hw, uint64_t mask, uint32_t rowsize,
uint32_t __unused groupsize, uint8_t *buf, size_t len)
{
if (!(mask & hw->debug_mask))
return;
/* Make sure the row-size isn't too large */
if (rowsize > 0xFF)
rowsize = 0xFF;
ice_hexdump(buf, len);
}
/**
* ice_clean_sq - cleans send side of a control queue
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* returns the number of free desc
*/
uint16_t
ice_clean_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
struct ice_ctl_q_ring *sq = &cq->sq;
uint16_t ntc = sq->next_to_clean;
struct ice_aq_desc *desc;
desc = ICE_CTL_Q_DESC(*sq, ntc);
while (ICE_READ(hw, cq->sq.head) != ntc) {
DNPRINTF(ICE_DBG_AQ_MSG, "ntc %d head %d.\n", ntc,
ICE_READ(hw, cq->sq.head));
memset(desc, 0, sizeof(*desc));
ntc++;
if (ntc == sq->count)
ntc = 0;
desc = ICE_CTL_Q_DESC(*sq, ntc);
}
sq->next_to_clean = ntc;
return ICE_CTL_Q_DESC_UNUSED(sq);
}
/**
* ice_ctl_q_str - Convert control queue type to string
* @qtype: the control queue type
*
* Returns: A string name for the given control queue type.
*/
const char *
ice_ctl_q_str(enum ice_ctl_q qtype)
{
switch (qtype) {
case ICE_CTL_Q_UNKNOWN:
return "Unknown CQ";
case ICE_CTL_Q_ADMIN:
return "AQ";
case ICE_CTL_Q_MAILBOX:
return "MBXQ";
default:
return "Unrecognized CQ";
}
}
/**
* ice_debug_cq
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
* @desc: pointer to control queue descriptor
* @buf: pointer to command buffer
* @buf_len: max length of buf
* @response: true if this is the writeback response
*
* Dumps debug log about control command with descriptor contents.
*/
void
ice_debug_cq(struct ice_hw *hw, struct ice_ctl_q_info *cq,
void *desc, void *buf, uint16_t buf_len, bool response)
{
#ifdef ICE_DEBUG
struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
uint16_t datalen, flags;
if (!((ICE_DBG_AQ_DESC | ICE_DBG_AQ_DESC_BUF) & hw->debug_mask))
return;
if (!desc)
return;
datalen = le16toh(cq_desc->datalen);
flags = le16toh(cq_desc->flags);
DNPRINTF(ICE_DBG_AQ_DESC, "%s %s: opcode 0x%04X, flags 0x%04X, "
"datalen 0x%04X, retval 0x%04X\n", ice_ctl_q_str(cq->qtype),
response ? "Response" : "Command", le16toh(cq_desc->opcode),
flags, datalen, le16toh(cq_desc->retval));
DNPRINTF(ICE_DBG_AQ_DESC, "\tcookie (h,l) 0x%08X 0x%08X\n",
le32toh(cq_desc->cookie_high),
le32toh(cq_desc->cookie_low));
DNPRINTF(ICE_DBG_AQ_DESC, "\tparam (0,1) 0x%08X 0x%08X\n",
le32toh(cq_desc->params.generic.param0),
le32toh(cq_desc->params.generic.param1));
DNPRINTF(ICE_DBG_AQ_DESC, "\taddr (h,l) 0x%08X 0x%08X\n",
le32toh(cq_desc->params.generic.addr_high),
le32toh(cq_desc->params.generic.addr_low));
/* Dump buffer iff 1) one exists and 2) is either a response indicated
* by the DD and/or CMP flag set or a command with the RD flag set.
*/
if (buf && cq_desc->datalen != 0 &&
(flags & (ICE_AQ_FLAG_DD | ICE_AQ_FLAG_CMP) ||
flags & ICE_AQ_FLAG_RD)) {
DNPRINTF(ICE_DBG_AQ_DESC_BUF, "Buffer:\n");
ice_debug_array(hw, ICE_DBG_AQ_DESC_BUF, 16, 1, (uint8_t *)buf,
MIN(buf_len, datalen));
}
#endif
}
/*
* ice_sq_done - check if the last send on a control queue has completed
*
* Returns: true if all the descriptors on the send side of a control queue
* are finished processing, false otherwise.
*/
bool
ice_sq_done(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
/* control queue designers suggest use of head for better
* timing reliability than DD bit
*/
return ICE_READ(hw, cq->sq.head) == cq->sq.next_to_use;
}
/**
* ice_sq_send_cmd_nolock - send command to a control queue
* @hw: pointer to the HW struct
* @cq: pointer to the specific Control queue
* @desc: prefilled descriptor describing the command (non DMA mem)
* @buf: buffer to use for indirect commands (or NULL for direct commands)
* @buf_size: size of buffer for indirect commands (or 0 for direct commands)
* @cd: pointer to command details structure
*
* This is the main send command routine for a control queue. It prepares the
* command into a descriptor, bumps the send queue tail, waits for the command
* to complete, captures status and data for the command, etc.
*/
enum ice_status
ice_sq_send_cmd_nolock(struct ice_hw *hw, struct ice_ctl_q_info *cq,
struct ice_aq_desc *desc, void *buf, uint16_t buf_size,
struct ice_sq_cd *cd)
{
struct ice_dma_mem *dma_buf = NULL;
struct ice_aq_desc *desc_on_ring;
bool cmd_completed = false;
enum ice_status status = ICE_SUCCESS;
uint32_t total_delay = 0;
uint16_t retval = 0;
uint32_t val = 0;
/* if reset is in progress return a soft error */
if (hw->reset_ongoing)
return ICE_ERR_RESET_ONGOING;
cq->sq_last_status = ICE_AQ_RC_OK;
if (!cq->sq.count) {
DNPRINTF(ICE_DBG_AQ_MSG,
"Control Send queue not initialized.\n");
status = ICE_ERR_AQ_EMPTY;
goto sq_send_command_error;
}
if ((buf && !buf_size) || (!buf && buf_size)) {
status = ICE_ERR_PARAM;
goto sq_send_command_error;
}
if (buf) {
if (buf_size > cq->sq_buf_size) {
DNPRINTF(ICE_DBG_AQ_MSG,
"Invalid buffer size for Control Send queue: %d.\n",
buf_size);
status = ICE_ERR_INVAL_SIZE;
goto sq_send_command_error;
}
desc->flags |= htole16(ICE_AQ_FLAG_BUF);
if (buf_size > ICE_AQ_LG_BUF)
desc->flags |= htole16(ICE_AQ_FLAG_LB);
}
val = ICE_READ(hw, cq->sq.head);
if (val >= cq->num_sq_entries) {
DNPRINTF(ICE_DBG_AQ_MSG,
"head overrun at %d in the Control Send Queue ring\n", val);
status = ICE_ERR_AQ_EMPTY;
goto sq_send_command_error;
}
/* Call clean and check queue available function to reclaim the
* descriptors that were processed by FW/MBX; the function returns the
* number of desc available. The clean function called here could be
* called in a separate thread in case of asynchronous completions.
*/
if (ice_clean_sq(hw, cq) == 0) {
DNPRINTF(ICE_DBG_AQ_MSG,
"Error: Control Send Queue is full.\n");
status = ICE_ERR_AQ_FULL;
goto sq_send_command_error;
}
/* initialize the temp desc pointer with the right desc */
desc_on_ring = ICE_CTL_Q_DESC(cq->sq, cq->sq.next_to_use);
/* if the desc is available copy the temp desc to the right place */
memcpy(desc_on_ring, desc, sizeof(*desc_on_ring));
/* if buf is not NULL assume indirect command */
if (buf) {
dma_buf = &cq->sq.r.sq_bi[cq->sq.next_to_use];
/* copy the user buf into the respective DMA buf */
memcpy(dma_buf->va, buf, buf_size);
desc_on_ring->datalen = htole16(buf_size);
/* Update the address values in the desc with the pa value
* for respective buffer
*/
desc_on_ring->params.generic.addr_high =
htole32(ICE_HI_DWORD(dma_buf->pa));
desc_on_ring->params.generic.addr_low =
htole32(ICE_LO_DWORD(dma_buf->pa));
}
/* Debug desc and buffer */
DNPRINTF(ICE_DBG_AQ_DESC, "ATQ: Control Send queue desc and buffer:\n");
ice_debug_cq(hw, cq, (void *)desc_on_ring, buf, buf_size, false);
(cq->sq.next_to_use)++;
if (cq->sq.next_to_use == cq->sq.count)
cq->sq.next_to_use = 0;
ICE_WRITE(hw, cq->sq.tail, cq->sq.next_to_use);
ice_flush(hw);
/* Wait a short time before initial ice_sq_done() check, to allow
* hardware time for completion.
*/
ice_usec_delay(5, false);
do {
if (ice_sq_done(hw, cq))
break;
ice_usec_delay(10, false);
total_delay++;
} while (total_delay < cq->sq_cmd_timeout);
/* if ready, copy the desc back to temp */
if (ice_sq_done(hw, cq)) {
memcpy(desc, desc_on_ring, sizeof(*desc));
if (buf) {
/* get returned length to copy */
uint16_t copy_size = le16toh(desc->datalen);
if (copy_size > buf_size) {
DNPRINTF(ICE_DBG_AQ_MSG,
"Return len %d > than buf len %d\n",
copy_size, buf_size);
status = ICE_ERR_AQ_ERROR;
} else {
memcpy(buf, dma_buf->va, copy_size);
}
}
retval = le16toh(desc->retval);
if (retval) {
DNPRINTF(ICE_DBG_AQ_MSG, "Control Send Queue "
"command 0x%04X completed with error 0x%X\n",
le16toh(desc->opcode), retval);
/* strip off FW internal code */
retval &= 0xff;
}
cmd_completed = true;
if (!status && retval != ICE_AQ_RC_OK)
status = ICE_ERR_AQ_ERROR;
cq->sq_last_status = (enum ice_aq_err)retval;
}
DNPRINTF(ICE_DBG_AQ_MSG, "ATQ: desc and buffer writeback:\n");
ice_debug_cq(hw, cq, (void *)desc, buf, buf_size, true);
/* save writeback AQ if requested */
if (cd && cd->wb_desc)
memcpy(cd->wb_desc, desc_on_ring, sizeof(*cd->wb_desc));
/* update the error if time out occurred */
if (!cmd_completed) {
if (ICE_READ(hw, cq->rq.len) & cq->rq.len_crit_mask ||
ICE_READ(hw, cq->sq.len) & cq->sq.len_crit_mask) {
DNPRINTF(ICE_DBG_AQ_MSG, "Critical FW error.\n");
status = ICE_ERR_AQ_FW_CRITICAL;
} else {
DNPRINTF(ICE_DBG_AQ_MSG,
"Control Send Queue Writeback timeout.\n");
status = ICE_ERR_AQ_TIMEOUT;
}
}
sq_send_command_error:
return status;
}
/**
* ice_sq_send_cmd - send command to a control queue
* @hw: pointer to the HW struct
* @cq: pointer to the specific Control queue
* @desc: prefilled descriptor describing the command
* @buf: buffer to use for indirect commands (or NULL for direct commands)
* @buf_size: size of buffer for indirect commands (or 0 for direct commands)
* @cd: pointer to command details structure
*
* Main command for the transmit side of a control queue. It puts the command
* on the queue, bumps the tail, waits for processing of the command, captures
* command status and results, etc.
*/
enum ice_status
ice_sq_send_cmd(struct ice_hw *hw, struct ice_ctl_q_info *cq,
struct ice_aq_desc *desc, void *buf, uint16_t buf_size,
struct ice_sq_cd *cd)
{
enum ice_status status = ICE_SUCCESS;
/* if reset is in progress return a soft error */
if (hw->reset_ongoing)
return ICE_ERR_RESET_ONGOING;
#if 0
ice_acquire_lock(&cq->sq_lock);
#endif
status = ice_sq_send_cmd_nolock(hw, cq, desc, buf, buf_size, cd);
#if 0
ice_release_lock(&cq->sq_lock);
#endif
return status;
}
/**
* ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
* @hw: pointer to the HW struct
* @cq: pointer to the specific Control queue
* @desc: prefilled descriptor describing the command
* @buf: buffer to use for indirect commands (or NULL for direct commands)
* @buf_size: size of buffer for indirect commands (or 0 for direct commands)
* @cd: pointer to command details structure
*
* Retry sending the FW Admin Queue command, multiple times, to the FW Admin
* Queue if the EBUSY AQ error is returned.
*/
enum ice_status
ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
struct ice_aq_desc *desc, void *buf, uint16_t buf_size,
struct ice_sq_cd *cd)
{
struct ice_aq_desc desc_cpy;
enum ice_status status;
bool is_cmd_for_retry;
uint8_t *buf_cpy = NULL;
uint8_t idx = 0;
uint16_t opcode;
opcode = le16toh(desc->opcode);
is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
memset(&desc_cpy, 0, sizeof(desc_cpy));
if (is_cmd_for_retry) {
if (buf) {
buf_cpy = (uint8_t *)ice_malloc(hw, buf_size);
if (!buf_cpy)
return ICE_ERR_NO_MEMORY;
}
memcpy(&desc_cpy, desc, sizeof(desc_cpy));
}
do {
status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
if (!is_cmd_for_retry || status == ICE_SUCCESS ||
hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
break;
if (buf_cpy)
memcpy(buf, buf_cpy, buf_size);
memcpy(desc, &desc_cpy, sizeof(desc_cpy));
ice_msec_delay(ICE_SQ_SEND_DELAY_TIME_MS, false);
} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
if (buf_cpy)
ice_free(hw, buf_cpy);
return status;
}
/**
* ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
* @hw: pointer to the HW struct
* @desc: descriptor describing the command
* @buf: buffer to use for indirect commands (NULL for direct commands)
* @buf_size: size of buffer for indirect commands (0 for direct commands)
* @cd: pointer to command details structure
*
* Helper function to send FW Admin Queue commands to the FW Admin Queue.
*/
enum ice_status
ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
uint16_t buf_size, struct ice_sq_cd *cd)
{
return ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
}
/**
* ice_write_byte - write a byte to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
void
ice_write_byte(uint8_t *src_ctx, uint8_t *dest_ctx,
const struct ice_ctx_ele *ce_info)
{
uint8_t src_byte, dest_byte, mask;
uint8_t *from, *dest;
uint16_t shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = (uint8_t)(BIT(ce_info->width) - 1);
src_byte = *from;
src_byte &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_byte <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
memcpy(&dest_byte, dest, sizeof(dest_byte));
dest_byte &= ~mask; /* get the bits not changing */
dest_byte |= src_byte; /* add in the new bits */
/* put it all back */
memcpy(dest, &dest_byte, sizeof(dest_byte));
}
/**
* ice_write_word - write a word to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
void
ice_write_word(uint8_t *src_ctx, uint8_t *dest_ctx,
const struct ice_ctx_ele *ce_info)
{
uint16_t src_word, mask;
uint16_t dest_word;
uint8_t *from, *dest;
uint16_t shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = BIT(ce_info->width) - 1;
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_word = *(uint16_t *)from;
src_word &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_word <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
memcpy(&dest_word, dest, sizeof(dest_word));
dest_word &= ~(htole16(mask)); /* get the bits not changing */
dest_word |= htole16(src_word); /* add in the new bits */
/* put it all back */
memcpy(dest, &dest_word, sizeof(dest_word));
}
/**
* ice_write_dword - write a dword to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
void
ice_write_dword(uint8_t *src_ctx, uint8_t *dest_ctx,
const struct ice_ctx_ele *ce_info)
{
uint32_t src_dword, mask;
uint32_t dest_dword;
uint8_t *from, *dest;
uint16_t shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
/* if the field width is exactly 32 on an x86 machine, then the shift
* operation will not work because the SHL instructions count is masked
* to 5 bits so the shift will do nothing
*/
if (ce_info->width < 32)
mask = BIT(ce_info->width) - 1;
else
mask = (uint32_t)~0;
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_dword = *(uint32_t *)from;
src_dword &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_dword <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
memcpy(&dest_dword, dest, sizeof(dest_dword));
dest_dword &= ~(htole32(mask)); /* get the bits not changing */
dest_dword |= htole32(src_dword); /* add in the new bits */
/* put it all back */
memcpy(dest, &dest_dword, sizeof(dest_dword));
}
/**
* ice_write_qword - write a qword to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
void
ice_write_qword(uint8_t *src_ctx, uint8_t *dest_ctx,
const struct ice_ctx_ele *ce_info)
{
uint64_t src_qword, mask;
uint64_t dest_qword;
uint8_t *from, *dest;
uint16_t shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
/* if the field width is exactly 64 on an x86 machine, then the shift
* operation will not work because the SHL instructions count is masked
* to 6 bits so the shift will do nothing
*/
if (ce_info->width < 64)
mask = BIT_ULL(ce_info->width) - 1;
else
mask = (uint64_t)~0;
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_qword = *(uint64_t *)from;
src_qword &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_qword <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
memcpy(&dest_qword, dest, sizeof(dest_qword) );
dest_qword &= ~(htole64(mask)); /* get the bits not changing */
dest_qword |= htole64(src_qword); /* add in the new bits */
/* put it all back */
memcpy(dest, &dest_qword, sizeof(dest_qword));
}
/**
* ice_set_ctx - set context bits in packed structure
* @hw: pointer to the hardware structure
* @src_ctx: pointer to a generic non-packed context structure
* @dest_ctx: pointer to memory for the packed structure
* @ce_info: a description of the structure to be transformed
*/
enum ice_status
ice_set_ctx(struct ice_hw *hw, uint8_t *src_ctx, uint8_t *dest_ctx,
const struct ice_ctx_ele *ce_info)
{
int f;
for (f = 0; ce_info[f].width; f++) {
/* We have to deal with each element of the FW response
* using the correct size so that we are correct regardless
* of the endianness of the machine.
*/
if (ce_info[f].width > (ce_info[f].size_of * 8)) {
DNPRINTF(ICE_DBG_QCTX, "%s: Field %d width of %d bits "
"larger than size of %d byte(s); skipping write\n",
__func__, f, ce_info[f].width, ce_info[f].size_of);
continue;
}
switch (ce_info[f].size_of) {
case sizeof(uint8_t):
ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(uint16_t):
ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(uint32_t):
ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(uint64_t):
ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
break;
default:
return ICE_ERR_INVAL_SIZE;
}
}
return ICE_SUCCESS;
}
/**
* ice_fill_dflt_direct_cmd_desc - AQ descriptor helper function
* @desc: pointer to the temp descriptor (non DMA mem)
* @opcode: the opcode can be used to decide which flags to turn off or on
*
* Fill the desc with default values
*/
void
ice_fill_dflt_direct_cmd_desc(struct ice_aq_desc *desc, uint16_t opcode)
{
/* zero out the desc */
memset(desc, 0, sizeof(*desc));
desc->opcode = htole16(opcode);
desc->flags = htole16(ICE_AQ_FLAG_SI);
}
/**
* ice_aq_get_fw_ver
* @hw: pointer to the HW struct
* @cd: pointer to command details structure or NULL
*
* Get the firmware version (0x0001) from the admin queue commands
*/
enum ice_status
ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
{
struct ice_aqc_get_ver *resp;
struct ice_aq_desc desc;
enum ice_status status;
resp = &desc.params.get_ver;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
if (!status) {
hw->fw_branch = resp->fw_branch;
hw->fw_maj_ver = resp->fw_major;
hw->fw_min_ver = resp->fw_minor;
hw->fw_patch = resp->fw_patch;
hw->fw_build = le32toh(resp->fw_build);
hw->api_branch = resp->api_branch;
hw->api_maj_ver = resp->api_major;
hw->api_min_ver = resp->api_minor;
hw->api_patch = resp->api_patch;
}
return status;
}
/*
* ice_aq_q_shutdown
* @hw: pointer to the HW struct
* @unloading: is the driver unloading itself
*
* Tell the Firmware that we're shutting down the AdminQ and whether
* or not the driver is unloading as well (0x0003).
*/
enum ice_status
ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
{
struct ice_aqc_q_shutdown *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.q_shutdown;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
if (unloading)
cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_req_res
* @hw: pointer to the HW struct
* @res: resource ID
* @access: access type
* @sdp_number: resource number
* @timeout: the maximum time in ms that the driver may hold the resource
* @cd: pointer to command details structure or NULL
*
* Requests common resource using the admin queue commands (0x0008).
* When attempting to acquire the Global Config Lock, the driver can
* learn of three states:
* 1) ICE_SUCCESS - acquired lock, and can perform download package
* 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
* 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
* successfully downloaded the package; the driver does
* not have to download the package and can continue
* loading
*
* Note that if the caller is in an acquire lock, perform action, release lock
* phase of operation, it is possible that the FW may detect a timeout and issue
* a CORER. In this case, the driver will receive a CORER interrupt and will
* have to determine its cause. The calling thread that is handling this flow
* will likely get an error propagated back to it indicating the Download
* Package, Update Package or the Release Resource AQ commands timed out.
*/
enum ice_status
ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
enum ice_aq_res_access_type access, uint8_t sdp_number,
uint32_t *timeout, struct ice_sq_cd *cd)
{
struct ice_aqc_req_res *cmd_resp;
struct ice_aq_desc desc;
enum ice_status status;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
cmd_resp = &desc.params.res_owner;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
cmd_resp->res_id = htole16(res);
cmd_resp->access_type = htole16(access);
cmd_resp->res_number = htole32(sdp_number);
cmd_resp->timeout = htole32(*timeout);
*timeout = 0;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
/* The completion specifies the maximum time in ms that the driver
* may hold the resource in the Timeout field.
*/
/* Global config lock response utilizes an additional status field.
*
* If the Global config lock resource is held by some other driver, the
* command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
* and the timeout field indicates the maximum time the current owner
* of the resource has to free it.
*/
if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
if (le16toh(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
*timeout = le32toh(cmd_resp->timeout);
return ICE_SUCCESS;
} else if (le16toh(cmd_resp->status) ==
ICE_AQ_RES_GLBL_IN_PROG) {
*timeout = le32toh(cmd_resp->timeout);
return ICE_ERR_AQ_ERROR;
} else if (le16toh(cmd_resp->status) ==
ICE_AQ_RES_GLBL_DONE) {
return ICE_ERR_AQ_NO_WORK;
}
/* invalid FW response, force a timeout immediately */
*timeout = 0;
return ICE_ERR_AQ_ERROR;
}
/* If the resource is held by some other driver, the command completes
* with a busy return value and the timeout field indicates the maximum
* time the current owner of the resource has to free it.
*/
if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
*timeout = le32toh(cmd_resp->timeout);
return status;
}
/**
* ice_aq_release_res
* @hw: pointer to the HW struct
* @res: resource ID
* @sdp_number: resource number
* @cd: pointer to command details structure or NULL
*
* release common resource using the admin queue commands (0x0009)
*/
enum ice_status
ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res,
uint8_t sdp_number, struct ice_sq_cd *cd)
{
struct ice_aqc_req_res *cmd;
struct ice_aq_desc desc;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.res_owner;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
cmd->res_id = htole16(res);
cmd->res_number = htole32(sdp_number);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_acquire_res
* @hw: pointer to the HW structure
* @res: resource ID
* @access: access type (read or write)
* @timeout: timeout in milliseconds
*
* This function will attempt to acquire the ownership of a resource.
*/
enum ice_status
ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
enum ice_aq_res_access_type access, uint32_t timeout)
{
#define ICE_RES_POLLING_DELAY_MS 10
uint32_t delay = ICE_RES_POLLING_DELAY_MS;
uint32_t time_left = timeout;
enum ice_status status;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
* previously acquired the resource and performed any necessary updates;
* in this case the caller does not obtain the resource and has no
* further work to do.
*/
if (status == ICE_ERR_AQ_NO_WORK)
goto ice_acquire_res_exit;
if (status)
DNPRINTF(ICE_DBG_RES, "resource %d acquire type %d failed.\n",
res, access);
/* If necessary, poll until the current lock owner timeouts */
timeout = time_left;
while (status && timeout && time_left) {
ice_msec_delay(delay, true);
timeout = (timeout > delay) ? timeout - delay : 0;
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
if (status == ICE_ERR_AQ_NO_WORK)
/* lock free, but no work to do */
break;
if (!status)
/* lock acquired */
break;
}
if (status && status != ICE_ERR_AQ_NO_WORK)
DNPRINTF(ICE_DBG_RES, "resource acquire timed out.\n");
ice_acquire_res_exit:
if (status == ICE_ERR_AQ_NO_WORK) {
if (access == ICE_RES_WRITE)
DNPRINTF(ICE_DBG_RES,
"resource indicates no work to do.\n");
else
DNPRINTF(ICE_DBG_RES,
"Warning: ICE_ERR_AQ_NO_WORK not expected\n");
}
return status;
}
/**
* ice_release_res
* @hw: pointer to the HW structure
* @res: resource ID
*
* This function will release a resource using the proper Admin Command.
*/
void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
{
enum ice_status status;
uint32_t total_delay = 0;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
status = ice_aq_release_res(hw, res, 0, NULL);
/* there are some rare cases when trying to release the resource
* results in an admin queue timeout, so handle them correctly
*/
while ((status == ICE_ERR_AQ_TIMEOUT) &&
(total_delay < hw->adminq.sq_cmd_timeout)) {
ice_msec_delay(1, true);
status = ice_aq_release_res(hw, res, 0, NULL);
total_delay++;
}
}
/*
* ice_aq_ver_check - Check the reported AQ API version
* Checks if the driver should load on a given AQ API version.
* Return: 'true' iff the driver should attempt to load. 'false' otherwise.
*/
bool
ice_aq_ver_check(struct ice_hw *hw)
{
struct ice_softc *sc = hw->hw_sc;
if (hw->api_maj_ver > EXP_FW_API_VER_MAJOR) {
/* Major API version is newer than expected, don't load */
printf("%s: unsupported firmware API major version %u; "
"expected version is %u\n", sc->sc_dev.dv_xname,
hw->api_maj_ver, EXP_FW_API_VER_MAJOR);
return false;
}
return true;
}
/*
* ice_shutdown_sq - shutdown the transmit side of a control queue
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* The main shutdown routine for the Control Transmit Queue
*/
enum ice_status
ice_shutdown_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
enum ice_status ret_code = ICE_SUCCESS;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
#if 0
ice_acquire_lock(&cq->sq_lock);
#endif
if (!cq->sq.count) {
ret_code = ICE_ERR_NOT_READY;
goto shutdown_sq_out;
}
/* Stop processing of the control queue */
ICE_WRITE(hw, cq->sq.head, 0);
ICE_WRITE(hw, cq->sq.tail, 0);
ICE_WRITE(hw, cq->sq.len, 0);
ICE_WRITE(hw, cq->sq.bal, 0);
ICE_WRITE(hw, cq->sq.bah, 0);
cq->sq.count = 0; /* to indicate uninitialized queue */
/* free ring buffers and the ring itself */
ICE_FREE_CQ_BUFS(hw, cq, sq);
ice_free_cq_ring(hw, &cq->sq);
shutdown_sq_out:
#if 0
ice_release_lock(&cq->sq_lock);
#endif
return ret_code;
}
/*
* ice_shutdown_rq - shutdown Control ARQ
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* The main shutdown routine for the Control Receive Queue
*/
enum ice_status
ice_shutdown_rq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
enum ice_status ret_code = ICE_SUCCESS;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
#if 0
ice_acquire_lock(&cq->rq_lock);
#endif
if (!cq->rq.count) {
ret_code = ICE_ERR_NOT_READY;
goto shutdown_rq_out;
}
/* Stop Control Queue processing */
ICE_WRITE(hw, cq->rq.head, 0);
ICE_WRITE(hw, cq->rq.tail, 0);
ICE_WRITE(hw, cq->rq.len, 0);
ICE_WRITE(hw, cq->rq.bal, 0);
ICE_WRITE(hw, cq->rq.bah, 0);
/* set rq.count to 0 to indicate uninitialized queue */
cq->rq.count = 0;
/* free ring buffers and the ring itself */
ICE_FREE_CQ_BUFS(hw, cq, rq);
ice_free_cq_ring(hw, &cq->rq);
shutdown_rq_out:
#if 0
ice_release_lock(&cq->rq_lock);
#endif
return ret_code;
}
/*
* ice_init_check_adminq - Check version for Admin Queue to know if its alive
*/
enum ice_status
ice_init_check_adminq(struct ice_hw *hw)
{
struct ice_ctl_q_info *cq = &hw->adminq;
enum ice_status status;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
status = ice_aq_get_fw_ver(hw, NULL);
if (status)
goto init_ctrlq_free_rq;
if (!ice_aq_ver_check(hw)) {
status = ICE_ERR_FW_API_VER;
goto init_ctrlq_free_rq;
}
return ICE_SUCCESS;
init_ctrlq_free_rq:
ice_shutdown_rq(hw, cq);
ice_shutdown_sq(hw, cq);
return status;
}
/*
* ice_init_ctrlq - main initialization routine for any control Queue
* @hw: pointer to the hardware structure
* @q_type: specific Control queue type
*
* Prior to calling this function, the driver *MUST* set the following fields
* in the cq->structure:
* - cq->num_sq_entries
* - cq->num_rq_entries
* - cq->rq_buf_size
* - cq->sq_buf_size
*
* NOTE: this function does not initialize the controlq locks
*/
enum ice_status
ice_init_ctrlq(struct ice_hw *hw, enum ice_ctl_q q_type)
{
struct ice_ctl_q_info *cq;
enum ice_status ret_code;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
switch (q_type) {
case ICE_CTL_Q_ADMIN:
ice_adminq_init_regs(hw);
cq = &hw->adminq;
break;
case ICE_CTL_Q_MAILBOX:
ice_mailbox_init_regs(hw);
cq = &hw->mailboxq;
break;
default:
return ICE_ERR_PARAM;
}
cq->qtype = q_type;
/* verify input for valid configuration */
if (!cq->num_rq_entries || !cq->num_sq_entries ||
!cq->rq_buf_size || !cq->sq_buf_size) {
return ICE_ERR_CFG;
}
/* setup SQ command write back timeout */
cq->sq_cmd_timeout = ICE_CTL_Q_SQ_CMD_TIMEOUT;
/* allocate the ATQ */
ret_code = ice_init_sq(hw, cq);
if (ret_code)
return ret_code;
/* allocate the ARQ */
ret_code = ice_init_rq(hw, cq);
if (ret_code)
goto init_ctrlq_free_sq;
/* success! */
return ICE_SUCCESS;
init_ctrlq_free_sq:
ice_shutdown_sq(hw, cq);
return ret_code;
}
/*
* ice_shutdown_ctrlq - shutdown routine for any control queue
* @hw: pointer to the hardware structure
* @q_type: specific Control queue type
* @unloading: is the driver unloading itself
*
* NOTE: this function does not destroy the control queue locks.
*/
void
ice_shutdown_ctrlq(struct ice_hw *hw, enum ice_ctl_q q_type,
bool unloading)
{
struct ice_ctl_q_info *cq;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
switch (q_type) {
case ICE_CTL_Q_ADMIN:
cq = &hw->adminq;
if (ice_check_sq_alive(hw, cq))
ice_aq_q_shutdown(hw, unloading);
break;
case ICE_CTL_Q_MAILBOX:
cq = &hw->mailboxq;
break;
default:
return;
}
ice_shutdown_sq(hw, cq);
ice_shutdown_rq(hw, cq);
}
/*
* ice_shutdown_all_ctrlq - shutdown routine for all control queues
* @hw: pointer to the hardware structure
* @unloading: is the driver unloading itself
*
* NOTE: this function does not destroy the control queue locks. The driver
* may call this at runtime to shutdown and later restart control queues, such
* as in response to a reset event.
*/
void
ice_shutdown_all_ctrlq(struct ice_hw *hw, bool unloading)
{
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
/* Shutdown FW admin queue */
ice_shutdown_ctrlq(hw, ICE_CTL_Q_ADMIN, unloading);
/* Shutdown PF-VF Mailbox */
ice_shutdown_ctrlq(hw, ICE_CTL_Q_MAILBOX, unloading);
}
/**
* ice_init_all_ctrlq - main initialization routine for all control queues
* @hw: pointer to the hardware structure
*
* Prior to calling this function, the driver MUST* set the following fields
* in the cq->structure for all control queues:
* - cq->num_sq_entries
* - cq->num_rq_entries
* - cq->rq_buf_size
* - cq->sq_buf_size
*
* NOTE: this function does not initialize the controlq locks.
*/
enum ice_status
ice_init_all_ctrlq(struct ice_hw *hw)
{
enum ice_status status;
uint32_t retry = 0;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
/* Init FW admin queue */
do {
status = ice_init_ctrlq(hw, ICE_CTL_Q_ADMIN);
if (status)
return status;
status = ice_init_check_adminq(hw);
if (status != ICE_ERR_AQ_FW_CRITICAL)
break;
DNPRINTF(ICE_DBG_AQ_MSG, "Retry Admin Queue init due to FW critical error\n");
ice_shutdown_ctrlq(hw, ICE_CTL_Q_ADMIN, true);
ice_msec_delay(ICE_CTL_Q_ADMIN_INIT_MSEC, true);
} while (retry++ < ICE_CTL_Q_ADMIN_INIT_TIMEOUT);
if (status)
return status;
/* Init Mailbox queue */
return ice_init_ctrlq(hw, ICE_CTL_Q_MAILBOX);
}
/**
* ice_init_ctrlq_locks - Initialize locks for a control queue
* @cq: pointer to the control queue
*
* Initializes the send and receive queue locks for a given control queue.
*/
void
ice_init_ctrlq_locks(struct ice_ctl_q_info *cq)
{
ice_init_lock(&cq->sq_lock);
ice_init_lock(&cq->rq_lock);
}
/**
* ice_create_all_ctrlq - main initialization routine for all control queues
* @hw: pointer to the hardware structure
*
* Prior to calling this function, the driver *MUST* set the following fields
* in the cq->structure for all control queues:
* - cq->num_sq_entries
* - cq->num_rq_entries
* - cq->rq_buf_size
* - cq->sq_buf_size
*
* This function creates all the control queue locks and then calls
* ice_init_all_ctrlq. It should be called once during driver load. If the
* driver needs to re-initialize control queues at run time it should call
* ice_init_all_ctrlq instead.
*/
enum ice_status
ice_create_all_ctrlq(struct ice_hw *hw)
{
ice_init_ctrlq_locks(&hw->adminq);
ice_init_ctrlq_locks(&hw->mailboxq);
return ice_init_all_ctrlq(hw);
}
/*
* ice_destroy_all_ctrlq - exit routine for all control queues
*
* This function shuts down all the control queues and then destroys the
* control queue locks. It should be called once during driver unload. The
* driver should call ice_shutdown_all_ctrlq if it needs to shut down and
* reinitialize control queues, such as in response to a reset event.
*/
void
ice_destroy_all_ctrlq(struct ice_hw *hw)
{
/* shut down all the control queues first */
ice_shutdown_all_ctrlq(hw, true);
ice_destroy_ctrlq_locks(&hw->adminq);
ice_destroy_ctrlq_locks(&hw->mailboxq);
}
/**
* ice_aq_fwlog_get - Get the current firmware logging configuration (0xFF32)
* @hw: pointer to the HW structure
* @cfg: firmware logging configuration to populate
*/
enum ice_status
ice_aq_fwlog_get(struct ice_hw *hw, struct ice_fwlog_cfg *cfg)
{
struct ice_aqc_fw_log_cfg_resp *fw_modules;
struct ice_aqc_fw_log *cmd;
struct ice_aq_desc desc;
enum ice_status status;
uint16_t i, module_id_cnt;
void *buf;
memset(cfg, 0, sizeof(*cfg));
buf = ice_calloc(hw, 1, ICE_AQ_MAX_BUF_LEN);
if (!buf)
return ICE_ERR_NO_MEMORY;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logs_query);
cmd = &desc.params.fw_log;
cmd->cmd_flags = ICE_AQC_FW_LOG_AQ_QUERY;
status = ice_aq_send_cmd(hw, &desc, buf, ICE_AQ_MAX_BUF_LEN, NULL);
if (status) {
DNPRINTF(ICE_DBG_FW_LOG,
"Failed to get FW log configuration\n");
goto status_out;
}
module_id_cnt = le16toh(cmd->ops.cfg.mdl_cnt);
if (module_id_cnt < ICE_AQC_FW_LOG_ID_MAX) {
DNPRINTF(ICE_DBG_FW_LOG, "FW returned less than the expected "
"number of FW log module IDs\n");
} else {
if (module_id_cnt > ICE_AQC_FW_LOG_ID_MAX)
DNPRINTF(ICE_DBG_FW_LOG, "FW returned more than "
"expected number of FW log module IDs, setting "
"module_id_cnt to software expected max %u\n",
ICE_AQC_FW_LOG_ID_MAX);
module_id_cnt = ICE_AQC_FW_LOG_ID_MAX;
}
cfg->log_resolution = le16toh(cmd->ops.cfg.log_resolution);
if (cmd->cmd_flags & ICE_AQC_FW_LOG_CONF_AQ_EN)
cfg->options |= ICE_FWLOG_OPTION_ARQ_ENA;
if (cmd->cmd_flags & ICE_AQC_FW_LOG_CONF_UART_EN)
cfg->options |= ICE_FWLOG_OPTION_UART_ENA;
if (cmd->cmd_flags & ICE_AQC_FW_LOG_QUERY_REGISTERED)
cfg->options |= ICE_FWLOG_OPTION_IS_REGISTERED;
fw_modules = (struct ice_aqc_fw_log_cfg_resp *)buf;
for (i = 0; i < module_id_cnt; i++) {
struct ice_aqc_fw_log_cfg_resp *fw_module = &fw_modules[i];
cfg->module_entries[i].module_id =
le16toh(fw_module->module_identifier);
cfg->module_entries[i].log_level = fw_module->log_level;
}
status_out:
ice_free(hw, buf);
return status;
}
/**
* ice_fwlog_set_support_ena - Set if FW logging is supported by FW
* @hw: pointer to the HW struct
*
* If FW returns success to the ice_aq_fwlog_get call then it supports FW
* logging, else it doesn't. Set the fwlog_support_ena flag accordingly.
*
* This function is only meant to be called during driver init to determine if
* the FW support FW logging.
*/
void
ice_fwlog_set_support_ena(struct ice_hw *hw)
{
struct ice_fwlog_cfg *cfg;
enum ice_status status;
hw->fwlog_support_ena = false;
cfg = (struct ice_fwlog_cfg *)ice_calloc(hw, 1, sizeof(*cfg));
if (!cfg)
return;
/* don't call ice_fwlog_get() because that would overwrite the cached
* configuration from the call to ice_fwlog_init(), which is expected to
* be called prior to this function
*/
status = ice_aq_fwlog_get(hw, cfg);
if (status)
DNPRINTF(ICE_DBG_FW_LOG, "ice_fwlog_get failed, FW logging "
"is not supported on this version of FW, status %d\n",
status);
else
hw->fwlog_support_ena = true;
ice_free(hw, cfg);
}
/**
* ice_aq_fwlog_set - Set FW logging configuration AQ command (0xFF30)
* @hw: pointer to the HW structure
* @entries: entries to configure
* @num_entries: number of @entries
* @options: options from ice_fwlog_cfg->options structure
* @log_resolution: logging resolution
*/
enum ice_status
ice_aq_fwlog_set(struct ice_hw *hw, struct ice_fwlog_module_entry *entries,
uint16_t num_entries, uint16_t options,
uint16_t log_resolution)
{
struct ice_aqc_fw_log_cfg_resp *fw_modules;
struct ice_aqc_fw_log *cmd;
struct ice_aq_desc desc;
enum ice_status status;
uint16_t i;
fw_modules = (struct ice_aqc_fw_log_cfg_resp *)
ice_calloc(hw, num_entries, sizeof(*fw_modules));
if (!fw_modules)
return ICE_ERR_NO_MEMORY;
for (i = 0; i < num_entries; i++) {
fw_modules[i].module_identifier = htole16(entries[i].module_id);
fw_modules[i].log_level = entries[i].log_level;
}
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logs_config);
desc.flags |= htole16(ICE_AQ_FLAG_RD);
cmd = &desc.params.fw_log;
cmd->cmd_flags = ICE_AQC_FW_LOG_CONF_SET_VALID;
cmd->ops.cfg.log_resolution = htole16(log_resolution);
cmd->ops.cfg.mdl_cnt = htole16(num_entries);
if (options & ICE_FWLOG_OPTION_ARQ_ENA)
cmd->cmd_flags |= ICE_AQC_FW_LOG_CONF_AQ_EN;
if (options & ICE_FWLOG_OPTION_UART_ENA)
cmd->cmd_flags |= ICE_AQC_FW_LOG_CONF_UART_EN;
status = ice_aq_send_cmd(hw, &desc, fw_modules,
sizeof(*fw_modules) * num_entries,
NULL);
ice_free(hw, fw_modules);
return status;
}
/**
* ice_fwlog_supported - Cached for whether FW supports FW logging or not
* @hw: pointer to the HW structure
*
* This will always return false if called before ice_init_hw(), so it must be
* called after ice_init_hw().
*/
bool
ice_fwlog_supported(struct ice_hw *hw)
{
return hw->fwlog_support_ena;
}
/**
* ice_fwlog_valid_module_entries - validate all the module entry IDs and
* log levels
*/
bool
ice_fwlog_valid_module_entries(struct ice_hw *hw,
struct ice_fwlog_module_entry *entries, uint16_t num_entries)
{
uint16_t i;
if (!entries) {
DNPRINTF(ICE_DBG_FW_LOG, "Null ice_fwlog_module_entry array\n");
return false;
}
if (!num_entries) {
DNPRINTF(ICE_DBG_FW_LOG, "num_entries must be non-zero\n");
return false;
}
for (i = 0; i < num_entries; i++) {
struct ice_fwlog_module_entry *entry = &entries[i];
if (entry->module_id >= ICE_AQC_FW_LOG_ID_MAX) {
DNPRINTF(ICE_DBG_FW_LOG,
"Invalid module_id %u, max valid module_id is %u\n",
entry->module_id, ICE_AQC_FW_LOG_ID_MAX - 1);
return false;
}
if (entry->log_level >= ICE_FWLOG_LEVEL_INVALID) {
DNPRINTF(ICE_DBG_FW_LOG,
"Invalid log_level %u, max valid log_level is %u\n",
entry->log_level, ICE_AQC_FW_LOG_ID_MAX - 1);
return false;
}
}
return true;
}
/**
* ice_fwlog_valid_cfg - validate entire configuration
* @hw: pointer to the HW structure
* @cfg: config to validate
*/
bool
ice_fwlog_valid_cfg(struct ice_hw *hw, struct ice_fwlog_cfg *cfg)
{
if (!cfg) {
DNPRINTF(ICE_DBG_FW_LOG, "Null ice_fwlog_cfg\n");
return false;
}
if (cfg->log_resolution < ICE_AQC_FW_LOG_MIN_RESOLUTION ||
cfg->log_resolution > ICE_AQC_FW_LOG_MAX_RESOLUTION) {
DNPRINTF(ICE_DBG_FW_LOG, "Unsupported log_resolution %u, "
"must be between %u and %u\n",
cfg->log_resolution, ICE_AQC_FW_LOG_MIN_RESOLUTION,
ICE_AQC_FW_LOG_MAX_RESOLUTION);
return false;
}
if (!ice_fwlog_valid_module_entries(hw, cfg->module_entries,
ICE_AQC_FW_LOG_ID_MAX))
return false;
return true;
}
/**
* ice_fwlog_set - Set the firmware logging settings
* @hw: pointer to the HW structure
* @cfg: config used to set firmware logging
*
* This function should be called whenever the driver needs to set the firmware
* logging configuration. It can be called on initialization, reset, or during
* runtime.
*
* If the PF wishes to receive FW logging then it must register via
* ice_fwlog_register. Note, that ice_fwlog_register does not need to be called
* for init.
*/
enum ice_status
ice_fwlog_set(struct ice_hw *hw, struct ice_fwlog_cfg *cfg)
{
enum ice_status status;
if (!ice_fwlog_supported(hw))
return ICE_ERR_NOT_SUPPORTED;
if (!ice_fwlog_valid_cfg(hw, cfg))
return ICE_ERR_PARAM;
status = ice_aq_fwlog_set(hw, cfg->module_entries,
ICE_AQC_FW_LOG_ID_MAX, cfg->options,
cfg->log_resolution);
if (!status)
hw->fwlog_cfg = *cfg;
return status;
}
/**
* ice_aq_fwlog_register - Register PF for firmware logging events (0xFF31)
* @hw: pointer to the HW structure
* @reg: true to register and false to unregister
*/
enum ice_status
ice_aq_fwlog_register(struct ice_hw *hw, bool reg)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logs_register);
if (reg)
desc.params.fw_log.cmd_flags = ICE_AQC_FW_LOG_AQ_REGISTER;
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_fwlog_register - Register the PF for firmware logging
* @hw: pointer to the HW structure
*
* After this call the PF will start to receive firmware logging based on the
* configuration set in ice_fwlog_set.
*/
enum ice_status
ice_fwlog_register(struct ice_hw *hw)
{
enum ice_status status;
if (!ice_fwlog_supported(hw))
return ICE_ERR_NOT_SUPPORTED;
status = ice_aq_fwlog_register(hw, true);
if (status)
DNPRINTF(ICE_DBG_FW_LOG, "Failed to register for firmware "
"logging events over ARQ\n");
else
hw->fwlog_cfg.options |= ICE_FWLOG_OPTION_IS_REGISTERED;
return status;
}
/**
* ice_fwlog_unregister - Unregister the PF from firmware logging
* @hw: pointer to the HW structure
*/
enum ice_status
ice_fwlog_unregister(struct ice_hw *hw)
{
enum ice_status status;
if (!ice_fwlog_supported(hw))
return ICE_ERR_NOT_SUPPORTED;
status = ice_aq_fwlog_register(hw, false);
if (status)
DNPRINTF(ICE_DBG_FW_LOG, "Failed to unregister from "
"firmware logging events over ARQ\n");
else
hw->fwlog_cfg.options &= ~ICE_FWLOG_OPTION_IS_REGISTERED;
return status;
}
/**
* ice_acquire_nvm - Generic request for acquiring the NVM ownership
* @hw: pointer to the HW structure
* @access: NVM access type (read or write)
*
* This function will request NVM ownership.
*/
enum ice_status
ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
{
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
if (hw->flash.blank_nvm_mode)
return ICE_SUCCESS;
return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
}
/**
* ice_release_nvm - Generic request for releasing the NVM ownership
* @hw: pointer to the HW structure
*
* This function will release NVM ownership.
*/
void
ice_release_nvm(struct ice_hw *hw)
{
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
if (hw->flash.blank_nvm_mode)
return;
ice_release_res(hw, ICE_NVM_RES_ID);
}
/**
* ice_get_flash_bank_offset - Get offset into requested flash bank
* @hw: pointer to the HW structure
* @bank: whether to read from the active or inactive flash bank
* @module: the module to read from
*
* Based on the module, lookup the module offset from the beginning of the
* flash.
*
* Returns the flash offset. Note that a value of zero is invalid and must be
* treated as an error.
*/
uint32_t ice_get_flash_bank_offset(struct ice_hw *hw,
enum ice_bank_select bank, uint16_t module)
{
struct ice_bank_info *banks = &hw->flash.banks;
enum ice_flash_bank active_bank;
bool second_bank_active;
uint32_t offset, size;
switch (module) {
case ICE_SR_1ST_NVM_BANK_PTR:
offset = banks->nvm_ptr;
size = banks->nvm_size;
active_bank = banks->nvm_bank;
break;
case ICE_SR_1ST_OROM_BANK_PTR:
offset = banks->orom_ptr;
size = banks->orom_size;
active_bank = banks->orom_bank;
break;
case ICE_SR_NETLIST_BANK_PTR:
offset = banks->netlist_ptr;
size = banks->netlist_size;
active_bank = banks->netlist_bank;
break;
default:
DNPRINTF(ICE_DBG_NVM,
"Unexpected value for flash module: 0x%04x\n", module);
return 0;
}
switch (active_bank) {
case ICE_1ST_FLASH_BANK:
second_bank_active = false;
break;
case ICE_2ND_FLASH_BANK:
second_bank_active = true;
break;
default:
DNPRINTF(ICE_DBG_NVM,
"Unexpected value for active flash bank: %u\n",
active_bank);
return 0;
}
/* The second flash bank is stored immediately following the first
* bank. Based on whether the 1st or 2nd bank is active, and whether
* we want the active or inactive bank, calculate the desired offset.
*/
switch (bank) {
case ICE_ACTIVE_FLASH_BANK:
return offset + (second_bank_active ? size : 0);
case ICE_INACTIVE_FLASH_BANK:
return offset + (second_bank_active ? 0 : size);
}
DNPRINTF(ICE_DBG_NVM,
"Unexpected value for flash bank selection: %u\n", bank);
return 0;
}
/**
* ice_aq_read_nvm
* @hw: pointer to the HW struct
* @module_typeid: module pointer location in words from the NVM beginning
* @offset: byte offset from the module beginning
* @length: length of the section to be read (in bytes from the offset)
* @data: command buffer (size [bytes] = length)
* @last_command: tells if this is the last command in a series
* @read_shadow_ram: tell if this is a shadow RAM read
* @cd: pointer to command details structure or NULL
*
* Read the NVM using the admin queue commands (0x0701)
*/
enum ice_status
ice_aq_read_nvm(struct ice_hw *hw, uint16_t module_typeid, uint32_t offset,
uint16_t length, void *data, bool last_command, bool read_shadow_ram,
struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
struct ice_aqc_nvm *cmd;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.nvm;
if (offset > ICE_AQC_NVM_MAX_OFFSET)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
/* If this is the last command in a series, set the proper flag. */
if (last_command)
cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
cmd->module_typeid = htole16(module_typeid);
cmd->offset_low = htole16(offset & 0xFFFF);
cmd->offset_high = (offset >> 16) & 0xFF;
cmd->length = htole16(length);
return ice_aq_send_cmd(hw, &desc, data, length, cd);
}
/**
* ice_read_flat_nvm - Read portion of NVM by flat offset
* @hw: pointer to the HW struct
* @offset: offset from beginning of NVM
* @length: (in) number of bytes to read; (out) number of bytes actually read
* @data: buffer to return data in (sized to fit the specified length)
* @read_shadow_ram: if true, read from shadow RAM instead of NVM
*
* Reads a portion of the NVM, as a flat memory space. This function correctly
* breaks read requests across Shadow RAM sectors and ensures that no single
* read request exceeds the maximum 4KB read for a single AdminQ command.
*
* Returns a status code on failure. Note that the data pointer may be
* partially updated if some reads succeed before a failure.
*/
enum ice_status
ice_read_flat_nvm(struct ice_hw *hw, uint32_t offset, uint32_t *length,
uint8_t *data, bool read_shadow_ram)
{
enum ice_status status;
uint32_t inlen = *length;
uint32_t bytes_read = 0;
bool last_cmd;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
*length = 0;
/* Verify the length of the read if this is for the Shadow RAM */
if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) {
DNPRINTF(ICE_DBG_NVM,
"NVM error: requested data is beyond Shadow RAM limit\n");
return ICE_ERR_PARAM;
}
do {
uint32_t read_size, sector_offset;
/* ice_aq_read_nvm cannot read more than 4KB at a time.
* Additionally, a read from the Shadow RAM may not cross over
* a sector boundary. Conveniently, the sector size is also
* 4KB.
*/
sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
read_size = MIN(ICE_AQ_MAX_BUF_LEN - sector_offset,
inlen - bytes_read);
last_cmd = !(bytes_read + read_size < inlen);
/* ice_aq_read_nvm takes the length as a u16. Our read_size is
* calculated using a u32, but the ICE_AQ_MAX_BUF_LEN maximum
* size guarantees that it will fit within the 2 bytes.
*/
status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
offset, (uint16_t)read_size, data + bytes_read, last_cmd,
read_shadow_ram, NULL);
if (status)
break;
bytes_read += read_size;
offset += read_size;
} while (!last_cmd);
*length = bytes_read;
return status;
}
/**
* ice_discover_flash_size - Discover the available flash size
* @hw: pointer to the HW struct
*
* The device flash could be up to 16MB in size. However, it is possible that
* the actual size is smaller. Use bisection to determine the accessible size
* of flash memory.
*/
enum ice_status
ice_discover_flash_size(struct ice_hw *hw)
{
uint32_t min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
enum ice_status status;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status)
return status;
while ((max_size - min_size) > 1) {
uint32_t offset = (max_size + min_size) / 2;
uint32_t len = 1;
uint8_t data;
status = ice_read_flat_nvm(hw, offset, &len, &data, false);
if (status == ICE_ERR_AQ_ERROR &&
hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
DNPRINTF(ICE_DBG_NVM,
"%s: New upper bound of %u bytes\n", __func__,
offset);
status = ICE_SUCCESS;
max_size = offset;
} else if (!status) {
DNPRINTF(ICE_DBG_NVM,
"%s: New lower bound of %u bytes\n", __func__,
offset);
min_size = offset;
} else {
/* an unexpected error occurred */
goto err_read_flat_nvm;
}
}
DNPRINTF(ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size);
hw->flash.flash_size = max_size;
err_read_flat_nvm:
ice_release_nvm(hw);
return status;
}
/**
* ice_read_sr_word_aq - Reads Shadow RAM via AQ
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
* @data: word read from the Shadow RAM
*
* Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
*/
enum ice_status
ice_read_sr_word_aq(struct ice_hw *hw, uint16_t offset, uint16_t *data)
{
uint32_t bytes = sizeof(uint16_t);
enum ice_status status;
uint16_t data_local;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
/* Note that ice_read_flat_nvm checks if the read is past the Shadow
* RAM size, and ensures we don't read across a Shadow RAM sector
* boundary
*/
status = ice_read_flat_nvm(hw, offset * sizeof(uint16_t), &bytes,
(uint8_t *)&data_local, true);
if (status)
return status;
*data = le16toh(data_local);
return ICE_SUCCESS;
}
/**
* ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
* @data: word read from the Shadow RAM
*
* Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
*/
enum ice_status
ice_read_sr_word(struct ice_hw *hw, uint16_t offset, uint16_t *data)
{
enum ice_status status;
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (!status) {
status = ice_read_sr_word_aq(hw, offset, data);
ice_release_nvm(hw);
}
return status;
}
/**
* ice_read_sr_pointer - Read the value of a Shadow RAM pointer word
* @hw: pointer to the HW structure
* @offset: the word offset of the Shadow RAM word to read
* @pointer: pointer value read from Shadow RAM
*
* Read the given Shadow RAM word, and convert it to a pointer value specified
* in bytes. This function assumes the specified offset is a valid pointer
* word.
*
* Each pointer word specifies whether it is stored in word size or 4KB
* sector size by using the highest bit. The reported pointer value will be in
* bytes, intended for flat NVM reads.
*/
enum ice_status
ice_read_sr_pointer(struct ice_hw *hw, uint16_t offset, uint32_t *pointer)
{
enum ice_status status;
uint16_t value;
status = ice_read_sr_word(hw, offset, &value);
if (status)
return status;
/* Determine if the pointer is in 4KB or word units */
if (value & ICE_SR_NVM_PTR_4KB_UNITS)
*pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024;
else
*pointer = value * 2;
return ICE_SUCCESS;
}
/**
* ice_read_sr_area_size - Read an area size from a Shadow RAM word
* @hw: pointer to the HW structure
* @offset: the word offset of the Shadow RAM to read
* @size: size value read from the Shadow RAM
*
* Read the given Shadow RAM word, and convert it to an area size value
* specified in bytes. This function assumes the specified offset is a valid
* area size word.
*
* Each area size word is specified in 4KB sector units. This function reports
* the size in bytes, intended for flat NVM reads.
*/
enum ice_status
ice_read_sr_area_size(struct ice_hw *hw, uint16_t offset, uint32_t *size)
{
enum ice_status status;
uint16_t value;
status = ice_read_sr_word(hw, offset, &value);
if (status)
return status;
/* Area sizes are always specified in 4KB units */
*size = value * 4 * 1024;
return ICE_SUCCESS;
}
/**
* ice_determine_active_flash_banks - Discover active bank for each module
* @hw: pointer to the HW struct
*
* Read the Shadow RAM control word and determine which banks are active for
* the NVM, OROM, and Netlist modules. Also read and calculate the associated
* pointer and size. These values are then cached into the ice_flash_info
* structure for later use in order to calculate the correct offset to read
* from the active module.
*/
enum ice_status
ice_determine_active_flash_banks(struct ice_hw *hw)
{
struct ice_bank_info *banks = &hw->flash.banks;
enum ice_status status;
uint16_t ctrl_word;
status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word);
if (status) {
DNPRINTF(ICE_DBG_NVM,
"Failed to read the Shadow RAM control word\n");
return status;
}
/* Check that the control word indicates validity */
if ((ctrl_word & ICE_SR_CTRL_WORD_1_M) >> ICE_SR_CTRL_WORD_1_S !=
ICE_SR_CTRL_WORD_VALID) {
DNPRINTF(ICE_DBG_NVM, "Shadow RAM control word is invalid\n");
return ICE_ERR_CFG;
}
if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK))
banks->nvm_bank = ICE_1ST_FLASH_BANK;
else
banks->nvm_bank = ICE_2ND_FLASH_BANK;
if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK))
banks->orom_bank = ICE_1ST_FLASH_BANK;
else
banks->orom_bank = ICE_2ND_FLASH_BANK;
if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK))
banks->netlist_bank = ICE_1ST_FLASH_BANK;
else
banks->netlist_bank = ICE_2ND_FLASH_BANK;
status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr);
if (status) {
DNPRINTF(ICE_DBG_NVM, "Failed to read NVM bank pointer\n");
return status;
}
status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size);
if (status) {
DNPRINTF(ICE_DBG_NVM, "Failed to read NVM bank area size\n");
return status;
}
status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr);
if (status) {
DNPRINTF(ICE_DBG_NVM, "Failed to read OROM bank pointer\n");
return status;
}
status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size);
if (status) {
DNPRINTF(ICE_DBG_NVM, "Failed to read OROM bank area size\n");
return status;
}
status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr);
if (status) {
DNPRINTF(ICE_DBG_NVM, "Failed to read Netlist bank pointer\n");
return status;
}
status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE,
&banks->netlist_size);
if (status) {
DNPRINTF(ICE_DBG_NVM,
"Failed to read Netlist bank area size\n");
return status;
}
return ICE_SUCCESS;
}
/**
* ice_read_flash_module - Read a word from one of the main NVM modules
* @hw: pointer to the HW structure
* @bank: which bank of the module to read
* @module: the module to read
* @offset: the offset into the module in bytes
* @data: storage for the word read from the flash
* @length: bytes of data to read
*
* Read data from the specified flash module. The bank parameter indicates
* whether or not to read from the active bank or the inactive bank of that
* module.
*
* The word will be read using flat NVM access, and relies on the
* hw->flash.banks data being setup by ice_determine_active_flash_banks()
* during initialization.
*/
enum ice_status
ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank,
uint16_t module, uint32_t offset, uint8_t *data, uint32_t length)
{
enum ice_status status;
uint32_t start;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
start = ice_get_flash_bank_offset(hw, bank, module);
if (!start) {
DNPRINTF(ICE_DBG_NVM,
"Unable to calculate flash bank offset for module 0x%04x\n",
module);
return ICE_ERR_PARAM;
}
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status)
return status;
status = ice_read_flat_nvm(hw, start + offset, &length, data, false);
ice_release_nvm(hw);
return status;
}
/**
* ice_read_nvm_module - Read from the active main NVM module
* @hw: pointer to the HW structure
* @bank: whether to read from active or inactive NVM module
* @offset: offset into the NVM module to read, in words
* @data: storage for returned word value
*
* Read the specified word from the active NVM module. This includes the CSS
* header at the start of the NVM module.
*/
enum ice_status
ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank,
uint32_t offset, uint16_t *data)
{
enum ice_status status;
uint16_t data_local;
status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR,
offset * sizeof(uint16_t), (uint8_t *)&data_local,
sizeof(uint16_t));
if (!status)
*data = le16toh(data_local);
return status;
}
/**
* ice_get_nvm_css_hdr_len - Read the CSS header length from the NVM CSS header
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash bank
* @hdr_len: storage for header length in words
*
* Read the CSS header length from the NVM CSS header and add the Authentication
* header size, and then convert to words.
*/
enum ice_status
ice_get_nvm_css_hdr_len(struct ice_hw *hw, enum ice_bank_select bank,
uint32_t *hdr_len)
{
uint16_t hdr_len_l, hdr_len_h;
enum ice_status status;
uint32_t hdr_len_dword;
status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_HDR_LEN_L,
&hdr_len_l);
if (status)
return status;
status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_HDR_LEN_H,
&hdr_len_h);
if (status)
return status;
/* CSS header length is in DWORD, so convert to words and add
* authentication header size
*/
hdr_len_dword = hdr_len_h << 16 | hdr_len_l;
*hdr_len = (hdr_len_dword * 2) + ICE_NVM_AUTH_HEADER_LEN;
return ICE_SUCCESS;
}
/**
* ice_get_nvm_srev - Read the security revision from the NVM CSS header
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash bank
* @srev: storage for security revision
*
* Read the security revision out of the CSS header of the active NVM module
* bank.
*/
enum ice_status ice_get_nvm_srev(struct ice_hw *hw, enum ice_bank_select bank,
uint32_t *srev)
{
enum ice_status status;
uint16_t srev_l, srev_h;
status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_SREV_L, &srev_l);
if (status)
return status;
status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_SREV_H, &srev_h);
if (status)
return status;
*srev = srev_h << 16 | srev_l;
return ICE_SUCCESS;
}
/**
* ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank
* @hw: pointer to the HW structure
* @bank: whether to read from the active or inactive NVM module
* @offset: offset into the Shadow RAM copy to read, in words
* @data: storage for returned word value
*
* Read the specified word from the copy of the Shadow RAM found in the
* specified NVM module.
*/
enum ice_status
ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank,
uint32_t offset, uint16_t *data)
{
enum ice_status status;
uint32_t hdr_len;
status = ice_get_nvm_css_hdr_len(hw, bank, &hdr_len);
if (status)
return status;
hdr_len = roundup(hdr_len, 32);
return ice_read_nvm_module(hw, bank, hdr_len + offset, data);
}
/**
* ice_get_nvm_ver_info - Read NVM version information
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash bank
* @nvm: pointer to NVM info structure
*
* Read the NVM EETRACK ID and map version of the main NVM image bank, filling
* in the NVM info structure.
*/
enum ice_status
ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank,
struct ice_nvm_info *nvm)
{
uint16_t eetrack_lo, eetrack_hi, ver;
enum ice_status status;
status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER,
&ver);
if (status) {
DNPRINTF(ICE_DBG_NVM, "Failed to read DEV starter version.\n");
return status;
}
nvm->major = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
nvm->minor = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO,
&eetrack_lo);
if (status) {
DNPRINTF(ICE_DBG_NVM, "Failed to read EETRACK lo.\n");
return status;
}
status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI,
&eetrack_hi);
if (status) {
DNPRINTF(ICE_DBG_NVM, "Failed to read EETRACK hi.\n");
return status;
}
nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
status = ice_get_nvm_srev(hw, bank, &nvm->srev);
if (status)
DNPRINTF(ICE_DBG_NVM,
"Failed to read NVM security revision.\n");
return ICE_SUCCESS;
}
/**
* ice_read_orom_module - Read from the active Option ROM module
* @hw: pointer to the HW structure
* @bank: whether to read from active or inactive OROM module
* @offset: offset into the OROM module to read, in words
* @data: storage for returned word value
*
* Read the specified word from the active Option ROM module of the flash.
* Note that unlike the NVM module, the CSS data is stored at the end of the
* module instead of at the beginning.
*/
enum ice_status
ice_read_orom_module(struct ice_hw *hw, enum ice_bank_select bank,
uint32_t offset, uint16_t *data)
{
enum ice_status status;
uint16_t data_local;
status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR,
offset * sizeof(uint16_t), (uint8_t *)&data_local,
sizeof(uint16_t));
if (!status)
*data = le16toh(data_local);
return status;
}
/**
* ice_get_orom_srev - Read the security revision from the OROM CSS header
* @hw: pointer to the HW struct
* @bank: whether to read from active or inactive flash module
* @srev: storage for security revision
*
* Read the security revision out of the CSS header of the active OROM module
* bank.
*/
enum ice_status
ice_get_orom_srev(struct ice_hw *hw, enum ice_bank_select bank, uint32_t *srev)
{
uint32_t orom_size_word = hw->flash.banks.orom_size / 2;
enum ice_status status;
uint16_t srev_l, srev_h;
uint32_t css_start;
uint32_t hdr_len;
status = ice_get_nvm_css_hdr_len(hw, bank, &hdr_len);
if (status)
return status;
if (orom_size_word < hdr_len) {
DNPRINTF(ICE_DBG_NVM, "Unexpected Option ROM Size of %u\n",
hw->flash.banks.orom_size);
return ICE_ERR_CFG;
}
/* calculate how far into the Option ROM the CSS header starts. Note
* that ice_read_orom_module takes a word offset
*/
css_start = orom_size_word - hdr_len;
status = ice_read_orom_module(hw, bank, css_start + ICE_NVM_CSS_SREV_L,
&srev_l);
if (status)
return status;
status = ice_read_orom_module(hw, bank, css_start + ICE_NVM_CSS_SREV_H,
&srev_h);
if (status)
return status;
*srev = srev_h << 16 | srev_l;
return ICE_SUCCESS;
}
/**
* ice_get_orom_civd_data - Get the combo version information from Option ROM
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash module
* @civd: storage for the Option ROM CIVD data.
*
* Searches through the Option ROM flash contents to locate the CIVD data for
* the image.
*/
enum ice_status
ice_get_orom_civd_data(struct ice_hw *hw, enum ice_bank_select bank,
struct ice_orom_civd_info *civd)
{
uint8_t *orom_data;
enum ice_status status;
uint32_t offset;
/* The CIVD section is located in the Option ROM aligned to 512 bytes.
* The first 4 bytes must contain the ASCII characters "$CIV".
* A simple modulo 256 sum of all of the bytes of the structure must
* equal 0.
*
* The exact location is unknown and varies between images but is
* usually somewhere in the middle of the bank. We need to scan the
* Option ROM bank to locate it.
*
* It's significantly faster to read the entire Option ROM up front
* using the maximum page size, than to read each possible location
* with a separate firmware command.
*/
orom_data = (uint8_t *)ice_calloc(hw, hw->flash.banks.orom_size,
sizeof(uint8_t));
if (!orom_data)
return ICE_ERR_NO_MEMORY;
status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, 0,
orom_data, hw->flash.banks.orom_size);
if (status) {
DNPRINTF(ICE_DBG_NVM, "Unable to read Option ROM data\n");
goto exit_error;
}
/* Scan the memory buffer to locate the CIVD data section */
for (offset = 0; (offset + 512) <= hw->flash.banks.orom_size;
offset += 512) {
struct ice_orom_civd_info *tmp;
uint8_t sum = 0, i;
tmp = (struct ice_orom_civd_info *)&orom_data[offset];
/* Skip forward until we find a matching signature */
if (memcmp("$CIV", tmp->signature, sizeof(tmp->signature)) != 0)
continue;
DNPRINTF(ICE_DBG_NVM, "Found CIVD section at offset %u\n",
offset);
/* Verify that the simple checksum is zero */
for (i = 0; i < sizeof(*tmp); i++)
sum += ((uint8_t *)tmp)[i];
if (sum) {
DNPRINTF(ICE_DBG_NVM,
"Found CIVD data with invalid checksum of %u\n",
sum);
status = ICE_ERR_NVM;
goto exit_error;
}
*civd = *tmp;
ice_free(hw, orom_data);
return ICE_SUCCESS;
}
status = ICE_ERR_NVM;
DNPRINTF(ICE_DBG_NVM,
"Unable to locate CIVD data within the Option ROM\n");
exit_error:
ice_free(hw, orom_data);
return status;
}
/**
* ice_get_orom_ver_info - Read Option ROM version information
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash module
* @orom: pointer to Option ROM info structure
*
* Read Option ROM version and security revision from the Option ROM flash
* section.
*/
enum ice_status
ice_get_orom_ver_info(struct ice_hw *hw, enum ice_bank_select bank,
struct ice_orom_info *orom)
{
struct ice_orom_civd_info civd;
enum ice_status status;
uint32_t combo_ver;
status = ice_get_orom_civd_data(hw, bank, &civd);
if (status) {
DNPRINTF(ICE_DBG_NVM,
"Failed to locate valid Option ROM CIVD data\n");
return status;
}
combo_ver = le32toh(civd.combo_ver);
orom->major = (uint8_t)((combo_ver & ICE_OROM_VER_MASK) >>
ICE_OROM_VER_SHIFT);
orom->patch = (uint8_t)(combo_ver & ICE_OROM_VER_PATCH_MASK);
orom->build = (uint16_t)((combo_ver & ICE_OROM_VER_BUILD_MASK) >>
ICE_OROM_VER_BUILD_SHIFT);
status = ice_get_orom_srev(hw, bank, &orom->srev);
if (status) {
DNPRINTF(ICE_DBG_NVM,
"Failed to read Option ROM security revision.\n");
return status;
}
return ICE_SUCCESS;
}
/**
* ice_read_netlist_module - Read data from the netlist module area
* @hw: pointer to the HW structure
* @bank: whether to read from the active or inactive module
* @offset: offset into the netlist to read from
* @data: storage for returned word value
*
* Read a word from the specified netlist bank.
*/
enum ice_status
ice_read_netlist_module(struct ice_hw *hw, enum ice_bank_select bank,
uint32_t offset, uint16_t *data)
{
enum ice_status status;
uint16_t data_local;
status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR,
offset * sizeof(uint16_t), (uint8_t *)&data_local,
sizeof(uint16_t));
if (!status)
*data = le16toh(data_local);
return status;
}
/**
* ice_get_netlist_info
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash bank
* @netlist: pointer to netlist version info structure
*
* Get the netlist version information from the requested bank. Reads the Link
* Topology section to find the Netlist ID block and extract the relevant
* information into the netlist version structure.
*/
enum ice_status
ice_get_netlist_info(struct ice_hw *hw, enum ice_bank_select bank,
struct ice_netlist_info *netlist)
{
uint16_t module_id, length, node_count, i;
enum ice_status status;
uint16_t *id_blk;
status = ice_read_netlist_module(hw, bank, ICE_NETLIST_TYPE_OFFSET,
&module_id);
if (status)
return status;
if (module_id != ICE_NETLIST_LINK_TOPO_MOD_ID) {
DNPRINTF(ICE_DBG_NVM,
"Expected netlist module_id ID of 0x%04x, but got 0x%04x\n",
ICE_NETLIST_LINK_TOPO_MOD_ID, module_id);
return ICE_ERR_NVM;
}
status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_MODULE_LEN,
&length);
if (status)
return status;
if (length < ICE_NETLIST_ID_BLK_SIZE) {
DNPRINTF(ICE_DBG_NVM, "Netlist Link Topology module too small. "
"Expected at least %u words, but got %u words.\n",
ICE_NETLIST_ID_BLK_SIZE, length);
return ICE_ERR_NVM;
}
status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_NODE_COUNT,
&node_count);
if (status)
return status;
node_count &= ICE_LINK_TOPO_NODE_COUNT_M;
id_blk = (uint16_t *)ice_calloc(hw, ICE_NETLIST_ID_BLK_SIZE,
sizeof(*id_blk));
if (!id_blk)
return ICE_ERR_NO_MEMORY;
/* Read out the entire Netlist ID Block at once. */
status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR,
ICE_NETLIST_ID_BLK_OFFSET(node_count) * sizeof(uint16_t),
(uint8_t *)id_blk, ICE_NETLIST_ID_BLK_SIZE * sizeof(uint16_t));
if (status)
goto exit_error;
for (i = 0; i < ICE_NETLIST_ID_BLK_SIZE; i++)
id_blk[i] = le16toh(((uint16_t *)id_blk)[i]);
netlist->major = id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 |
id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_LOW];
netlist->minor = id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 |
id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_LOW];
netlist->type = id_blk[ICE_NETLIST_ID_BLK_TYPE_HIGH] << 16 |
id_blk[ICE_NETLIST_ID_BLK_TYPE_LOW];
netlist->rev = id_blk[ICE_NETLIST_ID_BLK_REV_HIGH] << 16 |
id_blk[ICE_NETLIST_ID_BLK_REV_LOW];
netlist->cust_ver = id_blk[ICE_NETLIST_ID_BLK_CUST_VER];
/* Read the left most 4 bytes of SHA */
netlist->hash = id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 |
id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(14)];
exit_error:
ice_free(hw, id_blk);
return status;
}
/**
* ice_init_nvm - initializes NVM setting
* @hw: pointer to the HW struct
*
* This function reads and populates NVM settings such as Shadow RAM size,
* max_timeout, and blank_nvm_mode
*/
enum ice_status
ice_init_nvm(struct ice_hw *hw)
{
struct ice_flash_info *flash = &hw->flash;
enum ice_status status;
uint32_t fla, gens_stat;
uint8_t sr_size;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
/* The SR size is stored regardless of the NVM programming mode
* as the blank mode may be used in the factory line.
*/
gens_stat = ICE_READ(hw, GLNVM_GENS);
sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
/* Switching to words (sr_size contains power of 2) */
flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
/* Check if we are in the normal or blank NVM programming mode */
fla = ICE_READ(hw, GLNVM_FLA);
if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
flash->blank_nvm_mode = false;
} else {
/* Blank programming mode */
flash->blank_nvm_mode = true;
DNPRINTF(ICE_DBG_NVM,
"NVM init error: unsupported blank mode.\n");
return ICE_ERR_NVM_BLANK_MODE;
}
status = ice_discover_flash_size(hw);
if (status) {
DNPRINTF(ICE_DBG_NVM, "NVM init error: failed to discover "
"flash size.\n");
return status;
}
status = ice_determine_active_flash_banks(hw);
if (status) {
DNPRINTF(ICE_DBG_NVM, "Failed to determine active flash "
"banks.\n");
return status;
}
status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm);
if (status) {
DNPRINTF(ICE_DBG_INIT, "Failed to read NVM info.\n");
return status;
}
status = ice_get_orom_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->orom);
if (status)
DNPRINTF(ICE_DBG_INIT, "Failed to read Option ROM info.\n");
/* read the netlist version information */
status = ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK,
&flash->netlist);
if (status)
DNPRINTF(ICE_DBG_INIT, "Failed to read netlist info.\n");
return ICE_SUCCESS;
}
void
ice_print_rollback_msg(struct ice_hw *hw)
{
struct ice_softc *sc = hw->hw_sc;
char nvm_str[ICE_NVM_VER_LEN] = { 0 };
struct ice_orom_info *orom;
struct ice_nvm_info *nvm;
orom = &hw->flash.orom;
nvm = &hw->flash.nvm;
snprintf(nvm_str, sizeof(nvm_str), "%x.%02x 0x%x %d.%d.%d",
nvm->major, nvm->minor, nvm->eetrack, orom->major,
orom->build, orom->patch);
printf("%s: Firmware rollback mode detected. "
"Current version is NVM: %s, FW: %d.%d. "
"Device may exhibit limited functionality.\n",
sc->sc_dev.dv_xname, nvm_str, hw->fw_maj_ver, hw->fw_min_ver);
}
/**
* ice_clear_pf_cfg - Clear PF configuration
* @hw: pointer to the hardware structure
*
* Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
* configuration, flow director filters, etc.).
*/
enum ice_status
ice_clear_pf_cfg(struct ice_hw *hw)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_clear_pxe_mode
* @hw: pointer to the HW struct
*
* Tell the firmware that the driver is taking over from PXE (0x0110).
*/
enum ice_status
ice_aq_clear_pxe_mode(struct ice_hw *hw)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_clear_pxe_mode - clear pxe operations mode
* @hw: pointer to the HW struct
*
* Make sure all PXE mode settings are cleared, including things
* like descriptor fetch/write-back mode.
*/
void
ice_clear_pxe_mode(struct ice_hw *hw)
{
if (ice_check_sq_alive(hw, &hw->adminq))
ice_aq_clear_pxe_mode(hw);
}
/**
* ice_get_num_per_func - determine number of resources per PF
* @hw: pointer to the HW structure
* @max: value to be evenly split between each PF
*
* Determine the number of valid functions by going through the bitmap returned
* from parsing capabilities and use this to calculate the number of resources
* per PF based on the max value passed in.
*/
uint32_t
ice_get_num_per_func(struct ice_hw *hw, uint32_t max)
{
uint16_t funcs;
#define ICE_CAPS_VALID_FUNCS_M 0xFF
funcs = ice_popcount16(hw->dev_caps.common_cap.valid_functions &
ICE_CAPS_VALID_FUNCS_M);
if (!funcs)
return 0;
return max / funcs;
}
/**
* ice_print_led_caps - print LED capabilities
* @hw: pointer to the ice_hw instance
* @caps: pointer to common caps instance
* @prefix: string to prefix when printing
* @dbg: set to indicate debug print
*/
void
ice_print_led_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
char const *prefix, bool dbg)
{
struct ice_softc *sc = hw->hw_sc;
uint8_t i;
if (dbg)
DNPRINTF(ICE_DBG_INIT, "%s: led_pin_num = %d\n", prefix,
caps->led_pin_num);
else
printf("%s: %s: led_pin_num = %d\n", sc->sc_dev.dv_xname,
prefix, caps->led_pin_num);
for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_LED; i++) {
if (!caps->led[i])
continue;
if (dbg)
DNPRINTF(ICE_DBG_INIT, "%s: led[%d] = %d\n",
prefix, i, caps->led[i]);
else
printf("%s: %s: led[%d] = %d\n", sc->sc_dev.dv_xname,
prefix, i, caps->led[i]);
}
}
/**
* ice_print_sdp_caps - print SDP capabilities
* @hw: pointer to the ice_hw instance
* @caps: pointer to common caps instance
* @prefix: string to prefix when printing
* @dbg: set to indicate debug print
*/
void
ice_print_sdp_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
char const *prefix, bool dbg)
{
struct ice_softc *sc = hw->hw_sc;
uint8_t i;
if (dbg)
DNPRINTF(ICE_DBG_INIT, "%s: sdp_pin_num = %d\n", prefix,
caps->sdp_pin_num);
else
printf("%s: %s: sdp_pin_num = %d\n", sc->sc_dev.dv_xname,
prefix, caps->sdp_pin_num);
for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_SDP; i++) {
if (!caps->sdp[i])
continue;
if (dbg)
DNPRINTF(ICE_DBG_INIT, "%s: sdp[%d] = %d\n",
prefix, i, caps->sdp[i]);
else
printf("%s: %s: sdp[%d] = %d\n", sc->sc_dev.dv_xname,
prefix, i, caps->sdp[i]);
}
}
/**
* ice_parse_common_caps - parse common device/function capabilities
* @hw: pointer to the HW struct
* @caps: pointer to common capabilities structure
* @elem: the capability element to parse
* @prefix: message prefix for tracing capabilities
*
* Given a capability element, extract relevant details into the common
* capability structure.
*
* Returns: true if the capability matches one of the common capability ids,
* false otherwise.
*/
bool
ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
struct ice_aqc_list_caps_elem *elem, const char *prefix)
{
uint32_t logical_id = le32toh(elem->logical_id);
uint32_t phys_id = le32toh(elem->phys_id);
uint32_t number = le32toh(elem->number);
uint16_t cap = le16toh(elem->cap);
bool found = true;
switch (cap) {
case ICE_AQC_CAPS_SWITCHING_MODE:
caps->switching_mode = number;
DNPRINTF(ICE_DBG_INIT, "%s: switching_mode = %d\n", prefix,
caps->switching_mode);
break;
case ICE_AQC_CAPS_MANAGEABILITY_MODE:
caps->mgmt_mode = number;
caps->mgmt_protocols_mctp = logical_id;
DNPRINTF(ICE_DBG_INIT, "%s: mgmt_mode = %d\n", prefix,
caps->mgmt_mode);
DNPRINTF(ICE_DBG_INIT, "%s: mgmt_protocols_mctp = %d\n", prefix,
caps->mgmt_protocols_mctp);
break;
case ICE_AQC_CAPS_OS2BMC:
caps->os2bmc = number;
DNPRINTF(ICE_DBG_INIT, "%s: os2bmc = %d\n", prefix,
caps->os2bmc);
break;
case ICE_AQC_CAPS_VALID_FUNCTIONS:
caps->valid_functions = number;
DNPRINTF(ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n",
prefix, caps->valid_functions);
break;
case ICE_AQC_CAPS_SRIOV:
caps->sr_iov_1_1 = (number == 1);
DNPRINTF(ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
caps->sr_iov_1_1);
break;
case ICE_AQC_CAPS_VMDQ:
caps->vmdq = (number == 1);
DNPRINTF(ICE_DBG_INIT, "%s: vmdq = %d\n", prefix, caps->vmdq);
break;
case ICE_AQC_CAPS_802_1QBG:
caps->evb_802_1_qbg = (number == 1);
DNPRINTF(ICE_DBG_INIT, "%s: evb_802_1_qbg = %d\n", prefix,
number);
break;
case ICE_AQC_CAPS_802_1BR:
caps->evb_802_1_qbh = (number == 1);
DNPRINTF(ICE_DBG_INIT, "%s: evb_802_1_qbh = %d\n", prefix,
number);
break;
case ICE_AQC_CAPS_DCB:
caps->dcb = (number == 1);
caps->active_tc_bitmap = logical_id;
caps->maxtc = phys_id;
DNPRINTF(ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
DNPRINTF(ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
caps->active_tc_bitmap);
DNPRINTF(ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
break;
case ICE_AQC_CAPS_ISCSI:
caps->iscsi = (number == 1);
DNPRINTF(ICE_DBG_INIT, "%s: iscsi = %d\n", prefix, caps->iscsi);
break;
case ICE_AQC_CAPS_RSS:
caps->rss_table_size = number;
caps->rss_table_entry_width = logical_id;
DNPRINTF(ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
caps->rss_table_size);
DNPRINTF(ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n",
prefix, caps->rss_table_entry_width);
break;
case ICE_AQC_CAPS_RXQS:
caps->num_rxq = number;
caps->rxq_first_id = phys_id;
DNPRINTF(ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
caps->num_rxq);
DNPRINTF(ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
caps->rxq_first_id);
break;
case ICE_AQC_CAPS_TXQS:
caps->num_txq = number;
caps->txq_first_id = phys_id;
DNPRINTF(ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
caps->num_txq);
DNPRINTF(ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
caps->txq_first_id);
break;
case ICE_AQC_CAPS_MSIX:
caps->num_msix_vectors = number;
caps->msix_vector_first_id = phys_id;
DNPRINTF(ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
caps->num_msix_vectors);
DNPRINTF(ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n",
prefix, caps->msix_vector_first_id);
break;
case ICE_AQC_CAPS_NVM_MGMT:
caps->sec_rev_disabled =
(number & ICE_NVM_MGMT_SEC_REV_DISABLED) ?
true : false;
DNPRINTF(ICE_DBG_INIT, "%s: sec_rev_disabled = %d\n", prefix,
caps->sec_rev_disabled);
caps->update_disabled =
(number & ICE_NVM_MGMT_UPDATE_DISABLED) ?
true : false;
DNPRINTF(ICE_DBG_INIT, "%s: update_disabled = %d\n", prefix,
caps->update_disabled);
caps->nvm_unified_update =
(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
true : false;
DNPRINTF(ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
caps->nvm_unified_update);
caps->netlist_auth =
(number & ICE_NVM_MGMT_NETLIST_AUTH_SUPPORT) ?
true : false;
DNPRINTF(ICE_DBG_INIT, "%s: netlist_auth = %d\n", prefix,
caps->netlist_auth);
break;
case ICE_AQC_CAPS_CEM:
caps->mgmt_cem = (number == 1);
DNPRINTF(ICE_DBG_INIT, "%s: mgmt_cem = %d\n", prefix,
caps->mgmt_cem);
break;
case ICE_AQC_CAPS_IWARP:
caps->iwarp = (number == 1);
DNPRINTF(ICE_DBG_INIT, "%s: iwarp = %d\n", prefix, caps->iwarp);
break;
case ICE_AQC_CAPS_ROCEV2_LAG:
caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
DNPRINTF(ICE_DBG_INIT, "%s: roce_lag = %d\n",
prefix, caps->roce_lag);
break;
case ICE_AQC_CAPS_LED:
if (phys_id < ICE_MAX_SUPPORTED_GPIO_LED) {
caps->led[phys_id] = true;
caps->led_pin_num++;
DNPRINTF(ICE_DBG_INIT, "%s: led[%d] = 1\n", prefix,
phys_id);
}
break;
case ICE_AQC_CAPS_SDP:
if (phys_id < ICE_MAX_SUPPORTED_GPIO_SDP) {
caps->sdp[phys_id] = true;
caps->sdp_pin_num++;
DNPRINTF(ICE_DBG_INIT, "%s: sdp[%d] = 1\n", prefix,
phys_id);
}
break;
case ICE_AQC_CAPS_WR_CSR_PROT:
caps->wr_csr_prot = number;
caps->wr_csr_prot |= (uint64_t)logical_id << 32;
DNPRINTF(ICE_DBG_INIT, "%s: wr_csr_prot = 0x%llX\n", prefix,
(unsigned long long)caps->wr_csr_prot);
break;
case ICE_AQC_CAPS_WOL_PROXY:
caps->num_wol_proxy_fltr = number;
caps->wol_proxy_vsi_seid = logical_id;
caps->apm_wol_support = !!(phys_id & ICE_WOL_SUPPORT_M);
caps->acpi_prog_mthd = !!(phys_id &
ICE_ACPI_PROG_MTHD_M);
caps->proxy_support = !!(phys_id & ICE_PROXY_SUPPORT_M);
DNPRINTF(ICE_DBG_INIT, "%s: num_wol_proxy_fltr = %d\n", prefix,
caps->num_wol_proxy_fltr);
DNPRINTF(ICE_DBG_INIT, "%s: wol_proxy_vsi_seid = %d\n", prefix,
caps->wol_proxy_vsi_seid);
DNPRINTF(ICE_DBG_INIT, "%s: apm_wol_support = %d\n",
prefix, caps->apm_wol_support);
break;
case ICE_AQC_CAPS_MAX_MTU:
caps->max_mtu = number;
DNPRINTF(ICE_DBG_INIT, "%s: max_mtu = %d\n",
prefix, caps->max_mtu);
break;
case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
caps->pcie_reset_avoidance = (number > 0);
DNPRINTF(ICE_DBG_INIT,
"%s: pcie_reset_avoidance = %d\n", prefix,
caps->pcie_reset_avoidance);
break;
case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
caps->reset_restrict_support = (number == 1);
DNPRINTF(ICE_DBG_INIT,
"%s: reset_restrict_support = %d\n", prefix,
caps->reset_restrict_support);
break;
case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG0:
case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG1:
case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG2:
case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG3:
{
uint8_t index = (uint8_t)(cap - ICE_AQC_CAPS_EXT_TOPO_DEV_IMG0);
caps->ext_topo_dev_img_ver_high[index] = number;
caps->ext_topo_dev_img_ver_low[index] = logical_id;
caps->ext_topo_dev_img_part_num[index] =
(phys_id & ICE_EXT_TOPO_DEV_IMG_PART_NUM_M) >>
ICE_EXT_TOPO_DEV_IMG_PART_NUM_S;
caps->ext_topo_dev_img_load_en[index] =
(phys_id & ICE_EXT_TOPO_DEV_IMG_LOAD_EN) != 0;
caps->ext_topo_dev_img_prog_en[index] =
(phys_id & ICE_EXT_TOPO_DEV_IMG_PROG_EN) != 0;
caps->ext_topo_dev_img_ver_schema[index] =
(phys_id & ICE_EXT_TOPO_DEV_IMG_VER_SCHEMA) != 0;
DNPRINTF(ICE_DBG_INIT,
"%s: ext_topo_dev_img_ver_high[%d] = %d\n",
prefix, index,
caps->ext_topo_dev_img_ver_high[index]);
DNPRINTF(ICE_DBG_INIT,
"%s: ext_topo_dev_img_ver_low[%d] = %d\n",
prefix, index,
caps->ext_topo_dev_img_ver_low[index]);
DNPRINTF(ICE_DBG_INIT,
"%s: ext_topo_dev_img_part_num[%d] = %d\n",
prefix, index,
caps->ext_topo_dev_img_part_num[index]);
DNPRINTF(ICE_DBG_INIT,
"%s: ext_topo_dev_img_load_en[%d] = %d\n",
prefix, index,
caps->ext_topo_dev_img_load_en[index]);
DNPRINTF(ICE_DBG_INIT,
"%s: ext_topo_dev_img_prog_en[%d] = %d\n",
prefix, index,
caps->ext_topo_dev_img_prog_en[index]);
DNPRINTF(ICE_DBG_INIT,
"%s: ext_topo_dev_img_ver_schema[%d] = %d\n",
prefix, index,
caps->ext_topo_dev_img_ver_schema[index]);
break;
}
case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
caps->tx_sched_topo_comp_mode_en = (number == 1);
break;
case ICE_AQC_CAPS_DYN_FLATTENING:
caps->dyn_flattening_en = (number == 1);
DNPRINTF(ICE_DBG_INIT, "%s: dyn_flattening_en = %d\n",
prefix, caps->dyn_flattening_en);
break;
case ICE_AQC_CAPS_OROM_RECOVERY_UPDATE:
caps->orom_recovery_update = (number == 1);
DNPRINTF(ICE_DBG_INIT, "%s: orom_recovery_update = %d\n",
prefix, caps->orom_recovery_update);
break;
default:
/* Not one of the recognized common capabilities */
found = false;
}
return found;
}
/**
* ice_recalc_port_limited_caps - Recalculate port limited capabilities
* @hw: pointer to the HW structure
* @caps: pointer to capabilities structure to fix
*
* Re-calculate the capabilities that are dependent on the number of physical
* ports; i.e. some features are not supported or function differently on
* devices with more than 4 ports.
*/
void
ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
{
/* This assumes device capabilities are always scanned before function
* capabilities during the initialization flow.
*/
if (hw->dev_caps.num_funcs > 4) {
/* Max 4 TCs per port */
caps->maxtc = 4;
DNPRINTF(ICE_DBG_INIT,
"reducing maxtc to %d (based on #ports)\n", caps->maxtc);
if (caps->iwarp) {
DNPRINTF(ICE_DBG_INIT, "forcing RDMA off\n");
caps->iwarp = 0;
}
/* print message only when processing device capabilities
* during initialization.
*/
if (caps == &hw->dev_caps.common_cap)
DPRINTF("RDMA functionality is not available with "
"the current device configuration.\n");
}
}
/**
* ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
* @hw: pointer to the HW struct
* @func_p: pointer to function capabilities structure
* @cap: pointer to the capability element to parse
*
* Extract function capabilities for ICE_AQC_CAPS_VF.
*/
void
ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
struct ice_aqc_list_caps_elem *cap)
{
uint32_t number = le32toh(cap->number);
uint32_t logical_id = le32toh(cap->logical_id);
func_p->num_allocd_vfs = number;
func_p->vf_base_id = logical_id;
DNPRINTF(ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
func_p->num_allocd_vfs);
DNPRINTF(ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
func_p->vf_base_id);
}
/**
* ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
* @hw: pointer to the HW struct
* @func_p: pointer to function capabilities structure
* @cap: pointer to the capability element to parse
*
* Extract function capabilities for ICE_AQC_CAPS_VSI.
*/
void
ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
struct ice_aqc_list_caps_elem *cap)
{
func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
DNPRINTF(ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
le32toh(cap->number));
DNPRINTF(ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
func_p->guar_num_vsi);
}
/**
* ice_parse_func_caps - Parse function capabilities
* @hw: pointer to the HW struct
* @func_p: pointer to function capabilities structure
* @buf: buffer containing the function capability records
* @cap_count: the number of capabilities
*
* Helper function to parse function (0x000A) capabilities list. For
* capabilities shared between device and function, this relies on
* ice_parse_common_caps.
*
* Loop through the list of provided capabilities and extract the relevant
* data into the function capabilities structured.
*/
void
ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
void *buf, uint32_t cap_count)
{
struct ice_aqc_list_caps_elem *cap_resp;
uint32_t i;
cap_resp = (struct ice_aqc_list_caps_elem *)buf;
memset(func_p, 0, sizeof(*func_p));
for (i = 0; i < cap_count; i++) {
uint16_t cap = le16toh(cap_resp[i].cap);
bool found;
found = ice_parse_common_caps(hw, &func_p->common_cap,
&cap_resp[i], "func caps");
switch (cap) {
case ICE_AQC_CAPS_VF:
ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
break;
case ICE_AQC_CAPS_VSI:
ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
break;
default:
/* Don't list common capabilities as unknown */
if (!found)
DNPRINTF(ICE_DBG_INIT, "func caps: unknown "
"capability[%d]: 0x%x\n", i, cap);
break;
}
}
ice_print_led_caps(hw, &func_p->common_cap, "func caps", true);
ice_print_sdp_caps(hw, &func_p->common_cap, "func caps", true);
ice_recalc_port_limited_caps(hw, &func_p->common_cap);
}
/**
* ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @cap: capability element to parse
*
* Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
*/
void
ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
struct ice_aqc_list_caps_elem *cap)
{
uint32_t number = le32toh(cap->number);
dev_p->num_funcs = ice_popcount32(number);
DNPRINTF(ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
dev_p->num_funcs);
}
/**
* ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @cap: capability element to parse
*
* Parse ICE_AQC_CAPS_VF for device capabilities.
*/
void
ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
struct ice_aqc_list_caps_elem *cap)
{
uint32_t number = le32toh(cap->number);
dev_p->num_vfs_exposed = number;
DNPRINTF(ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
dev_p->num_vfs_exposed);
}
/**
* ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @cap: capability element to parse
*
* Parse ICE_AQC_CAPS_VSI for device capabilities.
*/
void
ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
struct ice_aqc_list_caps_elem *cap)
{
uint32_t number = le32toh(cap->number);
dev_p->num_vsi_allocd_to_host = number;
DNPRINTF(ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
dev_p->num_vsi_allocd_to_host);
}
/**
* ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @cap: capability element to parse
*
* Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
*/
void
ice_parse_nac_topo_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
struct ice_aqc_list_caps_elem *cap)
{
dev_p->nac_topo.mode = le32toh(cap->number);
dev_p->nac_topo.id = le32toh(cap->phys_id) & ICE_NAC_TOPO_ID_M;
DPRINTF("PF is configured in %s mode with IP instance ID %d\n",
(dev_p->nac_topo.mode == 0) ? "primary" : "secondary",
dev_p->nac_topo.id);
DNPRINTF(ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
!!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
DNPRINTF(ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
!!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
DNPRINTF(ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
dev_p->nac_topo.id);
}
/**
* ice_is_vsi_valid - check whether the VSI is valid or not
* @hw: pointer to the HW struct
* @vsi_handle: VSI handle
*
* check whether the VSI is valid or not
*/
bool
ice_is_vsi_valid(struct ice_hw *hw, uint16_t vsi_handle)
{
return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
}
/**
* ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @cap: capability element to parse
*
* Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
* enabled sensors.
*/
void
ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
struct ice_aqc_list_caps_elem *cap)
{
dev_p->supported_sensors = le32toh(cap->number);
DNPRINTF(ICE_DBG_INIT,
"dev caps: supported sensors (bitmap) = 0x%x\n",
dev_p->supported_sensors);
}
/**
* ice_parse_dev_caps - Parse device capabilities
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @buf: buffer containing the device capability records
* @cap_count: the number of capabilities
*
* Helper device to parse device (0x000B) capabilities list. For
* capabilities shared between device and function, this relies on
* ice_parse_common_caps.
*
* Loop through the list of provided capabilities and extract the relevant
* data into the device capabilities structured.
*/
void
ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
void *buf, uint32_t cap_count)
{
struct ice_aqc_list_caps_elem *cap_resp;
uint32_t i;
cap_resp = (struct ice_aqc_list_caps_elem *)buf;
memset(dev_p, 0, sizeof(*dev_p));
for (i = 0; i < cap_count; i++) {
uint16_t cap = le16toh(cap_resp[i].cap);
bool found;
found = ice_parse_common_caps(hw, &dev_p->common_cap,
&cap_resp[i], "dev caps");
switch (cap) {
case ICE_AQC_CAPS_VALID_FUNCTIONS:
ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
break;
case ICE_AQC_CAPS_VF:
ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
break;
case ICE_AQC_CAPS_VSI:
ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
break;
case ICE_AQC_CAPS_NAC_TOPOLOGY:
ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
break;
case ICE_AQC_CAPS_SENSOR_READING:
ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
break;
default:
/* Don't list common capabilities as unknown */
if (!found)
DNPRINTF(ICE_DBG_INIT,
"dev caps: unknown capability[%d]: 0x%x\n",
i, cap);
break;
}
}
ice_print_led_caps(hw, &dev_p->common_cap, "dev caps", true);
ice_print_sdp_caps(hw, &dev_p->common_cap, "dev caps", true);
ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
}
/**
* ice_aq_list_caps - query function/device capabilities
* @hw: pointer to the HW struct
* @buf: a buffer to hold the capabilities
* @buf_size: size of the buffer
* @cap_count: if not NULL, set to the number of capabilities reported
* @opc: capabilities type to discover, device or function
* @cd: pointer to command details structure or NULL
*
* Get the function (0x000A) or device (0x000B) capabilities description from
* firmware and store it in the buffer.
*
* If the cap_count pointer is not NULL, then it is set to the number of
* capabilities firmware will report. Note that if the buffer size is too
* small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
* cap_count will still be updated in this case. It is recommended that the
* buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
* firmware could return) to avoid this.
*/
enum ice_status
ice_aq_list_caps(struct ice_hw *hw, void *buf, uint16_t buf_size,
uint32_t *cap_count, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
{
struct ice_aqc_list_caps *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.get_cap;
if (opc != ice_aqc_opc_list_func_caps &&
opc != ice_aqc_opc_list_dev_caps)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, opc);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (cap_count)
*cap_count = le32toh(cmd->count);
return status;
}
/**
* ice_discover_dev_caps - Read and extract device capabilities
* @hw: pointer to the hardware structure
* @dev_caps: pointer to device capabilities structure
*
* Read the device capabilities and extract them into the dev_caps structure
* for later use.
*/
enum ice_status
ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
{
enum ice_status status;
uint32_t cap_count = 0;
void *cbuf;
cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
if (!cbuf)
return ICE_ERR_NO_MEMORY;
/* Although the driver doesn't know the number of capabilities the
* device will return, we can simply send a 4KB buffer, the maximum
* possible size that firmware can return.
*/
cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
ice_aqc_opc_list_dev_caps, NULL);
if (!status)
ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
ice_free(hw, cbuf);
return status;
}
/**
* ice_discover_func_caps - Read and extract function capabilities
* @hw: pointer to the hardware structure
* @func_caps: pointer to function capabilities structure
*
* Read the function capabilities and extract them into the func_caps structure
* for later use.
*/
enum ice_status
ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
{
enum ice_status status;
uint32_t cap_count = 0;
void *cbuf;
cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
if (!cbuf)
return ICE_ERR_NO_MEMORY;
/* Although the driver doesn't know the number of capabilities the
* device will return, we can simply send a 4KB buffer, the maximum
* possible size that firmware can return.
*/
cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
ice_aqc_opc_list_func_caps, NULL);
if (!status)
ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
ice_free(hw, cbuf);
return status;
}
/**
* ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
* @hw: pointer to the hardware structure
*/
void
ice_set_safe_mode_caps(struct ice_hw *hw)
{
struct ice_hw_func_caps *func_caps = &hw->func_caps;
struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
struct ice_hw_common_caps cached_caps;
uint32_t num_funcs;
/* cache some func_caps values that should be restored after memset */
cached_caps = func_caps->common_cap;
/* unset func capabilities */
memset(func_caps, 0, sizeof(*func_caps));
#define ICE_RESTORE_FUNC_CAP(name) \
func_caps->common_cap.name = cached_caps.name
/* restore cached values */
ICE_RESTORE_FUNC_CAP(valid_functions);
ICE_RESTORE_FUNC_CAP(txq_first_id);
ICE_RESTORE_FUNC_CAP(rxq_first_id);
ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
ICE_RESTORE_FUNC_CAP(max_mtu);
ICE_RESTORE_FUNC_CAP(nvm_unified_update);
/* one Tx and one Rx queue in safe mode */
func_caps->common_cap.num_rxq = 1;
func_caps->common_cap.num_txq = 1;
/* two MSIX vectors, one for traffic and one for misc causes */
func_caps->common_cap.num_msix_vectors = 2;
func_caps->guar_num_vsi = 1;
/* cache some dev_caps values that should be restored after memset */
cached_caps = dev_caps->common_cap;
num_funcs = dev_caps->num_funcs;
/* unset dev capabilities */
memset(dev_caps, 0, sizeof(*dev_caps));
#define ICE_RESTORE_DEV_CAP(name) \
dev_caps->common_cap.name = cached_caps.name
/* restore cached values */
ICE_RESTORE_DEV_CAP(valid_functions);
ICE_RESTORE_DEV_CAP(txq_first_id);
ICE_RESTORE_DEV_CAP(rxq_first_id);
ICE_RESTORE_DEV_CAP(msix_vector_first_id);
ICE_RESTORE_DEV_CAP(max_mtu);
ICE_RESTORE_DEV_CAP(nvm_unified_update);
dev_caps->num_funcs = num_funcs;
/* one Tx and one Rx queue per function in safe mode */
dev_caps->common_cap.num_rxq = num_funcs;
dev_caps->common_cap.num_txq = num_funcs;
/* two MSIX vectors per function */
dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
}
/**
* ice_get_caps - get info about the HW
* @hw: pointer to the hardware structure
*/
enum ice_status
ice_get_caps(struct ice_hw *hw)
{
enum ice_status status;
status = ice_discover_dev_caps(hw, &hw->dev_caps);
if (status)
return status;
return ice_discover_func_caps(hw, &hw->func_caps);
}
/**
* ice_aq_get_sw_cfg - get switch configuration
* @hw: pointer to the hardware structure
* @buf: pointer to the result buffer
* @buf_size: length of the buffer available for response
* @req_desc: pointer to requested descriptor
* @num_elems: pointer to number of elements
* @cd: pointer to command details structure or NULL
*
* Get switch configuration (0x0200) to be placed in buf.
* This admin command returns information such as initial VSI/port number
* and switch ID it belongs to.
*
* NOTE: *req_desc is both an input/output parameter.
* The caller of this function first calls this function with *request_desc set
* to 0. If the response from f/w has *req_desc set to 0, all the switch
* configuration information has been returned; if non-zero (meaning not all
* the information was returned), the caller should call this function again
* with *req_desc set to the previous value returned by f/w to get the
* next block of switch configuration information.
*
* *num_elems is output only parameter. This reflects the number of elements
* in response buffer. The caller of this function to use *num_elems while
* parsing the response buffer.
*/
enum ice_status
ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
uint16_t buf_size, uint16_t *req_desc, uint16_t *num_elems,
struct ice_sq_cd *cd)
{
struct ice_aqc_get_sw_cfg *cmd;
struct ice_aq_desc desc;
enum ice_status status;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
cmd = &desc.params.get_sw_conf;
cmd->element = htole16(*req_desc);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status) {
*req_desc = le16toh(cmd->element);
*num_elems = le16toh(cmd->num_elems);
}
return status;
}
/* ice_init_port_info - Initialize port_info with switch configuration data
* @pi: pointer to port_info
* @vsi_port_num: VSI number or port number
* @type: Type of switch element (port or VSI)
* @swid: switch ID of the switch the element is attached to
* @pf_vf_num: PF or VF number
* @is_vf: true if the element is a VF, false otherwise
*/
void
ice_init_port_info(struct ice_port_info *pi, uint16_t vsi_port_num,
uint8_t type, uint16_t swid, uint16_t pf_vf_num, bool is_vf)
{
switch (type) {
case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
pi->lport = (uint8_t)(vsi_port_num & ICE_LPORT_MASK);
pi->sw_id = swid;
pi->pf_vf_num = pf_vf_num;
pi->is_vf = is_vf;
break;
default:
DNPRINTF(ICE_DBG_SW, "incorrect VSI/port type received\n");
break;
}
}
/* ice_get_initial_sw_cfg - Get initial port and default VSI data */
enum ice_status
ice_get_initial_sw_cfg(struct ice_hw *hw)
{
struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
enum ice_status status;
uint8_t num_total_ports;
uint16_t req_desc = 0;
uint16_t num_elems;
uint8_t j = 0;
uint16_t i;
num_total_ports = 1;
rbuf = (struct ice_aqc_get_sw_cfg_resp_elem *)
ice_malloc(hw, ICE_SW_CFG_MAX_BUF_LEN);
if (!rbuf)
return ICE_ERR_NO_MEMORY;
/* Multiple calls to ice_aq_get_sw_cfg may be required
* to get all the switch configuration information. The need
* for additional calls is indicated by ice_aq_get_sw_cfg
* writing a non-zero value in req_desc
*/
do {
struct ice_aqc_get_sw_cfg_resp_elem *ele;
status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
&req_desc, &num_elems, NULL);
if (status)
break;
for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
uint16_t pf_vf_num, swid, vsi_port_num;
bool is_vf = false;
uint8_t res_type;
vsi_port_num = le16toh(ele->vsi_port_num) &
ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
pf_vf_num = le16toh(ele->pf_vf_num) &
ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
swid = le16toh(ele->swid);
if (le16toh(ele->pf_vf_num) &
ICE_AQC_GET_SW_CONF_RESP_IS_VF)
is_vf = true;
res_type = (uint8_t)(le16toh(ele->vsi_port_num) >>
ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
switch (res_type) {
case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
case ICE_AQC_GET_SW_CONF_RESP_VIRT_PORT:
if (j == num_total_ports) {
DNPRINTF(ICE_DBG_SW,
"more ports than expected\n");
status = ICE_ERR_CFG;
goto out;
}
ice_init_port_info(hw->port_info,
vsi_port_num, res_type, swid,
pf_vf_num, is_vf);
j++;
break;
default:
break;
}
}
} while (req_desc && !status);
out:
ice_free(hw, rbuf);
return status;
}
/**
* ice_aq_query_sched_res - query scheduler resource
* @hw: pointer to the HW struct
* @buf_size: buffer size in bytes
* @buf: pointer to buffer
* @cd: pointer to command details structure or NULL
*
* Query scheduler resource allocation (0x0412)
*/
enum ice_status
ice_aq_query_sched_res(struct ice_hw *hw, uint16_t buf_size,
struct ice_aqc_query_txsched_res_resp *buf,
struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
}
/**
* ice_sched_query_res_alloc - query the FW for num of logical sched layers
*/
enum ice_status
ice_sched_query_res_alloc(struct ice_hw *hw)
{
struct ice_aqc_query_txsched_res_resp *buf;
enum ice_status status = ICE_SUCCESS;
uint16_t max_sibl;
uint8_t i;
if (hw->layer_info)
return status;
buf = (struct ice_aqc_query_txsched_res_resp *)
ice_malloc(hw, sizeof(*buf));
if (!buf)
return ICE_ERR_NO_MEMORY;
status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
if (status)
goto sched_query_out;
hw->num_tx_sched_layers =
(uint8_t)le16toh(buf->sched_props.logical_levels);
hw->num_tx_sched_phys_layers =
(uint8_t)le16toh(buf->sched_props.phys_levels);
hw->flattened_layers = buf->sched_props.flattening_bitmap;
hw->max_cgds = buf->sched_props.max_pf_cgds;
/* max sibling group size of current layer refers to the max children
* of the below layer node.
* layer 1 node max children will be layer 2 max sibling group size
* layer 2 node max children will be layer 3 max sibling group size
* and so on. This array will be populated from root (index 0) to
* qgroup layer 7. Leaf node has no children.
*/
for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
hw->max_children[i] = le16toh(max_sibl);
}
hw->layer_info = (struct ice_aqc_layer_props *)
ice_memdup(hw, buf->layer_props,
(hw->num_tx_sched_layers *
sizeof(*hw->layer_info)));
if (!hw->layer_info) {
status = ICE_ERR_NO_MEMORY;
goto sched_query_out;
}
sched_query_out:
ice_free(hw, buf);
return status;
}
/**
* ice_sched_get_psm_clk_freq - determine the PSM clock frequency
* @hw: pointer to the HW struct
*
* Determine the PSM clock frequency and store in HW struct
*/
void
ice_sched_get_psm_clk_freq(struct ice_hw *hw)
{
uint32_t val, clk_src;
val = ICE_READ(hw, GLGEN_CLKSTAT_SRC);
clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
switch (clk_src) {
case PSM_CLK_SRC_367_MHZ:
hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
break;
case PSM_CLK_SRC_416_MHZ:
hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
break;
case PSM_CLK_SRC_446_MHZ:
hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
break;
case PSM_CLK_SRC_390_MHZ:
hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
break;
/* default condition is not required as clk_src is restricted
* to a 2-bit value from GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M mask.
* The above switch statements cover the possible values of
* this variable.
*/
}
}
/**
* ice_aq_get_dflt_topo - gets default scheduler topology
* @hw: pointer to the HW struct
* @lport: logical port number
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @num_branches: returns total number of queue to port branches
* @cd: pointer to command details structure or NULL
*
* Get default scheduler topology (0x400)
*/
enum ice_status
ice_aq_get_dflt_topo(struct ice_hw *hw, uint8_t lport,
struct ice_aqc_get_topo_elem *buf, uint16_t buf_size,
uint8_t *num_branches, struct ice_sq_cd *cd)
{
struct ice_aqc_get_topo *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.get_topo;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
cmd->port_num = lport;
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status && num_branches)
*num_branches = cmd->num_branches;
return status;
}
/**
* ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
* @pi: port information structure
* @info: Scheduler element information from firmware
*
* This function inserts the root node of the scheduling tree topology
* to the SW DB.
*/
enum ice_status
ice_sched_add_root_node(struct ice_port_info *pi,
struct ice_aqc_txsched_elem_data *info)
{
struct ice_sched_node *root;
struct ice_hw *hw;
if (!pi)
return ICE_ERR_PARAM;
hw = pi->hw;
root = (struct ice_sched_node *)ice_malloc(hw, sizeof(*root));
if (!root)
return ICE_ERR_NO_MEMORY;
root->children = (struct ice_sched_node **)
ice_calloc(hw, hw->max_children[0], sizeof(*root->children));
if (!root->children) {
ice_free(hw, root);
return ICE_ERR_NO_MEMORY;
}
memcpy(&root->info, info, sizeof(*info));
pi->root = root;
return ICE_SUCCESS;
}
/**
* ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
* @start_node: pointer to the starting ice_sched_node struct in a sub-tree
* @teid: node TEID to search
*
* This function searches for a node matching the TEID in the scheduling tree
* from the SW DB. The search is recursive and is restricted by the number of
* layers it has searched through; stopping at the max supported layer.
*
* This function needs to be called when holding the port_info->sched_lock
*/
struct ice_sched_node *
ice_sched_find_node_by_teid(struct ice_sched_node *start_node, uint32_t teid)
{
uint16_t i;
/* The TEID is same as that of the start_node */
if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
return start_node;
/* The node has no children or is at the max layer */
if (!start_node->num_children ||
start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
return NULL;
/* Check if TEID matches to any of the children nodes */
for (i = 0; i < start_node->num_children; i++)
if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
return start_node->children[i];
/* Search within each child's sub-tree */
for (i = 0; i < start_node->num_children; i++) {
struct ice_sched_node *tmp;
tmp = ice_sched_find_node_by_teid(start_node->children[i],
teid);
if (tmp)
return tmp;
}
return NULL;
}
/**
* ice_sched_get_tc_node - get pointer to TC node
* @pi: port information structure
* @tc: TC number
*
* This function returns the TC node pointer
*/
struct ice_sched_node *
ice_sched_get_tc_node(struct ice_port_info *pi, uint8_t tc)
{
uint8_t i;
if (!pi || !pi->root)
return NULL;
for (i = 0; i < pi->root->num_children; i++)
if (pi->root->children[i]->tc_num == tc)
return pi->root->children[i];
return NULL;
}
/**
* ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
* @hw: pointer to the HW struct
* @cmd_opc: cmd opcode
* @elems_req: number of elements to request
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @elems_resp: returns total number of elements response
* @cd: pointer to command details structure or NULL
*
* This function sends a scheduling elements cmd (cmd_opc)
*/
enum ice_status
ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
uint16_t elems_req, void *buf, uint16_t buf_size,
uint16_t *elems_resp, struct ice_sq_cd *cd)
{
struct ice_aqc_sched_elem_cmd *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.sched_elem_cmd;
ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
cmd->num_elem_req = htole16(elems_req);
desc.flags |= htole16(ICE_AQ_FLAG_RD);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status && elems_resp)
*elems_resp = le16toh(cmd->num_elem_resp);
return status;
}
/**
* ice_aq_query_sched_elems - query scheduler elements
* @hw: pointer to the HW struct
* @elems_req: number of elements to query
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @elems_ret: returns total number of elements returned
* @cd: pointer to command details structure or NULL
*
* Query scheduling elements (0x0404)
*/
enum ice_status
ice_aq_query_sched_elems(struct ice_hw *hw, uint16_t elems_req,
struct ice_aqc_txsched_elem_data *buf, uint16_t buf_size,
uint16_t *elems_ret, struct ice_sq_cd *cd)
{
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
elems_req, (void *)buf, buf_size,
elems_ret, cd);
}
/**
* ice_sched_query_elem - query element information from HW
* @hw: pointer to the HW struct
* @node_teid: node TEID to be queried
* @buf: buffer to element information
*
* This function queries HW element information
*/
enum ice_status
ice_sched_query_elem(struct ice_hw *hw, uint32_t node_teid,
struct ice_aqc_txsched_elem_data *buf)
{
uint16_t buf_size, num_elem_ret = 0;
enum ice_status status;
buf_size = sizeof(*buf);
memset(buf, 0, buf_size);
buf->node_teid = htole32(node_teid);
status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
NULL);
if (status != ICE_SUCCESS || num_elem_ret != 1)
DNPRINTF(ICE_DBG_SCHED, "query element failed\n");
return status;
}
/**
* ice_sched_add_node - Insert the Tx scheduler node in SW DB
* @pi: port information structure
* @layer: Scheduler layer of the node
* @info: Scheduler element information from firmware
* @prealloc_node: preallocated ice_sched_node struct for SW DB
*
* This function inserts a scheduler node to the SW DB.
*/
enum ice_status
ice_sched_add_node(struct ice_port_info *pi, uint8_t layer,
struct ice_aqc_txsched_elem_data *info,
struct ice_sched_node *prealloc_node)
{
struct ice_aqc_txsched_elem_data elem;
struct ice_sched_node *parent;
struct ice_sched_node *node;
enum ice_status status;
struct ice_hw *hw;
if (!pi)
return ICE_ERR_PARAM;
hw = pi->hw;
/* A valid parent node should be there */
parent = ice_sched_find_node_by_teid(pi->root,
le32toh(info->parent_teid));
if (!parent) {
DNPRINTF(ICE_DBG_SCHED,
"Parent Node not found for parent_teid=0x%x\n",
le32toh(info->parent_teid));
return ICE_ERR_PARAM;
}
/* query the current node information from FW before adding it
* to the SW DB
*/
status = ice_sched_query_elem(hw, le32toh(info->node_teid), &elem);
if (status)
return status;
if (prealloc_node)
node = prealloc_node;
else
node = (struct ice_sched_node *)ice_malloc(hw, sizeof(*node));
if (!node)
return ICE_ERR_NO_MEMORY;
if (hw->max_children[layer]) {
node->children = (struct ice_sched_node **)
ice_calloc(hw, hw->max_children[layer],
sizeof(*node->children));
if (!node->children) {
ice_free(hw, node);
return ICE_ERR_NO_MEMORY;
}
}
node->in_use = true;
node->parent = parent;
node->tx_sched_layer = layer;
parent->children[parent->num_children++] = node;
node->info = elem;
return ICE_SUCCESS;
}
/**
* ice_aq_delete_sched_elems - delete scheduler elements
* @hw: pointer to the HW struct
* @grps_req: number of groups to delete
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @grps_del: returns total number of elements deleted
* @cd: pointer to command details structure or NULL
*
* Delete scheduling elements (0x040F)
*/
enum ice_status
ice_aq_delete_sched_elems(struct ice_hw *hw, uint16_t grps_req,
struct ice_aqc_delete_elem *buf, uint16_t buf_size, uint16_t *grps_del,
struct ice_sq_cd *cd)
{
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
grps_req, (void *)buf, buf_size,
grps_del, cd);
}
/**
* ice_sched_remove_elems - remove nodes from HW
* @hw: pointer to the HW struct
* @parent: pointer to the parent node
* @num_nodes: number of nodes
* @node_teids: array of node teids to be deleted
*
* This function remove nodes from HW
*/
enum ice_status
ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
uint16_t num_nodes, uint32_t *node_teids)
{
struct ice_aqc_delete_elem *buf;
uint16_t i, num_groups_removed = 0;
enum ice_status status;
uint16_t buf_size;
buf_size = ice_struct_size(buf, teid, num_nodes);
buf = (struct ice_aqc_delete_elem *)ice_malloc(hw, buf_size);
if (!buf)
return ICE_ERR_NO_MEMORY;
buf->hdr.parent_teid = parent->info.node_teid;
buf->hdr.num_elems = htole16(num_nodes);
for (i = 0; i < num_nodes; i++)
buf->teid[i] = htole32(node_teids[i]);
status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
&num_groups_removed, NULL);
if (status != ICE_SUCCESS || num_groups_removed != 1)
DNPRINTF(ICE_DBG_SCHED, "remove node failed FW error %d\n",
hw->adminq.sq_last_status);
ice_free(hw, buf);
return status;
}
/**
* ice_sched_get_first_node - get the first node of the given layer
* @pi: port information structure
* @parent: pointer the base node of the subtree
* @layer: layer number
*
* This function retrieves the first node of the given layer from the subtree
*/
struct ice_sched_node *
ice_sched_get_first_node(struct ice_port_info *pi,
struct ice_sched_node *parent, uint8_t layer)
{
return pi->sib_head[parent->tc_num][layer];
}
/**
* ice_free_sched_node - Free a Tx scheduler node from SW DB
* @pi: port information structure
* @node: pointer to the ice_sched_node struct
*
* This function frees up a node from SW DB as well as from HW
*
* This function needs to be called with the port_info->sched_lock held
*/
void
ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
{
struct ice_sched_node *parent;
struct ice_hw *hw = pi->hw;
uint8_t i, j;
/* Free the children before freeing up the parent node
* The parent array is updated below and that shifts the nodes
* in the array. So always pick the first child if num children > 0
*/
while (node->num_children)
ice_free_sched_node(pi, node->children[0]);
/* Leaf, TC and root nodes can't be deleted by SW */
if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
uint32_t teid = le32toh(node->info.node_teid);
ice_sched_remove_elems(hw, node->parent, 1, &teid);
}
parent = node->parent;
/* root has no parent */
if (parent) {
struct ice_sched_node *p;
/* update the parent */
for (i = 0; i < parent->num_children; i++)
if (parent->children[i] == node) {
for (j = i + 1; j < parent->num_children; j++)
parent->children[j - 1] =
parent->children[j];
parent->num_children--;
break;
}
p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
while (p) {
if (p->sibling == node) {
p->sibling = node->sibling;
break;
}
p = p->sibling;
}
/* update the sibling head if head is getting removed */
if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
pi->sib_head[node->tc_num][node->tx_sched_layer] =
node->sibling;
}
/* leaf nodes have no children */
if (node->children)
ice_free(hw, node->children);
ice_free(hw, node);
}
/**
* ice_rm_dflt_leaf_node - remove the default leaf node in the tree
* @pi: port information structure
*
* This function removes the leaf node that was created by the FW
* during initialization
*/
void
ice_rm_dflt_leaf_node(struct ice_port_info *pi)
{
struct ice_sched_node *node;
node = pi->root;
while (node) {
if (!node->num_children)
break;
node = node->children[0];
}
if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
uint32_t teid = le32toh(node->info.node_teid);
enum ice_status status;
/* remove the default leaf node */
status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
if (!status)
ice_free_sched_node(pi, node);
}
}
/**
* ice_sched_rm_dflt_nodes - free the default nodes in the tree
* @pi: port information structure
*
* This function frees all the nodes except root and TC that were created by
* the FW during initialization
*/
void
ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
{
struct ice_sched_node *node;
ice_rm_dflt_leaf_node(pi);
/* remove the default nodes except TC and root nodes */
node = pi->root;
while (node) {
if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
ice_free_sched_node(pi, node);
break;
}
if (!node->num_children)
break;
node = node->children[0];
}
}
/**
* ice_sched_init_port - Initialize scheduler by querying information from FW
* @pi: port info structure for the tree to cleanup
*
* This function is the initial call to find the total number of Tx scheduler
* resources, default topology created by firmware and storing the information
* in SW DB.
*/
enum ice_status
ice_sched_init_port(struct ice_port_info *pi)
{
struct ice_aqc_get_topo_elem *buf;
enum ice_status status;
struct ice_hw *hw;
uint8_t num_branches;
uint16_t num_elems;
uint8_t i, j;
if (!pi)
return ICE_ERR_PARAM;
hw = pi->hw;
/* Query the Default Topology from FW */
buf = (struct ice_aqc_get_topo_elem *)ice_malloc(hw,
ICE_AQ_MAX_BUF_LEN);
if (!buf)
return ICE_ERR_NO_MEMORY;
/* Query default scheduling tree topology */
status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
&num_branches, NULL);
if (status)
goto err_init_port;
/* num_branches should be between 1-8 */
if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
DNPRINTF(ICE_DBG_SCHED, "num_branches unexpected %d\n",
num_branches);
status = ICE_ERR_PARAM;
goto err_init_port;
}
/* get the number of elements on the default/first branch */
num_elems = le16toh(buf[0].hdr.num_elems);
/* num_elems should always be between 1-9 */
if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
DNPRINTF(ICE_DBG_SCHED, "num_elems unexpected %d\n", num_elems);
status = ICE_ERR_PARAM;
goto err_init_port;
}
/* If the last node is a leaf node then the index of the queue group
* layer is two less than the number of elements.
*/
if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
ICE_AQC_ELEM_TYPE_LEAF)
pi->last_node_teid =
le32toh(buf[0].generic[num_elems - 2].node_teid);
else
pi->last_node_teid =
le32toh(buf[0].generic[num_elems - 1].node_teid);
/* Insert the Tx Sched root node */
status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
if (status)
goto err_init_port;
/* Parse the default tree and cache the information */
for (i = 0; i < num_branches; i++) {
num_elems = le16toh(buf[i].hdr.num_elems);
/* Skip root element as already inserted */
for (j = 1; j < num_elems; j++) {
/* update the sw entry point */
if (buf[0].generic[j].data.elem_type ==
ICE_AQC_ELEM_TYPE_ENTRY_POINT)
hw->sw_entry_point_layer = j;
status = ice_sched_add_node(pi, j,
&buf[i].generic[j], NULL);
if (status)
goto err_init_port;
}
}
/* Remove the default nodes. */
if (pi->root)
ice_sched_rm_dflt_nodes(pi);
/* initialize the port for handling the scheduler tree */
pi->port_state = ICE_SCHED_PORT_STATE_READY;
ice_init_lock(&pi->sched_lock);
for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
TAILQ_INIT(&hw->rl_prof_list[i]);
err_init_port:
if (status && pi->root) {
ice_free_sched_node(pi, pi->root);
pi->root = NULL;
}
ice_free(hw, buf);
return status;
}
/**
* ice_aq_rl_profile - performs a rate limiting task
* @hw: pointer to the HW struct
* @opcode: opcode for add, query, or remove profile(s)
* @num_profiles: the number of profiles
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @num_processed: number of processed add or remove profile(s) to return
* @cd: pointer to command details structure
*
* RL profile function to add, query, or remove profile(s)
*/
enum ice_status
ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
uint16_t num_profiles, struct ice_aqc_rl_profile_elem *buf,
uint16_t buf_size, uint16_t *num_processed, struct ice_sq_cd *cd)
{
struct ice_aqc_rl_profile *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.rl_profile;
ice_fill_dflt_direct_cmd_desc(&desc, opcode);
desc.flags |= htole16(ICE_AQ_FLAG_RD);
cmd->num_profiles = htole16(num_profiles);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status && num_processed)
*num_processed = le16toh(cmd->num_processed);
return status;
}
/**
* ice_aq_remove_rl_profile - removes RL profile(s)
* @hw: pointer to the HW struct
* @num_profiles: the number of profile(s) to remove
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @num_profiles_removed: total number of profiles removed to return
* @cd: pointer to command details structure or NULL
*
* Remove RL profile (0x0415)
*/
enum ice_status
ice_aq_remove_rl_profile(struct ice_hw *hw, uint16_t num_profiles,
struct ice_aqc_rl_profile_elem *buf, uint16_t buf_size,
uint16_t *num_profiles_removed, struct ice_sq_cd *cd)
{
return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
num_profiles, buf, buf_size,
num_profiles_removed, cd);
}
/**
* ice_sched_del_rl_profile - remove RL profile
* @hw: pointer to the HW struct
* @rl_head: list head
* @rl_info: rate limit profile information
*
* If the profile ID is not referenced anymore, it removes profile ID with
* its associated parameters from HW DB,and locally. The caller needs to
* hold scheduler lock.
*/
enum ice_status
ice_sched_del_rl_profile(struct ice_hw *hw,
struct ice_rl_prof_list_head *list_head,
struct ice_aqc_rl_profile_info *rl_info)
{
struct ice_aqc_rl_profile_elem *buf;
uint16_t num_profiles_removed;
enum ice_status status;
uint16_t num_profiles = 1;
if (rl_info->prof_id_ref != 0)
return ICE_ERR_IN_USE;
/* Safe to remove profile ID */
buf = &rl_info->profile;
status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
&num_profiles_removed, NULL);
if (status || num_profiles_removed != num_profiles)
return ICE_ERR_CFG;
/* Delete stale entry now */
TAILQ_REMOVE(list_head, rl_info, list_entry);
ice_free(hw, rl_info);
return status;
}
/**
* ice_sched_clear_rl_prof - clears RL prof entries
* @pi: port information structure
*
* This function removes all RL profile from HW as well as from SW DB.
*/
void
ice_sched_clear_rl_prof(struct ice_port_info *pi)
{
uint16_t ln;
struct ice_hw *hw = pi->hw;
for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
struct ice_aqc_rl_profile_info *rl_prof_elem;
struct ice_aqc_rl_profile_info *rl_prof_tmp;
TAILQ_FOREACH_SAFE(rl_prof_elem, &hw->rl_prof_list[ln],
list_entry, rl_prof_tmp) {
enum ice_status status;
rl_prof_elem->prof_id_ref = 0;
status = ice_sched_del_rl_profile(hw,
&hw->rl_prof_list[ln], rl_prof_elem);
if (status) {
DNPRINTF(ICE_DBG_SCHED,
"Remove rl profile failed\n");
/* On error, free mem required */
TAILQ_REMOVE(&hw->rl_prof_list[ln],
rl_prof_elem, list_entry);
ice_free(hw, rl_prof_elem);
}
}
}
}
/**
* ice_sched_clear_tx_topo - clears the scheduler tree nodes
* @pi: port information structure
*
* This function removes all the nodes from HW as well as from SW DB.
*/
void
ice_sched_clear_tx_topo(struct ice_port_info *pi)
{
if (!pi)
return;
/* remove RL profiles related lists */
ice_sched_clear_rl_prof(pi);
if (pi->root) {
ice_free_sched_node(pi, pi->root);
pi->root = NULL;
}
}
/**
* ice_sched_clear_port - clear the scheduler elements from SW DB for a port
* @pi: port information structure
*
* Cleanup scheduling elements from SW DB
*/
void
ice_sched_clear_port(struct ice_port_info *pi)
{
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return;
pi->port_state = ICE_SCHED_PORT_STATE_INIT;
#if 0
ice_acquire_lock(&pi->sched_lock);
#endif
ice_sched_clear_tx_topo(pi);
#if 0
ice_release_lock(&pi->sched_lock);
ice_destroy_lock(&pi->sched_lock);
#endif
}
/**
* ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
* @hw: pointer to the HW struct
*
* Cleanup scheduling elements from SW DB for all the ports
*/
void
ice_sched_cleanup_all(struct ice_hw *hw)
{
if (!hw)
return;
if (hw->layer_info) {
ice_free(hw, hw->layer_info);
hw->layer_info = NULL;
}
ice_sched_clear_port(hw->port_info);
hw->num_tx_sched_layers = 0;
hw->num_tx_sched_phys_layers = 0;
hw->flattened_layers = 0;
hw->max_cgds = 0;
}
/**
* ice_is_fw_min_ver
* @hw: pointer to the hardware structure
* @branch: branch version
* @maj: major version
* @min: minor version
* @patch: patch version
*
* Checks if the firmware is minimum version
*/
bool
ice_is_fw_min_ver(struct ice_hw *hw, uint8_t branch, uint8_t maj, uint8_t min,
uint8_t patch)
{
if (hw->fw_branch == branch) {
if (hw->fw_maj_ver > maj)
return true;
if (hw->fw_maj_ver == maj) {
if (hw->fw_min_ver > min)
return true;
if (hw->fw_min_ver == min && hw->fw_patch >= patch)
return true;
}
}
return false;
}
/**
* ice_is_fw_api_min_ver
* @hw: pointer to the hardware structure
* @maj: major version
* @min: minor version
* @patch: patch version
*
* Checks if the firmware is minimum version
*/
bool
ice_is_fw_api_min_ver(struct ice_hw *hw, uint8_t maj, uint8_t min,
uint8_t patch)
{
if (hw->api_maj_ver == maj) {
if (hw->api_min_ver > min)
return true;
if (hw->api_min_ver == min && hw->api_patch >= patch)
return true;
} else if (hw->api_maj_ver > maj) {
return true;
}
return false;
}
/**
* ice_fw_supports_report_dflt_cfg
* @hw: pointer to the hardware structure
*
* Checks if the firmware supports report default configuration
*/
bool
ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
{
return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
ICE_FW_API_REPORT_DFLT_CFG_MIN,
ICE_FW_API_REPORT_DFLT_CFG_PATCH);
}
/**
* ice_fw_supports_link_override
* @hw: pointer to the hardware structure
*
* Checks if the firmware supports link override
*/
bool
ice_fw_supports_link_override(struct ice_hw *hw)
{
return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
ICE_FW_API_LINK_OVERRIDE_MIN,
ICE_FW_API_LINK_OVERRIDE_PATCH);
}
#define ICE_PF_RESET_WAIT_COUNT 500
#define ice_arr_elem_idx(idx, val) [(idx)] = (val)
#ifdef ICE_DEBUG
static const char * const ice_link_mode_str_low[] = {
ice_arr_elem_idx(0, "100BASE_TX"),
ice_arr_elem_idx(1, "100M_SGMII"),
ice_arr_elem_idx(2, "1000BASE_T"),
ice_arr_elem_idx(3, "1000BASE_SX"),
ice_arr_elem_idx(4, "1000BASE_LX"),
ice_arr_elem_idx(5, "1000BASE_KX"),
ice_arr_elem_idx(6, "1G_SGMII"),
ice_arr_elem_idx(7, "2500BASE_T"),
ice_arr_elem_idx(8, "2500BASE_X"),
ice_arr_elem_idx(9, "2500BASE_KX"),
ice_arr_elem_idx(10, "5GBASE_T"),
ice_arr_elem_idx(11, "5GBASE_KR"),
ice_arr_elem_idx(12, "10GBASE_T"),
ice_arr_elem_idx(13, "10G_SFI_DA"),
ice_arr_elem_idx(14, "10GBASE_SR"),
ice_arr_elem_idx(15, "10GBASE_LR"),
ice_arr_elem_idx(16, "10GBASE_KR_CR1"),
ice_arr_elem_idx(17, "10G_SFI_AOC_ACC"),
ice_arr_elem_idx(18, "10G_SFI_C2C"),
ice_arr_elem_idx(19, "25GBASE_T"),
ice_arr_elem_idx(20, "25GBASE_CR"),
ice_arr_elem_idx(21, "25GBASE_CR_S"),
ice_arr_elem_idx(22, "25GBASE_CR1"),
ice_arr_elem_idx(23, "25GBASE_SR"),
ice_arr_elem_idx(24, "25GBASE_LR"),
ice_arr_elem_idx(25, "25GBASE_KR"),
ice_arr_elem_idx(26, "25GBASE_KR_S"),
ice_arr_elem_idx(27, "25GBASE_KR1"),
ice_arr_elem_idx(28, "25G_AUI_AOC_ACC"),
ice_arr_elem_idx(29, "25G_AUI_C2C"),
ice_arr_elem_idx(30, "40GBASE_CR4"),
ice_arr_elem_idx(31, "40GBASE_SR4"),
ice_arr_elem_idx(32, "40GBASE_LR4"),
ice_arr_elem_idx(33, "40GBASE_KR4"),
ice_arr_elem_idx(34, "40G_XLAUI_AOC_ACC"),
ice_arr_elem_idx(35, "40G_XLAUI"),
ice_arr_elem_idx(36, "50GBASE_CR2"),
ice_arr_elem_idx(37, "50GBASE_SR2"),
ice_arr_elem_idx(38, "50GBASE_LR2"),
ice_arr_elem_idx(39, "50GBASE_KR2"),
ice_arr_elem_idx(40, "50G_LAUI2_AOC_ACC"),
ice_arr_elem_idx(41, "50G_LAUI2"),
ice_arr_elem_idx(42, "50G_AUI2_AOC_ACC"),
ice_arr_elem_idx(43, "50G_AUI2"),
ice_arr_elem_idx(44, "50GBASE_CP"),
ice_arr_elem_idx(45, "50GBASE_SR"),
ice_arr_elem_idx(46, "50GBASE_FR"),
ice_arr_elem_idx(47, "50GBASE_LR"),
ice_arr_elem_idx(48, "50GBASE_KR_PAM4"),
ice_arr_elem_idx(49, "50G_AUI1_AOC_ACC"),
ice_arr_elem_idx(50, "50G_AUI1"),
ice_arr_elem_idx(51, "100GBASE_CR4"),
ice_arr_elem_idx(52, "100GBASE_SR4"),
ice_arr_elem_idx(53, "100GBASE_LR4"),
ice_arr_elem_idx(54, "100GBASE_KR4"),
ice_arr_elem_idx(55, "100G_CAUI4_AOC_ACC"),
ice_arr_elem_idx(56, "100G_CAUI4"),
ice_arr_elem_idx(57, "100G_AUI4_AOC_ACC"),
ice_arr_elem_idx(58, "100G_AUI4"),
ice_arr_elem_idx(59, "100GBASE_CR_PAM4"),
ice_arr_elem_idx(60, "100GBASE_KR_PAM4"),
ice_arr_elem_idx(61, "100GBASE_CP2"),
ice_arr_elem_idx(62, "100GBASE_SR2"),
ice_arr_elem_idx(63, "100GBASE_DR"),
};
static const char * const ice_link_mode_str_high[] = {
ice_arr_elem_idx(0, "100GBASE_KR2_PAM4"),
ice_arr_elem_idx(1, "100G_CAUI2_AOC_ACC"),
ice_arr_elem_idx(2, "100G_CAUI2"),
ice_arr_elem_idx(3, "100G_AUI2_AOC_ACC"),
ice_arr_elem_idx(4, "100G_AUI2"),
};
#endif
/**
* ice_dump_phy_type - helper function to dump phy_type
* @hw: pointer to the HW structure
* @low: 64 bit value for phy_type_low
* @high: 64 bit value for phy_type_high
* @prefix: prefix string to differentiate multiple dumps
*/
void
ice_dump_phy_type(struct ice_hw *hw, uint64_t low, uint64_t high,
const char *prefix)
{
#ifdef ICE_DEBUG
uint32_t i;
DNPRINTF(ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix,
(unsigned long long)low);
for (i = 0; i < nitems(ice_link_mode_str_low); i++) {
if (low & (1ULL << i))
DNPRINTF(ICE_DBG_PHY, "%s: bit(%d): %s\n",
prefix, i, ice_link_mode_str_low[i]);
}
DNPRINTF(ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix,
(unsigned long long)high);
for (i = 0; i < nitems(ice_link_mode_str_high); i++) {
if (high & (1ULL << i))
DNPRINTF(ICE_DBG_PHY, "%s: bit(%d): %s\n",
prefix, i, ice_link_mode_str_high[i]);
}
#endif
}
/**
* ice_phy_maps_to_media
* @phy_type_low: PHY type low bits
* @phy_type_high: PHY type high bits
* @media_mask_low: media type PHY type low bitmask
* @media_mask_high: media type PHY type high bitmask
*
* Return true if PHY type [low|high] bits are only of media type PHY types
* [low|high] bitmask.
*/
bool
ice_phy_maps_to_media(uint64_t phy_type_low, uint64_t phy_type_high,
uint64_t media_mask_low, uint64_t media_mask_high)
{
/* check if a PHY type exist for media type */
if (!(phy_type_low & media_mask_low ||
phy_type_high & media_mask_high))
return false;
/* check that PHY types are only of media type */
if (!(phy_type_low & ~media_mask_low) &&
!(phy_type_high & ~media_mask_high))
return true;
return false;
}
/**
* ice_set_media_type - Sets media type
* @pi: port information structure
*
* Set ice_port_info PHY media type based on PHY type. This should be called
* from Get PHY caps with media.
*/
void
ice_set_media_type(struct ice_port_info *pi)
{
enum ice_media_type *media_type;
uint64_t phy_type_high, phy_type_low;
phy_type_high = pi->phy.phy_type_high;
phy_type_low = pi->phy.phy_type_low;
media_type = &pi->phy.media_type;
/* if no media, then media type is NONE */
if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
*media_type = ICE_MEDIA_NONE;
/* else if PHY types are only BASE-T, then media type is BASET */
else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
ICE_MEDIA_BASET_PHY_TYPE_LOW_M, 0))
*media_type = ICE_MEDIA_BASET;
/* else if any PHY type is BACKPLANE, then media type is BACKPLANE */
else if (phy_type_low & ICE_MEDIA_BP_PHY_TYPE_LOW_M ||
phy_type_high & ICE_MEDIA_BP_PHY_TYPE_HIGH_M)
*media_type = ICE_MEDIA_BACKPLANE;
/* else if PHY types are only optical, or optical and C2M, then media
* type is FIBER
*/
else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
ICE_MEDIA_OPT_PHY_TYPE_LOW_M, 0) ||
(phy_type_low & ICE_MEDIA_OPT_PHY_TYPE_LOW_M &&
phy_type_low & ICE_MEDIA_C2M_PHY_TYPE_LOW_M))
*media_type = ICE_MEDIA_FIBER;
/* else if PHY types are only DA, or DA and C2C, then media type DA */
else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
ICE_MEDIA_DAC_PHY_TYPE_LOW_M, 0) ||
(phy_type_low & ICE_MEDIA_DAC_PHY_TYPE_LOW_M &&
(phy_type_low & ICE_MEDIA_C2C_PHY_TYPE_LOW_M ||
phy_type_high & ICE_MEDIA_C2C_PHY_TYPE_HIGH_M)))
*media_type = ICE_MEDIA_DA;
/* else if PHY types are only C2M or only C2C, then media is AUI */
else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
ICE_MEDIA_C2M_PHY_TYPE_LOW_M,
ICE_MEDIA_C2M_PHY_TYPE_HIGH_M) ||
ice_phy_maps_to_media(phy_type_low, phy_type_high,
ICE_MEDIA_C2C_PHY_TYPE_LOW_M,
ICE_MEDIA_C2C_PHY_TYPE_HIGH_M))
*media_type = ICE_MEDIA_AUI;
else
*media_type = ICE_MEDIA_UNKNOWN;
}
/**
* ice_aq_get_phy_caps - returns PHY capabilities
* @pi: port information structure
* @qual_mods: report qualified modules
* @report_mode: report mode capabilities
* @pcaps: structure for PHY capabilities to be filled
* @cd: pointer to command details structure or NULL
*
* Returns the various PHY capabilities supported on the Port (0x0600)
*/
enum ice_status
ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods,
uint8_t report_mode, struct ice_aqc_get_phy_caps_data *pcaps,
struct ice_sq_cd *cd)
{
struct ice_aqc_get_phy_caps *cmd;
uint16_t pcaps_size = sizeof(*pcaps);
struct ice_aq_desc desc;
enum ice_status status;
const char *prefix;
struct ice_hw *hw;
cmd = &desc.params.get_phy;
if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
return ICE_ERR_PARAM;
hw = pi->hw;
if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
!ice_fw_supports_report_dflt_cfg(hw))
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
if (qual_mods)
cmd->param0 |= htole16(ICE_AQC_GET_PHY_RQM);
cmd->param0 |= htole16(report_mode);
status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
DNPRINTF(ICE_DBG_LINK, "get phy caps dump\n");
switch (report_mode) {
case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
prefix = "phy_caps_media";
break;
case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
prefix = "phy_caps_no_media";
break;
case ICE_AQC_REPORT_ACTIVE_CFG:
prefix = "phy_caps_active";
break;
case ICE_AQC_REPORT_DFLT_CFG:
prefix = "phy_caps_default";
break;
default:
prefix = "phy_caps_invalid";
}
ice_dump_phy_type(hw, le64toh(pcaps->phy_type_low),
le64toh(pcaps->phy_type_high), prefix);
DNPRINTF(ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
prefix, report_mode);
DNPRINTF(ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
DNPRINTF(ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
pcaps->low_power_ctrl_an);
DNPRINTF(ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
pcaps->eee_cap);
DNPRINTF(ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
pcaps->eeer_value);
DNPRINTF(ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
pcaps->link_fec_options);
DNPRINTF(ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
prefix, pcaps->module_compliance_enforcement);
DNPRINTF(ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
prefix, pcaps->extended_compliance_code);
DNPRINTF(ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
pcaps->module_type[0]);
DNPRINTF(ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
pcaps->module_type[1]);
DNPRINTF(ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
pcaps->module_type[2]);
if (status == ICE_SUCCESS && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
pi->phy.phy_type_low = le64toh(pcaps->phy_type_low);
pi->phy.phy_type_high = le64toh(pcaps->phy_type_high);
memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
sizeof(pi->phy.link_info.module_type));
ice_set_media_type(pi);
DNPRINTF(ICE_DBG_LINK, "%s: media_type = 0x%x\n", prefix,
pi->phy.media_type);
}
return status;
}
/**
* ice_aq_get_link_info
* @pi: port information structure
* @ena_lse: enable/disable LinkStatusEvent reporting
* @link: pointer to link status structure - optional
* @cd: pointer to command details structure or NULL
*
* Get Link Status (0x607). Returns the link status of the adapter.
*/
enum ice_status
ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
struct ice_link_status *link, struct ice_sq_cd *cd)
{
struct ice_aqc_get_link_status_data link_data = { 0 };
struct ice_aqc_get_link_status *resp;
struct ice_link_status *li_old, *li;
struct ice_fc_info *hw_fc_info;
bool tx_pause, rx_pause;
struct ice_aq_desc desc;
enum ice_status status;
struct ice_hw *hw;
uint16_t cmd_flags;
if (!pi)
return ICE_ERR_PARAM;
hw = pi->hw;
li_old = &pi->phy.link_info_old;
li = &pi->phy.link_info;
hw_fc_info = &pi->fc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
resp = &desc.params.get_link_status;
resp->cmd_flags = htole16(cmd_flags);
resp->lport_num = pi->lport;
status = ice_aq_send_cmd(hw, &desc, &link_data,
ICE_GET_LINK_STATUS_DATALEN_V1, cd);
if (status != ICE_SUCCESS)
return status;
/* save off old link status information */
*li_old = *li;
/* update current link status information */
li->link_speed = le16toh(link_data.link_speed);
li->phy_type_low = le64toh(link_data.phy_type_low);
li->phy_type_high = le64toh(link_data.phy_type_high);
li->link_info = link_data.link_info;
li->link_cfg_err = link_data.link_cfg_err;
li->an_info = link_data.an_info;
li->ext_info = link_data.ext_info;
li->max_frame_size = le16toh(link_data.max_frame_size);
li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
li->topo_media_conflict = link_data.topo_media_conflict;
li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
ICE_AQ_CFG_PACING_TYPE_M);
/* update fc info */
tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
if (tx_pause && rx_pause)
hw_fc_info->current_mode = ICE_FC_FULL;
else if (tx_pause)
hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
else if (rx_pause)
hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
else
hw_fc_info->current_mode = ICE_FC_NONE;
li->lse_ena = !!(resp->cmd_flags & htole16(ICE_AQ_LSE_IS_ENABLED));
DNPRINTF(ICE_DBG_LINK, "get link info\n");
DNPRINTF(ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
DNPRINTF(ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
(unsigned long long)li->phy_type_low);
DNPRINTF(ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
(unsigned long long)li->phy_type_high);
DNPRINTF(ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
DNPRINTF(ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
DNPRINTF(ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
DNPRINTF(ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
DNPRINTF(ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
DNPRINTF(ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
DNPRINTF(ICE_DBG_LINK, " max_frame = 0x%x\n",
li->max_frame_size);
DNPRINTF(ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
/* save link status information */
if (link)
*link = *li;
/* flag cleared so calling functions don't call AQ again */
pi->phy.get_link_info = false;
return ICE_SUCCESS;
}
/**
* ice_cfg_rl_burst_size - Set burst size value
* @hw: pointer to the HW struct
* @bytes: burst size in bytes
*
* This function configures/set the burst size to requested new value. The new
* burst size value is used for future rate limit calls. It doesn't change the
* existing or previously created RL profiles.
*/
enum ice_status
ice_cfg_rl_burst_size(struct ice_hw *hw, uint32_t bytes)
{
uint16_t burst_size_to_prog;
if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
bytes > ICE_MAX_BURST_SIZE_ALLOWED)
return ICE_ERR_PARAM;
if (ice_round_to_num(bytes, 64) <=
ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
/* 64 byte granularity case */
/* Disable MSB granularity bit */
burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
/* round number to nearest 64 byte granularity */
bytes = ice_round_to_num(bytes, 64);
/* The value is in 64 byte chunks */
burst_size_to_prog |= (uint16_t)(bytes / 64);
} else {
/* k bytes granularity case */
/* Enable MSB granularity bit */
burst_size_to_prog = ICE_KBYTE_GRANULARITY;
/* round number to nearest 1024 granularity */
bytes = ice_round_to_num(bytes, 1024);
/* check rounding doesn't go beyond allowed */
if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
/* The value is in k bytes */
burst_size_to_prog |= (uint16_t)(bytes / 1024);
}
hw->max_burst_size = burst_size_to_prog;
return ICE_SUCCESS;
}
/**
* ice_init_def_sw_recp - initialize the recipe book keeping tables
* @hw: pointer to the HW struct
* @recp_list: pointer to sw recipe list
*
* Allocate memory for the entire recipe table and initialize the structures/
* entries corresponding to basic recipes.
*/
enum ice_status
ice_init_def_sw_recp(struct ice_hw *hw, struct ice_sw_recipe **recp_list)
{
struct ice_sw_recipe *recps;
uint8_t i;
recps = (struct ice_sw_recipe *)
ice_calloc(hw, ICE_MAX_NUM_RECIPES, sizeof(*recps));
if (!recps)
return ICE_ERR_NO_MEMORY;
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
recps[i].root_rid = i;
TAILQ_INIT(&recps[i].filt_rules);
TAILQ_INIT(&recps[i].adv_filt_rules);
TAILQ_INIT(&recps[i].filt_replay_rules);
TAILQ_INIT(&recps[i].rg_list);
ice_init_lock(&recps[i].filt_rule_lock);
}
*recp_list = recps;
return ICE_SUCCESS;
}
/**
* ice_init_fltr_mgmt_struct - initializes filter management list and locks
* @hw: pointer to the HW struct
*/
enum ice_status
ice_init_fltr_mgmt_struct(struct ice_hw *hw)
{
struct ice_switch_info *sw;
enum ice_status status;
hw->switch_info = (struct ice_switch_info *)
ice_malloc(hw, sizeof(*hw->switch_info));
sw = hw->switch_info;
if (!sw)
return ICE_ERR_NO_MEMORY;
TAILQ_INIT(&sw->vsi_list_map_head);
sw->prof_res_bm_init = 0;
status = ice_init_def_sw_recp(hw, &hw->switch_info->recp_list);
if (status) {
ice_free(hw, hw->switch_info);
return status;
}
return ICE_SUCCESS;
}
/**
* ice_aq_manage_mac_read - manage MAC address read command
* @hw: pointer to the HW struct
* @buf: a virtual buffer to hold the manage MAC read response
* @buf_size: Size of the virtual buffer
* @cd: pointer to command details structure or NULL
*
* This function is used to return per PF station MAC address (0x0107).
* NOTE: Upon successful completion of this command, MAC address information
* is returned in user specified buffer. Please interpret user specified
* buffer as "manage_mac_read" response.
* Response such as various MAC addresses are stored in HW struct (port.mac)
* ice_discover_dev_caps is expected to be called before this function is
* called.
*/
enum ice_status
ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, uint16_t buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_manage_mac_read_resp *resp;
struct ice_aqc_manage_mac_read *cmd;
struct ice_aq_desc desc;
enum ice_status status;
uint16_t flags;
uint8_t i;
cmd = &desc.params.mac_read;
if (buf_size < sizeof(*resp))
return ICE_ERR_BUF_TOO_SHORT;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (status)
return status;
resp = (struct ice_aqc_manage_mac_read_resp *)buf;
flags = le16toh(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
DNPRINTF(ICE_DBG_LAN, "got invalid MAC address\n");
return ICE_ERR_CFG;
}
/* A single port can report up to two (LAN and WoL) addresses */
for (i = 0; i < cmd->num_addr; i++) {
if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
memcpy(hw->port_info->mac.lan_addr,
resp[i].mac_addr, ETHER_ADDR_LEN);
memcpy(hw->port_info->mac.perm_addr,
resp[i].mac_addr, ETHER_ADDR_LEN);
break;
}
}
return ICE_SUCCESS;
}
/**
* ice_rem_sw_rule_info
* @hw: pointer to the hardware structure
* @rule_head: pointer to the switch list structure that we want to delete
*/
void
ice_rem_sw_rule_info(struct ice_hw *hw, struct ice_fltr_mgmt_list_head *rule_head)
{
if (!TAILQ_EMPTY(rule_head)) {
struct ice_fltr_mgmt_list_entry *entry;
struct ice_fltr_mgmt_list_entry *tmp;
TAILQ_FOREACH_SAFE(entry, rule_head, list_entry, tmp) {
TAILQ_REMOVE(rule_head, entry, list_entry);
ice_free(hw, entry);
}
}
}
/**
* ice_rm_sw_replay_rule_info - helper function to delete filter replay rules
* @hw: pointer to the HW struct
* @sw: pointer to switch info struct for which function removes filters
*
* Deletes the filter replay rules for given switch
*/
void
ice_rm_sw_replay_rule_info(struct ice_hw *hw, struct ice_switch_info *sw)
{
uint8_t i;
if (!sw)
return;
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
if (!TAILQ_EMPTY(&sw->recp_list[i].filt_replay_rules)) {
struct ice_fltr_mgmt_list_head *l_head;
l_head = &sw->recp_list[i].filt_replay_rules;
if (!sw->recp_list[i].adv_rule)
ice_rem_sw_rule_info(hw, l_head);
}
}
}
/**
* ice_cleanup_fltr_mgmt_single - clears single filter mngt struct
* @hw: pointer to the HW struct
* @sw: pointer to switch info struct for which function clears filters
*/
void
ice_cleanup_fltr_mgmt_single(struct ice_hw *hw, struct ice_switch_info *sw)
{
struct ice_vsi_list_map_info *v_pos_map;
struct ice_vsi_list_map_info *v_tmp_map;
struct ice_sw_recipe *recps;
uint8_t i;
if (!sw)
return;
TAILQ_FOREACH_SAFE(v_pos_map, &sw->vsi_list_map_head, list_entry,
v_tmp_map) {
TAILQ_REMOVE(&sw->vsi_list_map_head, v_pos_map, list_entry);
ice_free(hw, v_pos_map);
}
recps = sw->recp_list;
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
recps[i].root_rid = i;
TAILQ_FOREACH_SAFE(rg_entry, &recps[i].rg_list, l_entry,
tmprg_entry) {
TAILQ_REMOVE(&recps[i].rg_list, rg_entry, l_entry);
ice_free(hw, rg_entry);
}
if (recps[i].adv_rule) {
struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
struct ice_adv_fltr_mgmt_list_entry *lst_itr;
#if 0
ice_destroy_lock(&recps[i].filt_rule_lock);
#endif
TAILQ_FOREACH_SAFE(lst_itr, &recps[i].adv_filt_rules,
list_entry, tmp_entry) {
TAILQ_REMOVE(&recps[i].adv_filt_rules, lst_itr,
list_entry);
ice_free(hw, lst_itr->lkups);
ice_free(hw, lst_itr);
}
} else {
struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
#if 0
ice_destroy_lock(&recps[i].filt_rule_lock);
#endif
TAILQ_FOREACH_SAFE(lst_itr, &recps[i].filt_rules,
list_entry, tmp_entry) {
TAILQ_REMOVE(&recps[i].filt_rules, lst_itr,
list_entry);
ice_free(hw, lst_itr);
}
}
if (recps[i].root_buf)
ice_free(hw, recps[i].root_buf);
}
ice_rm_sw_replay_rule_info(hw, sw);
ice_free(hw, sw->recp_list);
ice_free(hw, sw);
}
/**
* ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
* @hw: pointer to the HW struct
*/
void
ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
{
ice_cleanup_fltr_mgmt_single(hw, hw->switch_info);
}
/**
* ice_is_fw_auto_drop_supported
* @hw: pointer to the hardware structure
*
* Checks if the firmware supports auto drop feature
*/
bool
ice_is_fw_auto_drop_supported(struct ice_hw *hw)
{
if (hw->api_maj_ver >= ICE_FW_API_AUTO_DROP_MAJ &&
hw->api_min_ver >= ICE_FW_API_AUTO_DROP_MIN)
return true;
return false;
}
/**
* ice_fill_tx_timer_and_fc_thresh
* @hw: pointer to the HW struct
* @cmd: pointer to MAC cfg structure
*
* Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
* descriptor
*/
void
ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
struct ice_aqc_set_mac_cfg *cmd)
{
uint16_t fc_thres_val, tx_timer_val;
uint32_t val;
/* We read back the transmit timer and fc threshold value of
* LFC. Thus, we will use index =
* PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
*
* Also, because we are operating on transmit timer and fc
* threshold of LFC, we don't turn on any bit in tx_tmr_priority
*/
#define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
/* Retrieve the transmit timer */
val = ICE_READ(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
tx_timer_val = val &
PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
cmd->tx_tmr_value = htole16(tx_timer_val);
/* Retrieve the fc threshold */
val = ICE_READ(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
cmd->fc_refresh_threshold = htole16(fc_thres_val);
}
/**
* ice_aq_set_mac_cfg
* @hw: pointer to the HW struct
* @max_frame_size: Maximum Frame Size to be supported
* @auto_drop: Tell HW to drop packets if TC queue is blocked
* @cd: pointer to command details structure or NULL
*
* Set MAC configuration (0x0603)
*/
enum ice_status
ice_aq_set_mac_cfg(struct ice_hw *hw, uint16_t max_frame_size, bool auto_drop,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_mac_cfg *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.set_mac_cfg;
if (max_frame_size == 0)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
cmd->max_frame_size = htole16(max_frame_size);
if (ice_is_fw_auto_drop_supported(hw) && auto_drop)
cmd->drop_opts |= ICE_AQ_SET_MAC_AUTO_DROP_BLOCKING_PKTS;
ice_fill_tx_timer_and_fc_thresh(hw, cmd);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_vsig_free - free VSI group
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsig: VSIG to remove
*
* The function will remove all VSIs associated with the input VSIG and move
* them to the DEFAULT_VSIG and mark the VSIG available.
*/
enum ice_status
ice_vsig_free(struct ice_hw *hw, enum ice_block blk, uint16_t vsig)
{
struct ice_vsig_prof *dtmp, *del;
struct ice_vsig_vsi *vsi_cur;
uint16_t idx;
idx = vsig & ICE_VSIG_IDX_M;
if (idx >= ICE_MAX_VSIGS)
return ICE_ERR_PARAM;
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
return ICE_ERR_DOES_NOT_EXIST;
hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
/* If the VSIG has at least 1 VSI then iterate through the
* list and remove the VSIs before deleting the group.
*/
if (vsi_cur) {
/* remove all vsis associated with this VSIG XLT2 entry */
do {
struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
vsi_cur->vsig = ICE_DEFAULT_VSIG;
vsi_cur->changed = 1;
vsi_cur->next_vsi = NULL;
vsi_cur = tmp;
} while (vsi_cur);
/* NULL terminate head of VSI list */
hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
}
/* free characteristic list */
TAILQ_FOREACH_SAFE(del, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
list, dtmp) {
TAILQ_REMOVE(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, del,
list);
ice_free(hw, del);
}
/* if VSIG characteristic list was cleared for reset
* re-initialize the list head
*/
TAILQ_INIT(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
return ICE_SUCCESS;
}
/**
* ice_free_vsig_tbl - free complete VSIG table entries
* @hw: pointer to the hardware structure
* @blk: the HW block on which to free the VSIG table entries
*/
void
ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
{
uint16_t i;
if (!hw->blk[blk].xlt2.vsig_tbl)
return;
for (i = 1; i < ICE_MAX_VSIGS; i++)
if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
ice_vsig_free(hw, blk, i);
}
/**
* ice_free_prof_map - free profile map
* @hw: pointer to the hardware structure
* @blk_idx: HW block index
*/
void
ice_free_prof_map(struct ice_hw *hw, uint8_t blk_idx)
{
struct ice_es *es = &hw->blk[blk_idx].es;
struct ice_prof_map *del, *tmp;
#if 0
ice_acquire_lock(&es->prof_map_lock);
#endif
TAILQ_FOREACH_SAFE(del, &es->prof_map, list, tmp) {
TAILQ_REMOVE(&es->prof_map, del, list);
ice_free(hw, del);
}
TAILQ_INIT(&es->prof_map);
#if 0
ice_release_lock(&es->prof_map_lock);
#endif
}
/**
* ice_free_flow_profs - free flow profile entries
* @hw: pointer to the hardware structure
* @blk_idx: HW block index
*/
void
ice_free_flow_profs(struct ice_hw *hw, uint8_t blk_idx)
{
struct ice_flow_prof *p, *tmp;
#if 0
ice_acquire_lock(&hw->fl_profs_locks[blk_idx]);
#endif
TAILQ_FOREACH_SAFE(p, &hw->fl_profs[blk_idx], l_entry, tmp) {
TAILQ_REMOVE(&hw->fl_profs[blk_idx], p, l_entry);
ice_free(hw, p);
}
#if 0
ice_release_lock(&hw->fl_profs_locks[blk_idx]);
#endif
/* if driver is in reset and tables are being cleared
* re-initialize the flow profile list heads
*/
TAILQ_INIT(&hw->fl_profs[blk_idx]);
}
/**
* ice_free_hw_tbls - free hardware table memory
* @hw: pointer to the hardware structure
*/
void
ice_free_hw_tbls(struct ice_hw *hw)
{
struct ice_rss_cfg *r, *rt;
uint8_t i;
for (i = 0; i < ICE_BLK_COUNT; i++) {
if (hw->blk[i].is_list_init) {
#if 0
struct ice_es *es = &hw->blk[i].es;
#endif
ice_free_prof_map(hw, i);
#if 0
ice_destroy_lock(&es->prof_map_lock);
#endif
ice_free_flow_profs(hw, i);
#if 0
ice_destroy_lock(&hw->fl_profs_locks[i]);
#endif
hw->blk[i].is_list_init = false;
}
ice_free_vsig_tbl(hw, (enum ice_block)i);
ice_free(hw, hw->blk[i].xlt1.ptypes);
ice_free(hw, hw->blk[i].xlt1.ptg_tbl);
ice_free(hw, hw->blk[i].xlt1.t);
ice_free(hw, hw->blk[i].xlt2.t);
ice_free(hw, hw->blk[i].xlt2.vsig_tbl);
ice_free(hw, hw->blk[i].xlt2.vsis);
ice_free(hw, hw->blk[i].prof.t);
ice_free(hw, hw->blk[i].prof_redir.t);
ice_free(hw, hw->blk[i].es.t);
ice_free(hw, hw->blk[i].es.ref_count);
ice_free(hw, hw->blk[i].es.written);
}
TAILQ_FOREACH_SAFE(r, &hw->rss_list_head, l_entry, rt) {
TAILQ_REMOVE(&hw->rss_list_head, r, l_entry);
ice_free(hw, r);
}
#if 0
ice_destroy_lock(&hw->rss_locks);
#endif
memset(hw->blk, 0, sizeof(hw->blk));
}
/**
* ice_init_flow_profs - init flow profile locks and list heads
* @hw: pointer to the hardware structure
* @blk_idx: HW block index
*/
void ice_init_flow_profs(struct ice_hw *hw, uint8_t blk_idx)
{
#if 0
ice_init_lock(&hw->fl_profs_locks[blk_idx]);
#endif
TAILQ_INIT(&hw->fl_profs[blk_idx]);
}
/* Block / table size info */
struct ice_blk_size_details {
uint16_t xlt1; /* # XLT1 entries */
uint16_t xlt2; /* # XLT2 entries */
uint16_t prof_tcam; /* # profile ID TCAM entries */
uint16_t prof_id; /* # profile IDs */
uint8_t prof_cdid_bits; /* # CDID one-hot bits used in key */
uint16_t prof_redir; /* # profile redirection entries */
uint16_t es; /* # extraction sequence entries */
uint16_t fvw; /* # field vector words */
uint8_t overwrite; /* overwrite existing entries allowed */
uint8_t reverse; /* reverse FV order */
};
static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
/**
* Table Definitions
* XLT1 - Number of entries in XLT1 table
* XLT2 - Number of entries in XLT2 table
* TCAM - Number of entries Profile ID TCAM table
* CDID - Control Domain ID of the hardware block
* PRED - Number of entries in the Profile Redirection Table
* FV - Number of entries in the Field Vector
* FVW - Width (in WORDs) of the Field Vector
* OVR - Overwrite existing table entries
* REV - Reverse FV
*/
/* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
/* Overwrite , Reverse FV */
/* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
false, false },
/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
false, false },
/* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
false, true },
/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
true, true },
/* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
false, false },
};
enum ice_sid_all {
ICE_SID_XLT1_OFF = 0,
ICE_SID_XLT2_OFF,
ICE_SID_PR_OFF,
ICE_SID_PR_REDIR_OFF,
ICE_SID_ES_OFF,
ICE_SID_OFF_COUNT,
};
/* Block / table section IDs */
static const uint32_t ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
/* SWITCH */
{ ICE_SID_XLT1_SW,
ICE_SID_XLT2_SW,
ICE_SID_PROFID_TCAM_SW,
ICE_SID_PROFID_REDIR_SW,
ICE_SID_FLD_VEC_SW
},
/* ACL */
{ ICE_SID_XLT1_ACL,
ICE_SID_XLT2_ACL,
ICE_SID_PROFID_TCAM_ACL,
ICE_SID_PROFID_REDIR_ACL,
ICE_SID_FLD_VEC_ACL
},
/* FD */
{ ICE_SID_XLT1_FD,
ICE_SID_XLT2_FD,
ICE_SID_PROFID_TCAM_FD,
ICE_SID_PROFID_REDIR_FD,
ICE_SID_FLD_VEC_FD
},
/* RSS */
{ ICE_SID_XLT1_RSS,
ICE_SID_XLT2_RSS,
ICE_SID_PROFID_TCAM_RSS,
ICE_SID_PROFID_REDIR_RSS,
ICE_SID_FLD_VEC_RSS
},
/* PE */
{ ICE_SID_XLT1_PE,
ICE_SID_XLT2_PE,
ICE_SID_PROFID_TCAM_PE,
ICE_SID_PROFID_REDIR_PE,
ICE_SID_FLD_VEC_PE
}
};
/**
* ice_init_hw_tbls - init hardware table memory
* @hw: pointer to the hardware structure
*/
enum ice_status
ice_init_hw_tbls(struct ice_hw *hw)
{
uint8_t i;
#if 0
ice_init_lock(&hw->rss_locks);
#endif
TAILQ_INIT(&hw->rss_list_head);
for (i = 0; i < ICE_BLK_COUNT; i++) {
struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
struct ice_prof_tcam *prof = &hw->blk[i].prof;
struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
struct ice_es *es = &hw->blk[i].es;
uint16_t j;
if (hw->blk[i].is_list_init)
continue;
ice_init_flow_profs(hw, i);
ice_init_lock(&es->prof_map_lock);
TAILQ_INIT(&es->prof_map);
hw->blk[i].is_list_init = true;
hw->blk[i].overwrite = blk_sizes[i].overwrite;
es->reverse = blk_sizes[i].reverse;
xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
xlt1->count = blk_sizes[i].xlt1;
xlt1->ptypes = (struct ice_ptg_ptype *)
ice_calloc(hw, xlt1->count, sizeof(*xlt1->ptypes));
if (!xlt1->ptypes)
goto err;
xlt1->ptg_tbl = (struct ice_ptg_entry *)
ice_calloc(hw, ICE_MAX_PTGS, sizeof(*xlt1->ptg_tbl));
if (!xlt1->ptg_tbl)
goto err;
xlt1->t = (uint8_t *)ice_calloc(hw, xlt1->count,
sizeof(*xlt1->t));
if (!xlt1->t)
goto err;
xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
xlt2->count = blk_sizes[i].xlt2;
xlt2->vsis = (struct ice_vsig_vsi *)
ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsis));
if (!xlt2->vsis)
goto err;
xlt2->vsig_tbl = (struct ice_vsig_entry *)
ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsig_tbl));
if (!xlt2->vsig_tbl)
goto err;
for (j = 0; j < xlt2->count; j++)
TAILQ_INIT(&xlt2->vsig_tbl[j].prop_lst);
xlt2->t = (uint16_t *)ice_calloc(hw, xlt2->count,
sizeof(*xlt2->t));
if (!xlt2->t)
goto err;
prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
prof->count = blk_sizes[i].prof_tcam;
prof->max_prof_id = blk_sizes[i].prof_id;
prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
prof->t = (struct ice_prof_tcam_entry *)
ice_calloc(hw, prof->count, sizeof(*prof->t));
if (!prof->t)
goto err;
prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
prof_redir->count = blk_sizes[i].prof_redir;
prof_redir->t = (uint8_t *)ice_calloc(hw, prof_redir->count,
sizeof(*prof_redir->t));
if (!prof_redir->t)
goto err;
es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
es->count = blk_sizes[i].es;
es->fvw = blk_sizes[i].fvw;
es->t = (struct ice_fv_word *)
ice_calloc(hw, (uint32_t)(es->count * es->fvw),
sizeof(*es->t));
if (!es->t)
goto err;
es->ref_count = (uint16_t *)
ice_calloc(hw, es->count, sizeof(*es->ref_count));
if (!es->ref_count)
goto err;
es->written = (uint8_t *)
ice_calloc(hw, es->count, sizeof(*es->written));
if (!es->written)
goto err;
}
return ICE_SUCCESS;
err:
ice_free_hw_tbls(hw);
return ICE_ERR_NO_MEMORY;
}
enum ice_status
ice_init_hw(struct ice_hw *hw)
{
struct ice_softc *sc = hw->hw_sc;
struct ice_aqc_get_phy_caps_data *pcaps;
enum ice_status status;
uint16_t mac_buf_len;
void *mac_buf;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
/* Set MAC type based on DeviceID */
ice_set_mac_type(hw);
hw->pf_id = (uint8_t)(ICE_READ(hw, PF_FUNC_RID) &
PF_FUNC_RID_FUNCTION_NUMBER_M) >>
PF_FUNC_RID_FUNCTION_NUMBER_S;
status = ice_reset(hw, ICE_RESET_PFR);
if (status)
return status;
ice_get_itr_intrl_gran(hw);
status = ice_create_all_ctrlq(hw);
if (status)
goto err_unroll_cqinit;
ice_fwlog_set_support_ena(hw);
status = ice_fwlog_set(hw, &hw->fwlog_cfg);
if (status) {
DNPRINTF(ICE_DBG_INIT,
"Failed to enable FW logging, status %d.\n", status);
} else {
if (hw->fwlog_cfg.options & ICE_FWLOG_OPTION_REGISTER_ON_INIT) {
status = ice_fwlog_register(hw);
if (status)
DNPRINTF(ICE_DBG_INIT,
"Failed to register for FW logging "
"events, status %d.\n", status);
} else {
status = ice_fwlog_unregister(hw);
if (status)
DNPRINTF(ICE_DBG_INIT, "Failed to unregister "
"for FW logging events, status %d.\n",
status);
}
}
status = ice_init_nvm(hw);
if (status)
goto err_unroll_cqinit;
if (ice_get_fw_mode(hw) == ICE_FW_MODE_ROLLBACK)
ice_print_rollback_msg(hw);
status = ice_clear_pf_cfg(hw);
if (status)
goto err_unroll_cqinit;
ice_clear_pxe_mode(hw);
status = ice_get_caps(hw);
if (status)
goto err_unroll_cqinit;
if (!hw->port_info)
hw->port_info = (struct ice_port_info *)
ice_malloc(hw, sizeof(*hw->port_info));
if (!hw->port_info) {
status = ICE_ERR_NO_MEMORY;
goto err_unroll_cqinit;
}
/* set the back pointer to HW */
hw->port_info->hw = hw;
/* Initialize port_info struct with switch configuration data */
status = ice_get_initial_sw_cfg(hw);
if (status)
goto err_unroll_alloc;
hw->evb_veb = true;
/* Query the allocated resources for Tx scheduler */
status = ice_sched_query_res_alloc(hw);
if (status) {
DNPRINTF(ICE_DBG_SCHED,
"Failed to get scheduler allocated resources\n");
goto err_unroll_alloc;
}
ice_sched_get_psm_clk_freq(hw);
/* Initialize port_info struct with scheduler data */
status = ice_sched_init_port(hw->port_info);
if (status)
goto err_unroll_sched;
pcaps = (struct ice_aqc_get_phy_caps_data *)
ice_malloc(hw, sizeof(*pcaps));
if (!pcaps) {
status = ICE_ERR_NO_MEMORY;
goto err_unroll_sched;
}
/* Initialize port_info struct with PHY capabilities */
status = ice_aq_get_phy_caps(hw->port_info, false,
ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, NULL);
ice_free(hw, pcaps);
if (status)
printf("%s: Get PHY capabilities failed status = %d, "
"continuing anyway\n", sc->sc_dev.dv_xname, status);
/* Initialize port_info struct with link information */
status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
if (status)
goto err_unroll_sched;
/* need a valid SW entry point to build a Tx tree */
if (!hw->sw_entry_point_layer) {
DNPRINTF(ICE_DBG_SCHED, "invalid sw entry point\n");
status = ICE_ERR_CFG;
goto err_unroll_sched;
}
TAILQ_INIT(&hw->agg_list);
/* Initialize max burst size */
if (!hw->max_burst_size)
ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
status = ice_init_fltr_mgmt_struct(hw);
if (status)
goto err_unroll_sched;
/* Get MAC information */
/* A single port can report up to two (LAN and WoL) addresses */
mac_buf = ice_calloc(hw, 2,
sizeof(struct ice_aqc_manage_mac_read_resp));
mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
if (!mac_buf) {
status = ICE_ERR_NO_MEMORY;
goto err_unroll_fltr_mgmt_struct;
}
status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
ice_free(hw, mac_buf);
if (status)
goto err_unroll_fltr_mgmt_struct;
/* enable jumbo frame support at MAC level */
status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, false,
NULL);
if (status)
goto err_unroll_fltr_mgmt_struct;
status = ice_init_hw_tbls(hw);
if (status)
goto err_unroll_fltr_mgmt_struct;
#if 0
ice_init_lock(&hw->tnl_lock);
#endif
return ICE_SUCCESS;
err_unroll_fltr_mgmt_struct:
ice_cleanup_fltr_mgmt_struct(hw);
err_unroll_sched:
ice_sched_cleanup_all(hw);
err_unroll_alloc:
ice_free(hw, hw->port_info);
hw->port_info = NULL;
err_unroll_cqinit:
ice_destroy_all_ctrlq(hw);
return status;
}
/**
* ice_deinit_hw - unroll initialization operations done by ice_init_hw
* @hw: pointer to the hardware structure
*
* This should be called only during nominal operation, not as a result of
* ice_init_hw() failing since ice_init_hw() will take care of unrolling
* applicable initializations if it fails for any reason.
*/
void ice_deinit_hw(struct ice_hw *hw)
{
ice_cleanup_fltr_mgmt_struct(hw);
ice_sched_cleanup_all(hw);
#if 0
ice_sched_clear_agg(hw);
ice_free_seg(hw);
#endif
ice_free_hw_tbls(hw);
#if 0
ice_destroy_lock(&hw->tnl_lock);
#endif
if (hw->port_info) {
ice_free(hw, hw->port_info);
hw->port_info = NULL;
}
ice_destroy_all_ctrlq(hw);
#if 0
/* Clear VSI contexts if not already cleared */
ice_clear_all_vsi_ctx(hw);
#endif
}
void
ice_rxfill(struct ice_softc *sc, struct ice_rx_queue *rxq)
{
union ice_32b_rx_flex_desc *ring, *rxd;
struct ice_rx_map *rxm;
bus_dmamap_t map;
struct mbuf *m;
unsigned int prod;
unsigned int slots;
unsigned int mask;
int post = 0;
slots = if_rxr_get(&rxq->rxq_acct, rxq->desc_count);
if (slots == 0)
return;
prod = rxq->rxq_prod;
ring = ICE_DMA_KVA(&rxq->rx_desc_mem);
mask = rxq->desc_count - 1;
do {
rxm = &rxq->rx_map[prod];
m = MCLGETL(NULL, M_DONTWAIT, MCLBYTES + ETHER_ALIGN);
if (m == NULL)
break;
m->m_data += (m->m_ext.ext_size - (MCLBYTES + ETHER_ALIGN));
m->m_len = m->m_pkthdr.len = MCLBYTES + ETHER_ALIGN;
map = rxm->rxm_map;
if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
BUS_DMA_NOWAIT) != 0) {
m_freem(m);
break;
}
rxm->rxm_m = m;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREREAD);
rxd = &ring[prod];
htolem64(&rxd->read.pkt_addr, map->dm_segs[0].ds_addr);
rxd->read.hdr_addr = htole64(0);
prod++;
prod &= mask;
post = 1;
} while (--slots);
if_rxr_put(&rxq->rxq_acct, slots);
if (if_rxr_inuse(&rxq->rxq_acct) == 0)
timeout_add(&rxq->rxq_refill, 1);
else if (post) {
rxq->rxq_prod = prod;
ICE_WRITE(&sc->hw, rxq->tail, prod);
}
}
/**
* ice_aq_manage_mac_write - manage MAC address write command
* @hw: pointer to the HW struct
* @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
* @flags: flags to control write behavior
* @cd: pointer to command details structure or NULL
*
* This function is used to write MAC address to the NVM (0x0108).
*/
enum ice_status
ice_aq_manage_mac_write(struct ice_hw *hw, const uint8_t *mac_addr,
uint8_t flags, struct ice_sq_cd *cd)
{
struct ice_aqc_manage_mac_write *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.mac_write;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
cmd->flags = flags;
memcpy(cmd->mac_addr, mac_addr, ETHER_ADDR_LEN);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_update_laa_mac - Update MAC address if Locally Administered
* @sc: the device softc
*
* Update the device MAC address when a Locally Administered Address is
* assigned.
*
* This function does *not* update the MAC filter list itself. Instead, it
* should be called after ice_rm_pf_default_mac_filters, so that the previous
* address filter will be removed, and before ice_cfg_pf_default_mac_filters,
* so that the new address filter will be assigned.
*/
void
ice_update_laa_mac(struct ice_softc *sc)
{
struct ifnet *ifp = &sc->sc_ac.ac_if;
uint8_t *lladdr = ((struct arpcom *)ifp)->ac_enaddr;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
/* Desired address already set in hardware? */
if (!memcmp(lladdr, hw->port_info->mac.lan_addr, ETHER_ADDR_LEN))
return;
status = ice_aq_manage_mac_write(hw, lladdr,
ICE_AQC_MAN_MAC_UPDATE_LAA_WOL, NULL);
if (status) {
printf("%s: Failed to write mac %s to firmware, "
"err %s aq_err %s\n", sc->sc_dev.dv_xname,
ether_sprintf(lladdr), ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return;
}
/* Cache current hardware address. */
memcpy(hw->port_info->mac.lan_addr, lladdr, ETHER_ADDR_LEN);
}
/**
* ice_add_mac_to_list - Add MAC filter to a MAC filter list
* @vsi: the VSI to forward to
* @list: list which contains MAC filter entries
* @addr: the MAC address to be added
* @action: filter action to perform on match
*
* Adds a MAC address filter to the list which will be forwarded to firmware
* to add a series of MAC address filters.
*
* Returns 0 on success, and an error code on failure.
*
*/
int
ice_add_mac_to_list(struct ice_vsi *vsi, struct ice_fltr_list_head *list,
const uint8_t *addr, enum ice_sw_fwd_act_type action)
{
struct ice_fltr_list_entry *entry;
entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT|M_ZERO);
if (!entry)
return (ENOMEM);
entry->fltr_info.flag = ICE_FLTR_TX;
entry->fltr_info.src_id = ICE_SRC_ID_VSI;
entry->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
entry->fltr_info.fltr_act = action;
entry->fltr_info.vsi_handle = vsi->idx;
memcpy(entry->fltr_info.l_data.mac.mac_addr, addr, ETHER_ADDR_LEN);
TAILQ_INSERT_HEAD(list, entry, list_entry);
return 0;
}
/**
* ice_free_fltr_list - Free memory associated with a MAC address list
* @list: the list to free
*
* Free the memory of each entry associated with the list.
*/
void
ice_free_fltr_list(struct ice_fltr_list_head *list)
{
struct ice_fltr_list_entry *e, *tmp;
TAILQ_FOREACH_SAFE(e, list, list_entry, tmp) {
TAILQ_REMOVE(list, e, list_entry);
free(e, M_DEVBUF, sizeof(*e));
}
}
/**
* ice_find_rule_entry - Search a rule entry
* @list_head: head of rule list
* @f_info: rule information
*
* Helper function to search for a given rule entry
* Returns pointer to entry storing the rule if found
*/
struct ice_fltr_mgmt_list_entry *
ice_find_rule_entry(struct ice_fltr_mgmt_list_head *list_head,
struct ice_fltr_info *f_info)
{
struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
TAILQ_FOREACH(list_itr, list_head, list_entry) {
if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
sizeof(f_info->l_data)) &&
f_info->flag == list_itr->fltr_info.flag) {
ret = list_itr;
break;
}
}
return ret;
}
/* Dummy ethernet header needed in the ice_sw_rule_*
* struct to configure any switch filter rules.
* {DA (6 bytes), SA(6 bytes),
* Ether type (2 bytes for header without VLAN tag) OR
* VLAN tag (4 bytes for header with VLAN tag) }
*
* Word on Hardcoded values
* byte 0 = 0x2: to identify it as locally administered DA MAC
* byte 6 = 0x2: to identify it as locally administered SA MAC
* byte 12 = 0x81 & byte 13 = 0x00:
* In case of VLAN filter first two bytes defines ether type (0x8100)
* and remaining two bytes are placeholder for programming a given VLAN ID
* In case of Ether type filter it is treated as header without VLAN tag
* and byte 12 and 13 is used to program a given Ether type instead
*/
static const uint8_t dummy_eth_header[ICE_DUMMY_ETH_HDR_LEN] = {
0x2, 0, 0, 0, 0, 0, 0x2, 0, 0, 0, 0, 0, 0x81, 0, 0, 0
};
#define ICE_ETH_DA_OFFSET 0
#define ICE_ETH_ETHTYPE_OFFSET 12
#define ICE_ETH_VLAN_TCI_OFFSET 14
#define ICE_MAX_VLAN_ID 0xFFF
#define ICE_IPV6_ETHER_ID 0x86DD
#define ICE_PPP_IPV6_PROTO_ID 0x0057
#define ICE_ETH_P_8021Q 0x8100
/**
* ice_fill_sw_info - Helper function to populate lb_en and lan_en
* @hw: pointer to the hardware structure
* @fi: filter info structure to fill/update
*
* This helper function populates the lb_en and lan_en elements of the provided
* ice_fltr_info struct using the switch's type and characteristics of the
* switch rule being configured.
*/
void
ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
{
fi->lb_en = false;
fi->lan_en = false;
if ((fi->flag & ICE_FLTR_TX) &&
(fi->fltr_act == ICE_FWD_TO_VSI ||
fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
fi->fltr_act == ICE_FWD_TO_Q ||
fi->fltr_act == ICE_FWD_TO_QGRP)) {
/* Setting LB for prune actions will result in replicated
* packets to the internal switch that will be dropped.
*/
if (fi->lkup_type != ICE_SW_LKUP_VLAN)
fi->lb_en = true;
/* Set lan_en to TRUE if
* 1. The switch is a VEB AND
* 2
* 2.1 The lookup is a directional lookup like ethertype,
* promiscuous, ethertype-MAC, promiscuous-VLAN
* and default-port OR
* 2.2 The lookup is VLAN, OR
* 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
* 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
*
* OR
*
* The switch is a VEPA.
*
* In all other cases, the LAN enable has to be set to false.
*/
if (hw->evb_veb) {
if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
fi->lkup_type == ICE_SW_LKUP_PROMISC ||
fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
fi->lkup_type == ICE_SW_LKUP_DFLT ||
fi->lkup_type == ICE_SW_LKUP_VLAN ||
(fi->lkup_type == ICE_SW_LKUP_MAC &&
ETHER_IS_MULTICAST(fi->l_data.mac.mac_addr)) ||
(fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
ETHER_IS_MULTICAST(fi->l_data.mac.mac_addr)))
fi->lan_en = true;
} else {
fi->lan_en = true;
}
}
/* To be able to receive packets coming from the VF on the same PF,
* unicast filter needs to be added without LB_EN bit
*/
if (fi->flag & ICE_FLTR_RX_LB) {
fi->lb_en = false;
fi->lan_en = true;
}
}
/**
* ice_fill_sw_rule - Helper function to fill switch rule structure
* @hw: pointer to the hardware structure
* @f_info: entry containing packet forwarding information
* @s_rule: switch rule structure to be filled in based on mac_entry
* @opc: switch rules population command type - pass in the command opcode
*/
void
ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
struct ice_sw_rule_lkup_rx_tx *s_rule,
enum ice_adminq_opc opc)
{
uint16_t vlan_id = ICE_MAX_VLAN_ID + 1;
uint16_t vlan_tpid = ICE_ETH_P_8021Q;
void *daddr = NULL;
uint16_t eth_hdr_sz;
uint8_t *eth_hdr;
uint32_t act = 0;
uint16_t *off;
uint8_t q_rgn;
if (opc == ice_aqc_opc_remove_sw_rules) {
s_rule->act = 0;
s_rule->index = htole16(f_info->fltr_rule_id);
s_rule->hdr_len = 0;
return;
}
eth_hdr_sz = sizeof(dummy_eth_header);
eth_hdr = s_rule->hdr_data;
/* initialize the ether header with a dummy header */
memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
ice_fill_sw_info(hw, f_info);
switch (f_info->fltr_act) {
case ICE_FWD_TO_VSI:
act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
ICE_SINGLE_ACT_VSI_ID_M;
if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
act |= ICE_SINGLE_ACT_VSI_FORWARDING |
ICE_SINGLE_ACT_VALID_BIT;
break;
case ICE_FWD_TO_VSI_LIST:
act |= ICE_SINGLE_ACT_VSI_LIST;
act |= (f_info->fwd_id.vsi_list_id <<
ICE_SINGLE_ACT_VSI_LIST_ID_S) &
ICE_SINGLE_ACT_VSI_LIST_ID_M;
if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
act |= ICE_SINGLE_ACT_VSI_FORWARDING |
ICE_SINGLE_ACT_VALID_BIT;
break;
case ICE_FWD_TO_Q:
act |= ICE_SINGLE_ACT_TO_Q;
act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
ICE_SINGLE_ACT_Q_INDEX_M;
break;
case ICE_DROP_PACKET:
act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
ICE_SINGLE_ACT_VALID_BIT;
break;
case ICE_FWD_TO_QGRP:
q_rgn = f_info->qgrp_size > 0 ?
(uint8_t)ice_ilog2(f_info->qgrp_size) : 0;
act |= ICE_SINGLE_ACT_TO_Q;
act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
ICE_SINGLE_ACT_Q_INDEX_M;
act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
ICE_SINGLE_ACT_Q_REGION_M;
break;
default:
return;
}
if (f_info->lb_en)
act |= ICE_SINGLE_ACT_LB_ENABLE;
if (f_info->lan_en)
act |= ICE_SINGLE_ACT_LAN_ENABLE;
switch (f_info->lkup_type) {
case ICE_SW_LKUP_MAC:
daddr = f_info->l_data.mac.mac_addr;
break;
case ICE_SW_LKUP_VLAN:
vlan_id = f_info->l_data.vlan.vlan_id;
if (f_info->l_data.vlan.tpid_valid)
vlan_tpid = f_info->l_data.vlan.tpid;
if (f_info->fltr_act == ICE_FWD_TO_VSI ||
f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
act |= ICE_SINGLE_ACT_PRUNE;
act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
}
break;
case ICE_SW_LKUP_ETHERTYPE_MAC:
daddr = f_info->l_data.ethertype_mac.mac_addr;
/* fall-through */
case ICE_SW_LKUP_ETHERTYPE:
off = (uint16_t *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
*off = htobe16(f_info->l_data.ethertype_mac.ethertype);
break;
case ICE_SW_LKUP_MAC_VLAN:
daddr = f_info->l_data.mac_vlan.mac_addr;
vlan_id = f_info->l_data.mac_vlan.vlan_id;
break;
case ICE_SW_LKUP_PROMISC_VLAN:
vlan_id = f_info->l_data.mac_vlan.vlan_id;
/* fall-through */
case ICE_SW_LKUP_PROMISC:
daddr = f_info->l_data.mac_vlan.mac_addr;
break;
default:
break;
}
s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
htole16(ICE_AQC_SW_RULES_T_LKUP_RX) :
htole16(ICE_AQC_SW_RULES_T_LKUP_TX);
/* Recipe set depending on lookup type */
s_rule->recipe_id = htole16(f_info->lkup_type);
s_rule->src = htole16(f_info->src);
s_rule->act = htole32(act);
if (daddr)
memcpy(eth_hdr + ICE_ETH_DA_OFFSET, daddr, ETHER_ADDR_LEN);
if (!(vlan_id > ICE_MAX_VLAN_ID)) {
off = (uint16_t *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
*off = htobe16(vlan_id);
off = (uint16_t *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
*off = htobe16(vlan_tpid);
}
/* Create the switch rule with the final dummy Ethernet header */
if (opc != ice_aqc_opc_update_sw_rules)
s_rule->hdr_len = htole16(eth_hdr_sz);
}
/**
* ice_aq_sw_rules - add/update/remove switch rules
* @hw: pointer to the HW struct
* @rule_list: pointer to switch rule population list
* @rule_list_sz: total size of the rule list in bytes
* @num_rules: number of switch rules in the rule_list
* @opc: switch rules population command type - pass in the command opcode
* @cd: pointer to command details structure or NULL
*
* Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
*/
enum ice_status
ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, uint16_t rule_list_sz,
uint8_t num_rules, enum ice_adminq_opc opc,
struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
enum ice_status status;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
if (opc != ice_aqc_opc_add_sw_rules &&
opc != ice_aqc_opc_update_sw_rules &&
opc != ice_aqc_opc_remove_sw_rules)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, opc);
desc.flags |= htole16(ICE_AQ_FLAG_RD);
desc.params.sw_rules.num_rules_fltr_entry_index = htole16(num_rules);
status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
if (opc != ice_aqc_opc_add_sw_rules &&
hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
status = ICE_ERR_DOES_NOT_EXIST;
return status;
}
/**
* ice_create_pkt_fwd_rule
* @hw: pointer to the hardware structure
* @recp_list: corresponding filter management list
* @f_entry: entry containing packet forwarding information
*
* Create switch rule with given filter information and add an entry
* to the corresponding filter management list to track this switch rule
* and VSI mapping
*/
enum ice_status
ice_create_pkt_fwd_rule(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
struct ice_fltr_list_entry *f_entry)
{
struct ice_fltr_mgmt_list_entry *fm_entry;
struct ice_sw_rule_lkup_rx_tx *s_rule;
enum ice_status status;
s_rule = (struct ice_sw_rule_lkup_rx_tx *)
ice_malloc(hw, ice_struct_size(s_rule, hdr_data,
ICE_DUMMY_ETH_HDR_LEN));
if (!s_rule)
return ICE_ERR_NO_MEMORY;
fm_entry = (struct ice_fltr_mgmt_list_entry *)
ice_malloc(hw, sizeof(*fm_entry));
if (!fm_entry) {
status = ICE_ERR_NO_MEMORY;
goto ice_create_pkt_fwd_rule_exit;
}
fm_entry->fltr_info = f_entry->fltr_info;
/* Initialize all the fields for the management entry */
fm_entry->vsi_count = 1;
fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
ice_aqc_opc_add_sw_rules);
status = ice_aq_sw_rules(hw, s_rule,
ice_struct_size(s_rule, hdr_data,
ICE_DUMMY_ETH_HDR_LEN),
1, ice_aqc_opc_add_sw_rules, NULL);
if (status) {
ice_free(hw, fm_entry);
goto ice_create_pkt_fwd_rule_exit;
}
f_entry->fltr_info.fltr_rule_id = le16toh(s_rule->index);
fm_entry->fltr_info.fltr_rule_id = le16toh(s_rule->index);
/* The book keeping entries will get removed when base driver
* calls remove filter AQ command
*/
TAILQ_INSERT_HEAD(&recp_list->filt_rules, fm_entry, list_entry);
ice_create_pkt_fwd_rule_exit:
ice_free(hw, s_rule);
return status;
}
/**
* ice_aq_alloc_free_res - command to allocate/free resources
* @hw: pointer to the HW struct
* @num_entries: number of resource entries in buffer
* @buf: Indirect buffer to hold data parameters and response
* @buf_size: size of buffer for indirect commands
* @opc: pass in the command opcode
* @cd: pointer to command details structure or NULL
*
* Helper function to allocate/free resources using the admin queue commands
*/
enum ice_status
ice_aq_alloc_free_res(struct ice_hw *hw, uint16_t num_entries,
struct ice_aqc_alloc_free_res_elem *buf, uint16_t buf_size,
enum ice_adminq_opc opc, struct ice_sq_cd *cd)
{
struct ice_aqc_alloc_free_res_cmd *cmd;
struct ice_aq_desc desc;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.sw_res_ctrl;
if (!buf)
return ICE_ERR_PARAM;
if (buf_size < FLEX_ARRAY_SIZE(buf, elem, num_entries))
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, opc);
desc.flags |= htole16(ICE_AQ_FLAG_RD);
cmd->num_entries = htole16(num_entries);
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
}
/**
* ice_aq_alloc_free_vsi_list
* @hw: pointer to the HW struct
* @vsi_list_id: VSI list ID returned or used for lookup
* @lkup_type: switch rule filter lookup type
* @opc: switch rules population command type - pass in the command opcode
*
* allocates or free a VSI list resource
*/
enum ice_status
ice_aq_alloc_free_vsi_list(struct ice_hw *hw, uint16_t *vsi_list_id,
enum ice_sw_lkup_type lkup_type,
enum ice_adminq_opc opc)
{
struct ice_aqc_alloc_free_res_elem *sw_buf;
struct ice_aqc_res_elem *vsi_ele;
enum ice_status status;
uint16_t buf_len;
buf_len = ice_struct_size(sw_buf, elem, 1);
sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!sw_buf)
return ICE_ERR_NO_MEMORY;
sw_buf->num_elems = htole16(1);
if (lkup_type == ICE_SW_LKUP_MAC ||
lkup_type == ICE_SW_LKUP_MAC_VLAN ||
lkup_type == ICE_SW_LKUP_ETHERTYPE ||
lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
lkup_type == ICE_SW_LKUP_PROMISC ||
lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
lkup_type == ICE_SW_LKUP_DFLT ||
lkup_type == ICE_SW_LKUP_LAST) {
sw_buf->res_type = htole16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
} else if (lkup_type == ICE_SW_LKUP_VLAN) {
sw_buf->res_type =
htole16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
} else {
status = ICE_ERR_PARAM;
goto ice_aq_alloc_free_vsi_list_exit;
}
if (opc == ice_aqc_opc_free_res)
sw_buf->elem[0].e.sw_resp = htole16(*vsi_list_id);
status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
if (status)
goto ice_aq_alloc_free_vsi_list_exit;
if (opc == ice_aqc_opc_alloc_res) {
vsi_ele = &sw_buf->elem[0];
*vsi_list_id = le16toh(vsi_ele->e.sw_resp);
}
ice_aq_alloc_free_vsi_list_exit:
ice_free(hw, sw_buf);
return status;
}
/**
* ice_update_vsi_list_rule
* @hw: pointer to the hardware structure
* @vsi_handle_arr: array of VSI handles to form a VSI list
* @num_vsi: number of VSI handles in the array
* @vsi_list_id: VSI list ID generated as part of allocate resource
* @remove: Boolean value to indicate if this is a remove action
* @opc: switch rules population command type - pass in the command opcode
* @lkup_type: lookup type of the filter
*
* Call AQ command to add a new switch rule or update existing switch rule
* using the given VSI list ID
*/
enum ice_status
ice_update_vsi_list_rule(struct ice_hw *hw, uint16_t *vsi_handle_arr,
uint16_t num_vsi, uint16_t vsi_list_id, bool remove,
enum ice_adminq_opc opc, enum ice_sw_lkup_type lkup_type)
{
struct ice_sw_rule_vsi_list *s_rule;
enum ice_status status;
uint16_t s_rule_size;
uint16_t rule_type;
int i;
if (!num_vsi)
return ICE_ERR_PARAM;
if (lkup_type == ICE_SW_LKUP_MAC ||
lkup_type == ICE_SW_LKUP_MAC_VLAN ||
lkup_type == ICE_SW_LKUP_ETHERTYPE ||
lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
lkup_type == ICE_SW_LKUP_PROMISC ||
lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
lkup_type == ICE_SW_LKUP_DFLT ||
lkup_type == ICE_SW_LKUP_LAST)
rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
ICE_AQC_SW_RULES_T_VSI_LIST_SET;
else if (lkup_type == ICE_SW_LKUP_VLAN)
rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
else
return ICE_ERR_PARAM;
s_rule_size = (uint16_t)ice_struct_size(s_rule, vsi, num_vsi);
s_rule = (struct ice_sw_rule_vsi_list *)ice_malloc(hw, s_rule_size);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
for (i = 0; i < num_vsi; i++) {
if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
status = ICE_ERR_PARAM;
goto exit;
}
/* AQ call requires hw_vsi_id(s) */
s_rule->vsi[i] =
htole16(hw->vsi_ctx[vsi_handle_arr[i]]->vsi_num);
}
s_rule->hdr.type = htole16(rule_type);
s_rule->number_vsi = htole16(num_vsi);
s_rule->index = htole16(vsi_list_id);
status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
exit:
ice_free(hw, s_rule);
return status;
}
/**
* ice_create_vsi_list_rule - Creates and populates a VSI list rule
* @hw: pointer to the HW struct
* @vsi_handle_arr: array of VSI handles to form a VSI list
* @num_vsi: number of VSI handles in the array
* @vsi_list_id: stores the ID of the VSI list to be created
* @lkup_type: switch rule filter's lookup type
*/
enum ice_status
ice_create_vsi_list_rule(struct ice_hw *hw, uint16_t *vsi_handle_arr,
uint16_t num_vsi, uint16_t *vsi_list_id, enum ice_sw_lkup_type lkup_type)
{
enum ice_status status;
status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
ice_aqc_opc_alloc_res);
if (status)
return status;
/* Update the newly created VSI list to include the specified VSIs */
return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
*vsi_list_id, false,
ice_aqc_opc_add_sw_rules, lkup_type);
}
/**
* ice_update_pkt_fwd_rule
* @hw: pointer to the hardware structure
* @f_info: filter information for switch rule
*
* Call AQ command to update a previously created switch rule with a
* VSI list ID
*/
enum ice_status
ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
{
struct ice_sw_rule_lkup_rx_tx *s_rule;
enum ice_status status;
s_rule = (struct ice_sw_rule_lkup_rx_tx *)
ice_malloc(hw, ice_struct_size(s_rule, hdr_data,
ICE_DUMMY_ETH_HDR_LEN));
if (!s_rule)
return ICE_ERR_NO_MEMORY;
ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
s_rule->index = htole16(f_info->fltr_rule_id);
/* Update switch rule with new rule set to forward VSI list */
status = ice_aq_sw_rules(hw, s_rule,
ice_struct_size(s_rule, hdr_data,
ICE_DUMMY_ETH_HDR_LEN),
1, ice_aqc_opc_update_sw_rules, NULL);
ice_free(hw, s_rule);
return status;
}
/**
* ice_create_vsi_list_map
* @hw: pointer to the hardware structure
* @vsi_handle_arr: array of VSI handles to set in the VSI mapping
* @num_vsi: number of VSI handles in the array
* @vsi_list_id: VSI list ID generated as part of allocate resource
*
* Helper function to create a new entry of VSI list ID to VSI mapping
* using the given VSI list ID
*/
struct ice_vsi_list_map_info *
ice_create_vsi_list_map(struct ice_hw *hw, uint16_t *vsi_handle_arr,
uint16_t num_vsi, uint16_t vsi_list_id)
{
struct ice_switch_info *sw = hw->switch_info;
struct ice_vsi_list_map_info *v_map;
int i;
v_map = (struct ice_vsi_list_map_info *)ice_malloc(hw, sizeof(*v_map));
if (!v_map)
return NULL;
v_map->vsi_list_id = vsi_list_id;
v_map->ref_cnt = 1;
for (i = 0; i < num_vsi; i++)
ice_set_bit(vsi_handle_arr[i], v_map->vsi_map);
TAILQ_INSERT_HEAD(&sw->vsi_list_map_head, v_map, list_entry);
return v_map;
}
/**
* ice_add_marker_act
* @hw: pointer to the hardware structure
* @m_ent: the management entry for which sw marker needs to be added
* @sw_marker: sw marker to tag the Rx descriptor with
* @l_id: large action resource ID
*
* Create a large action to hold software marker and update the switch rule
* entry pointed by m_ent with newly created large action
*/
enum ice_status
ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
uint16_t sw_marker, uint16_t l_id)
{
struct ice_sw_rule_lkup_rx_tx *rx_tx;
struct ice_sw_rule_lg_act *lg_act;
/* For software marker we need 3 large actions
* 1. FWD action: FWD TO VSI or VSI LIST
* 2. GENERIC VALUE action to hold the profile ID
* 3. GENERIC VALUE action to hold the software marker ID
*/
const uint16_t num_lg_acts = 3;
enum ice_status status;
uint16_t lg_act_size;
uint16_t rules_size;
uint32_t act;
uint16_t id;
if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
return ICE_ERR_PARAM;
/* Create two back-to-back switch rules and submit them to the HW using
* one memory buffer:
* 1. Large Action
* 2. Look up Tx Rx
*/
lg_act_size = (uint16_t)ice_struct_size(lg_act, act, num_lg_acts);
rules_size = lg_act_size +
ice_struct_size(rx_tx, hdr_data, ICE_DUMMY_ETH_HDR_LEN);
lg_act = (struct ice_sw_rule_lg_act *)ice_malloc(hw, rules_size);
if (!lg_act)
return ICE_ERR_NO_MEMORY;
rx_tx = (struct ice_sw_rule_lkup_rx_tx *)((uint8_t *)lg_act +
lg_act_size);
/* Fill in the first switch rule i.e. large action */
lg_act->hdr.type = htole16(ICE_AQC_SW_RULES_T_LG_ACT);
lg_act->index = htole16(l_id);
lg_act->size = htole16(num_lg_acts);
/* First action VSI forwarding or VSI list forwarding depending on how
* many VSIs
*/
id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
m_ent->fltr_info.fwd_id.hw_vsi_id;
act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
if (m_ent->vsi_count > 1)
act |= ICE_LG_ACT_VSI_LIST;
lg_act->act[0] = htole32(act);
/* Second action descriptor type */
act = ICE_LG_ACT_GENERIC;
act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
lg_act->act[1] = htole32(act);
act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
/* Third action Marker value */
act |= ICE_LG_ACT_GENERIC;
act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
ICE_LG_ACT_GENERIC_VALUE_M;
lg_act->act[2] = htole32(act);
/* call the fill switch rule to fill the lookup Tx Rx structure */
ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
ice_aqc_opc_update_sw_rules);
/* Update the action to point to the large action ID */
rx_tx->act = htole32(ICE_SINGLE_ACT_PTR |
((l_id << ICE_SINGLE_ACT_PTR_VAL_S) & ICE_SINGLE_ACT_PTR_VAL_M));
/* Use the filter rule ID of the previously created rule with single
* act. Once the update happens, hardware will treat this as large
* action
*/
rx_tx->index = htole16(m_ent->fltr_info.fltr_rule_id);
status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
ice_aqc_opc_update_sw_rules, NULL);
if (!status) {
m_ent->lg_act_idx = l_id;
m_ent->sw_marker_id = sw_marker;
}
ice_free(hw, lg_act);
return status;
}
/**
* ice_add_update_vsi_list
* @hw: pointer to the hardware structure
* @m_entry: pointer to current filter management list entry
* @cur_fltr: filter information from the book keeping entry
* @new_fltr: filter information with the new VSI to be added
*
* Call AQ command to add or update previously created VSI list with new VSI.
*
* Helper function to do book keeping associated with adding filter information
* The algorithm to do the book keeping is described below :
* When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
* if only one VSI has been added till now
* Allocate a new VSI list and add two VSIs
* to this list using switch rule command
* Update the previously created switch rule with the
* newly created VSI list ID
* if a VSI list was previously created
* Add the new VSI to the previously created VSI list set
* using the update switch rule command
*/
enum ice_status
ice_add_update_vsi_list(struct ice_hw *hw,
struct ice_fltr_mgmt_list_entry *m_entry,
struct ice_fltr_info *cur_fltr,
struct ice_fltr_info *new_fltr)
{
enum ice_status status = ICE_SUCCESS;
uint16_t vsi_list_id = 0;
if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
return ICE_ERR_NOT_IMPL;
if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
(cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
return ICE_ERR_NOT_IMPL;
if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
/* Only one entry existed in the mapping and it was not already
* a part of a VSI list. So, create a VSI list with the old and
* new VSIs.
*/
struct ice_fltr_info tmp_fltr;
uint16_t vsi_handle_arr[2];
/* A rule already exists with the new VSI being added */
if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
return ICE_ERR_ALREADY_EXISTS;
vsi_handle_arr[0] = cur_fltr->vsi_handle;
vsi_handle_arr[1] = new_fltr->vsi_handle;
status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
&vsi_list_id,
new_fltr->lkup_type);
if (status)
return status;
tmp_fltr = *new_fltr;
tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
/* Update the previous switch rule of "MAC forward to VSI" to
* "MAC fwd to VSI list"
*/
status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
if (status)
return status;
cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
m_entry->vsi_list_info =
ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
vsi_list_id);
if (!m_entry->vsi_list_info)
return ICE_ERR_NO_MEMORY;
/* If this entry was large action then the large action needs
* to be updated to point to FWD to VSI list
*/
if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
status =
ice_add_marker_act(hw, m_entry,
m_entry->sw_marker_id,
m_entry->lg_act_idx);
} else {
uint16_t vsi_handle = new_fltr->vsi_handle;
enum ice_adminq_opc opcode;
if (!m_entry->vsi_list_info)
return ICE_ERR_CFG;
/* A rule already exists with the new VSI being added */
if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle))
return ICE_SUCCESS;
/* Update the previously created VSI list set with
* the new VSI ID passed in
*/
vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
opcode = ice_aqc_opc_update_sw_rules;
status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
vsi_list_id, false, opcode,
new_fltr->lkup_type);
/* update VSI list mapping info with new VSI ID */
if (!status)
ice_set_bit(vsi_handle,
m_entry->vsi_list_info->vsi_map);
}
if (!status)
m_entry->vsi_count++;
return status;
}
/**
* ice_add_rule_internal - add rule for a given lookup type
* @hw: pointer to the hardware structure
* @recp_list: recipe list for which rule has to be added
* @lport: logic port number on which function add rule
* @f_entry: structure containing MAC forwarding information
*
* Adds or updates the rule lists for a given recipe
*/
enum ice_status
ice_add_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
uint8_t lport, struct ice_fltr_list_entry *f_entry)
{
struct ice_fltr_info *new_fltr, *cur_fltr;
struct ice_fltr_mgmt_list_entry *m_entry;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
enum ice_status status = ICE_SUCCESS;
if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
return ICE_ERR_PARAM;
/* Load the hw_vsi_id only if the fwd action is fwd to VSI */
if (f_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI)
f_entry->fltr_info.fwd_id.hw_vsi_id =
hw->vsi_ctx[f_entry->fltr_info.vsi_handle]->vsi_num;
rule_lock = &recp_list->filt_rule_lock;
#if 0
ice_acquire_lock(rule_lock);
#endif
new_fltr = &f_entry->fltr_info;
if (new_fltr->flag & ICE_FLTR_RX)
new_fltr->src = lport;
else if (new_fltr->flag & (ICE_FLTR_TX | ICE_FLTR_RX_LB))
new_fltr->src =
hw->vsi_ctx[f_entry->fltr_info.vsi_handle]->vsi_num;
m_entry = ice_find_rule_entry(&recp_list->filt_rules, new_fltr);
if (!m_entry) {
status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry);
goto exit_add_rule_internal;
}
cur_fltr = &m_entry->fltr_info;
status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
exit_add_rule_internal:
#if 0
ice_release_lock(rule_lock);
#endif
return status;
}
/**
* ice_add_mac_rule - Add a MAC address based filter rule
* @hw: pointer to the hardware structure
* @list: list of MAC addresses and forwarding information
* @sw: pointer to switch info struct for which function add rule
* @lport: logic port number on which function add rule
*
* IMPORTANT: When the umac_shared flag is set to false and 'list' has
* multiple unicast addresses, the function assumes that all the
* addresses are unique in a given add_mac call. It doesn't
* check for duplicates in this case, removing duplicates from a given
* list should be taken care of in the caller of this function.
*/
enum ice_status
ice_add_mac_rule(struct ice_hw *hw, struct ice_fltr_list_head *list,
struct ice_switch_info *sw, uint8_t lport)
{
struct ice_sw_recipe *recp_list = &sw->recp_list[ICE_SW_LKUP_MAC];
struct ice_sw_rule_lkup_rx_tx *s_rule, *r_iter;
struct ice_fltr_list_entry *list_itr;
struct ice_fltr_mgmt_list_head *rule_head;
uint16_t total_elem_left, s_rule_size;
#if 0
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
#endif
enum ice_status status = ICE_SUCCESS;
uint16_t num_unicast = 0;
uint8_t elem_sent;
s_rule = NULL;
#if 0
rule_lock = &recp_list->filt_rule_lock;
#endif
rule_head = &recp_list->filt_rules;
TAILQ_FOREACH(list_itr, list, list_entry) {
uint8_t *add = &list_itr->fltr_info.l_data.mac.mac_addr[0];
uint16_t vsi_handle;
uint16_t hw_vsi_id;
list_itr->fltr_info.flag = ICE_FLTR_TX;
vsi_handle = list_itr->fltr_info.vsi_handle;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
hw_vsi_id = hw->vsi_ctx[vsi_handle]->vsi_num;
if (list_itr->fltr_info.fltr_act == ICE_FWD_TO_VSI)
list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
/* update the src in case it is VSI num */
if (list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
return ICE_ERR_PARAM;
list_itr->fltr_info.src = hw_vsi_id;
if (list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
ETHER_IS_ANYADDR(add))
return ICE_ERR_PARAM;
if (!ETHER_IS_MULTICAST(add) && !hw->umac_shared) {
/* Don't overwrite the unicast address */
#if 0
ice_acquire_lock(rule_lock);
#endif
if (ice_find_rule_entry(rule_head,
&list_itr->fltr_info)) {
#if 0
ice_release_lock(rule_lock);
#endif
continue;
}
#if 0
ice_release_lock(rule_lock);
#endif
num_unicast++;
} else if (ETHER_IS_MULTICAST(add) || hw->umac_shared) {
list_itr->status =
ice_add_rule_internal(hw, recp_list, lport,
list_itr);
if (list_itr->status)
return list_itr->status;
}
}
#if 0
ice_acquire_lock(rule_lock);
#endif
/* Exit if no suitable entries were found for adding bulk switch rule */
if (!num_unicast) {
status = ICE_SUCCESS;
goto ice_add_mac_exit;
}
/* Allocate switch rule buffer for the bulk update for unicast */
s_rule_size = ice_struct_size(s_rule, hdr_data, ICE_DUMMY_ETH_HDR_LEN);
s_rule = (struct ice_sw_rule_lkup_rx_tx *)
ice_calloc(hw, num_unicast, s_rule_size);
if (!s_rule) {
status = ICE_ERR_NO_MEMORY;
goto ice_add_mac_exit;
}
r_iter = s_rule;
TAILQ_FOREACH(list_itr, list, list_entry) {
struct ice_fltr_info *f_info = &list_itr->fltr_info;
uint8_t *mac_addr = &f_info->l_data.mac.mac_addr[0];
if (!ETHER_IS_MULTICAST(mac_addr)) {
ice_fill_sw_rule(hw, &list_itr->fltr_info, r_iter,
ice_aqc_opc_add_sw_rules);
r_iter = (struct ice_sw_rule_lkup_rx_tx *)
((uint8_t *)r_iter + s_rule_size);
}
}
/* Call AQ bulk switch rule update for all unicast addresses */
r_iter = s_rule;
/* Call AQ switch rule in AQ_MAX chunk */
for (total_elem_left = num_unicast; total_elem_left > 0;
total_elem_left -= elem_sent) {
struct ice_sw_rule_lkup_rx_tx *entry = r_iter;
elem_sent = MIN(total_elem_left,
(ICE_AQ_MAX_BUF_LEN / s_rule_size));
status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size,
elem_sent, ice_aqc_opc_add_sw_rules,
NULL);
if (status)
goto ice_add_mac_exit;
r_iter = (struct ice_sw_rule_lkup_rx_tx *)
((uint8_t *)r_iter + (elem_sent * s_rule_size));
}
/* Fill up rule ID based on the value returned from FW */
r_iter = s_rule;
TAILQ_FOREACH(list_itr, list, list_entry) {
struct ice_fltr_info *f_info = &list_itr->fltr_info;
uint8_t *mac_addr = &f_info->l_data.mac.mac_addr[0];
struct ice_fltr_mgmt_list_entry *fm_entry;
if (!ETHER_IS_MULTICAST(mac_addr)) {
f_info->fltr_rule_id = le16toh(r_iter->index);
f_info->fltr_act = ICE_FWD_TO_VSI;
/* Create an entry to track this MAC address */
fm_entry = (struct ice_fltr_mgmt_list_entry *)
ice_malloc(hw, sizeof(*fm_entry));
if (!fm_entry) {
status = ICE_ERR_NO_MEMORY;
goto ice_add_mac_exit;
}
fm_entry->fltr_info = *f_info;
fm_entry->vsi_count = 1;
/* The book keeping entries will get removed when
* base driver calls remove filter AQ command
*/
TAILQ_INSERT_HEAD(rule_head, fm_entry, list_entry);
r_iter = (struct ice_sw_rule_lkup_rx_tx *)
((uint8_t *)r_iter + s_rule_size);
}
}
ice_add_mac_exit:
#if 0
ice_release_lock(rule_lock);
#endif
if (s_rule)
ice_free(hw, s_rule);
return status;
}
/**
* ice_add_mac - Add a MAC address based filter rule
* @hw: pointer to the hardware structure
* @list: list of MAC addresses and forwarding information
*
* Function add MAC rule for logical port from HW struct
*/
enum ice_status
ice_add_mac(struct ice_hw *hw, struct ice_fltr_list_head *list)
{
if (!list || !hw)
return ICE_ERR_PARAM;
return ice_add_mac_rule(hw, list, hw->switch_info,
hw->port_info->lport);
}
/**
* ice_add_vsi_mac_filter - Add a MAC address filter for a VSI
* @vsi: the VSI to add the filter for
* @addr: MAC address to add a filter for
*
* Add a MAC address filter for a given VSI. This is a wrapper around
* ice_add_mac to simplify the interface. First, it only accepts a single
* address, so we don't have to mess around with the list setup in other
* functions. Second, it ignores the ICE_ERR_ALREADY_EXISTS error, so that
* callers don't need to worry about attempting to add the same filter twice.
*/
int
ice_add_vsi_mac_filter(struct ice_vsi *vsi, uint8_t *addr)
{
struct ice_softc *sc = vsi->sc;
struct ice_fltr_list_head mac_addr_list;
struct ice_hw *hw = &vsi->sc->hw;
enum ice_status status;
int err = 0;
TAILQ_INIT(&mac_addr_list);
err = ice_add_mac_to_list(vsi, &mac_addr_list, addr, ICE_FWD_TO_VSI);
if (err)
goto free_mac_list;
status = ice_add_mac(hw, &mac_addr_list);
if (status != ICE_ERR_ALREADY_EXISTS && status) {
printf("%s: Failed to add a filter for MAC %s, "
"err %s aq_err %s\n", sc->sc_dev.dv_xname,
ether_sprintf(addr), ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
err = (EIO);
}
free_mac_list:
ice_free_fltr_list(&mac_addr_list);
return err;
}
/**
* ice_cfg_pf_default_mac_filters - Setup default unicast and broadcast addrs
* @sc: device softc structure
*
* Program the default unicast and broadcast filters for the PF VSI.
*/
int
ice_cfg_pf_default_mac_filters(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
struct ice_vsi *vsi = &sc->pf_vsi;
int err;
/* Add the LAN MAC address */
err = ice_add_vsi_mac_filter(vsi, hw->port_info->mac.lan_addr);
if (err)
return err;
/* Add the broadcast address */
err = ice_add_vsi_mac_filter(vsi, etherbroadcastaddr);
if (err)
return err;
return (0);
}
/**
* ice_init_tx_tracking - Initialize Tx queue software tracking values
* @vsi: the VSI to initialize
*
* Initialize Tx queue software tracking values, including the Report Status
* queue, and related software tracking values.
*/
void
ice_init_tx_tracking(struct ice_vsi *vsi)
{
struct ice_tx_queue *txq;
size_t j;
int i;
for (i = 0, txq = vsi->tx_queues; i < vsi->num_tx_queues; i++, txq++) {
txq->tx_rs_cidx = txq->tx_rs_pidx = 0;
/* Initialize the last processed descriptor to be the end of
* the ring, rather than the start, so that we avoid an
* off-by-one error in ice_ift_txd_credits_update for the
* first packet.
*/
txq->tx_cidx_processed = txq->desc_count - 1;
for (j = 0; j < txq->desc_count; j++)
txq->tx_rsq[j] = ICE_QIDX_INVALID;
}
}
/**
* ice_setup_tx_ctx - Setup an ice_tlan_ctx structure for a queue
* @txq: the Tx queue to configure
* @tlan_ctx: the Tx LAN queue context structure to initialize
* @pf_q: real queue number
*/
int
ice_setup_tx_ctx(struct ice_tx_queue *txq, struct ice_tlan_ctx *tlan_ctx,
uint16_t pf_q)
{
struct ice_vsi *vsi = txq->vsi;
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
tlan_ctx->port_num = hw->port_info->lport;
/* number of descriptors in the queue */
tlan_ctx->qlen = txq->desc_count;
/* set the transmit queue base address, defined in 128 byte units */
tlan_ctx->base = txq->tx_paddr >> 7;
tlan_ctx->pf_num = hw->pf_id;
switch (vsi->type) {
case ICE_VSI_PF:
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
break;
case ICE_VSI_VMDQ2:
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
break;
default:
return (ENODEV);
}
tlan_ctx->src_vsi = hw->vsi_ctx[vsi->idx]->vsi_num;
#if 0
/* Enable TSO */
tlan_ctx->tso_ena = 1;
tlan_ctx->internal_usage_flag = 1;
tlan_ctx->tso_qnum = pf_q;
#endif
/*
* Stick with the older legacy Tx queue interface, instead of the new
* advanced queue interface.
*/
tlan_ctx->legacy_int = 1;
/* Descriptor WB mode */
tlan_ctx->wb_mode = 0;
return (0);
}
/**
* ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
* @hw: pointer to the HW struct
* @vsi_handle: VSI handle
*
* return the VSI context entry for a given VSI handle
*/
struct ice_vsi_ctx *
ice_get_vsi_ctx(struct ice_hw *hw, uint16_t vsi_handle)
{
return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
}
/**
* ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
* @tc: TC number
* @q_handle: software queue handle
*/
struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw *hw, uint16_t vsi_handle, uint8_t tc,
uint16_t q_handle)
{
struct ice_vsi_ctx *vsi;
struct ice_q_ctx *q_ctx;
vsi = ice_get_vsi_ctx(hw, vsi_handle);
if (!vsi)
return NULL;
if (q_handle >= vsi->num_lan_q_entries[tc])
return NULL;
if (!vsi->lan_q_ctx[tc])
return NULL;
q_ctx = vsi->lan_q_ctx[tc];
return &q_ctx[q_handle];
}
/**
* ice_sched_find_node_in_subtree - Find node in part of base node subtree
* @hw: pointer to the HW struct
* @base: pointer to the base node
* @node: pointer to the node to search
*
* This function checks whether a given node is part of the base node
* subtree or not
*/
bool
ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
struct ice_sched_node *node)
{
uint8_t i;
for (i = 0; i < base->num_children; i++) {
struct ice_sched_node *child = base->children[i];
if (node == child)
return true;
if (child->tx_sched_layer > node->tx_sched_layer)
return false;
/* this recursion is intentional, and wouldn't
* go more than 8 calls
*/
if (ice_sched_find_node_in_subtree(hw, child, node))
return true;
}
return false;
}
/**
* ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
* @pi: port information structure
* @vsi_node: software VSI handle
* @qgrp_node: first queue group node identified for scanning
* @owner: LAN or RDMA
*
* This function retrieves a free LAN or RDMA queue group node by scanning
* qgrp_node and its siblings for the queue group with the fewest number
* of queues currently assigned.
*/
struct ice_sched_node *
ice_sched_get_free_qgrp(struct ice_port_info *pi,
struct ice_sched_node *vsi_node,
struct ice_sched_node *qgrp_node, uint8_t owner)
{
struct ice_sched_node *min_qgrp;
uint8_t min_children;
if (!qgrp_node)
return qgrp_node;
min_children = qgrp_node->num_children;
if (!min_children)
return qgrp_node;
min_qgrp = qgrp_node;
/* scan all queue groups until find a node which has less than the
* minimum number of children. This way all queue group nodes get
* equal number of shares and active. The bandwidth will be equally
* distributed across all queues.
*/
while (qgrp_node) {
/* make sure the qgroup node is part of the VSI subtree */
if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
if (qgrp_node->num_children < min_children &&
qgrp_node->owner == owner) {
/* replace the new min queue group node */
min_qgrp = qgrp_node;
min_children = min_qgrp->num_children;
/* break if it has no children, */
if (!min_children)
break;
}
qgrp_node = qgrp_node->sibling;
}
return min_qgrp;
}
/**
* ice_sched_get_qgrp_layer - get the current queue group layer number
* @hw: pointer to the HW struct
*
* This function returns the current queue group layer number
*/
uint8_t
ice_sched_get_qgrp_layer(struct ice_hw *hw)
{
/* It's always total layers - 1, the array is 0 relative so -2 */
return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
}
/**
* ice_sched_get_vsi_layer - get the current VSI layer number
* @hw: pointer to the HW struct
*
* This function returns the current VSI layer number
*/
uint8_t
ice_sched_get_vsi_layer(struct ice_hw *hw)
{
/* Num Layers VSI layer
* 9 6
* 7 4
* 5 or less sw_entry_point_layer
*/
/* calculate the VSI layer based on number of layers. */
if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
return hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
else if (hw->num_tx_sched_layers == ICE_SCHED_5_LAYERS)
/* qgroup and VSI layers are same */
return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
return hw->sw_entry_point_layer;
}
/**
* ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: branch number
* @owner: LAN or RDMA
*
* This function retrieves a free LAN or RDMA queue group node
*/
struct ice_sched_node *
ice_sched_get_free_qparent(struct ice_port_info *pi, uint16_t vsi_handle,
uint8_t tc, uint8_t owner)
{
struct ice_sched_node *vsi_node, *qgrp_node;
struct ice_vsi_ctx *vsi_ctx;
uint8_t qgrp_layer, vsi_layer;
uint16_t max_children;
qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
vsi_layer = ice_sched_get_vsi_layer(pi->hw);
max_children = pi->hw->max_children[qgrp_layer];
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
if (!vsi_ctx)
return NULL;
vsi_node = vsi_ctx->sched.vsi_node[tc];
/* validate invalid VSI ID */
if (!vsi_node)
return NULL;
/* If the queue group and vsi layer are same then queues
* are all attached directly to VSI
*/
if (qgrp_layer == vsi_layer)
return vsi_node;
/* get the first queue group node from VSI sub-tree */
qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
while (qgrp_node) {
/* make sure the qgroup node is part of the VSI subtree */
if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
if (qgrp_node->num_children < max_children &&
qgrp_node->owner == owner)
break;
qgrp_node = qgrp_node->sibling;
}
/* Select the best queue group */
return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
}
/**
* ice_aq_add_lan_txq
* @hw: pointer to the hardware structure
* @num_qgrps: Number of added queue groups
* @qg_list: list of queue groups to be added
* @buf_size: size of buffer for indirect command
* @cd: pointer to command details structure or NULL
*
* Add Tx LAN queue (0x0C30)
*
* NOTE:
* Prior to calling add Tx LAN queue:
* Initialize the following as part of the Tx queue context:
* Completion queue ID if the queue uses Completion queue, Quanta profile,
* Cache profile and Packet shaper profile.
*
* After add Tx LAN queue AQ command is completed:
* Interrupts should be associated with specific queues,
* Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
* flow.
*/
enum ice_status
ice_aq_add_lan_txq(struct ice_hw *hw, uint8_t num_qgrps,
struct ice_aqc_add_tx_qgrp *qg_list, uint16_t buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_add_tx_qgrp *list;
struct ice_aqc_add_txqs *cmd;
struct ice_aq_desc desc;
uint16_t i, sum_size = 0;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.add_txqs;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
if (!qg_list)
return ICE_ERR_PARAM;
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
return ICE_ERR_PARAM;
for (i = 0, list = qg_list; i < num_qgrps; i++) {
sum_size += ice_struct_size(list, txqs, list->num_txqs);
list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
list->num_txqs);
}
if (buf_size != sum_size)
return ICE_ERR_PARAM;
desc.flags |= htole16(ICE_AQ_FLAG_RD);
cmd->num_qgrps = num_qgrps;
return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
}
/**
* ice_aq_add_sched_elems - adds scheduling element
* @hw: pointer to the HW struct
* @grps_req: the number of groups that are requested to be added
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @grps_added: returns total number of groups added
* @cd: pointer to command details structure or NULL
*
* Add scheduling elements (0x0401)
*/
enum ice_status
ice_aq_add_sched_elems(struct ice_hw *hw, uint16_t grps_req,
struct ice_aqc_add_elem *buf, uint16_t buf_size,
uint16_t *grps_added, struct ice_sq_cd *cd)
{
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
grps_req, (void *)buf, buf_size,
grps_added, cd);
}
/**
* ice_aq_cfg_sched_elems - configures scheduler elements
* @hw: pointer to the HW struct
* @elems_req: number of elements to configure
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @elems_cfgd: returns total number of elements configured
* @cd: pointer to command details structure or NULL
*
* Configure scheduling elements (0x0403)
*/
enum ice_status
ice_aq_cfg_sched_elems(struct ice_hw *hw, uint16_t elems_req,
struct ice_aqc_txsched_elem_data *buf, uint16_t buf_size,
uint16_t *elems_cfgd, struct ice_sq_cd *cd)
{
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
elems_req, (void *)buf, buf_size,
elems_cfgd, cd);
}
/**
* ice_sched_update_elem - update element
* @hw: pointer to the HW struct
* @node: pointer to node
* @info: node info to update
*
* Update the HW DB, and local SW DB of node. Update the scheduling
* parameters of node from argument info data buffer (Info->data buf) and
* returns success or error on config sched element failure. The caller
* needs to hold scheduler lock.
*/
enum ice_status
ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
struct ice_aqc_txsched_elem_data *info)
{
struct ice_aqc_txsched_elem_data buf;
enum ice_status status;
uint16_t elem_cfgd = 0;
uint16_t num_elems = 1;
buf = *info;
/* For TC nodes, CIR config is not supported */
if (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_TC)
buf.data.valid_sections &= ~ICE_AQC_ELEM_VALID_CIR;
/* Parent TEID is reserved field in this aq call */
buf.parent_teid = 0;
/* Element type is reserved field in this aq call */
buf.data.elem_type = 0;
/* Flags is reserved field in this aq call */
buf.data.flags = 0;
/* Update HW DB */
/* Configure element node */
status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
&elem_cfgd, NULL);
if (status || elem_cfgd != num_elems) {
DNPRINTF(ICE_DBG_SCHED, "%s: Config sched elem error\n",
__func__);
return ICE_ERR_CFG;
}
/* Config success case */
/* Now update local SW DB */
/* Only copy the data portion of info buffer */
node->info.data = info->data;
return status;
}
/**
* ice_sched_replay_node_prio - re-configure node priority
* @hw: pointer to the HW struct
* @node: sched node to configure
* @priority: priority value
*
* This function configures node element's priority value. It
* needs to be called with scheduler lock held.
*/
enum ice_status
ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
uint8_t priority)
{
struct ice_aqc_txsched_elem_data buf;
struct ice_aqc_txsched_elem *data;
enum ice_status status;
buf = node->info;
data = &buf.data;
data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
data->generic = priority;
/* Configure element */
status = ice_sched_update_elem(hw, node, &buf);
return status;
}
/**
* ice_sched_rm_unused_rl_prof - remove unused RL profile
* @hw: pointer to the hardware structure
*
* This function removes unused rate limit profiles from the HW and
* SW DB. The caller needs to hold scheduler lock.
*/
void
ice_sched_rm_unused_rl_prof(struct ice_hw *hw)
{
uint16_t ln;
for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
struct ice_aqc_rl_profile_info *rl_prof_elem;
struct ice_aqc_rl_profile_info *rl_prof_tmp;
TAILQ_FOREACH_SAFE(rl_prof_elem, &hw->rl_prof_list[ln],
list_entry, rl_prof_tmp) {
if (!ice_sched_del_rl_profile(hw,
&hw->rl_prof_list[ln], rl_prof_elem))
DNPRINTF(ICE_DBG_SCHED,
"%s: Removed rl profile\n", __func__);
}
}
}
/**
* ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
* @pi: port information structure
* @rl_type: type of rate limit BW - min, max, or shared
* @layer_index: layer index
*
* This function returns requested profile creation layer.
*/
uint8_t
ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
uint8_t layer_index)
{
struct ice_hw *hw = pi->hw;
if (layer_index >= hw->num_tx_sched_layers)
return ICE_SCHED_INVAL_LAYER_NUM;
switch (rl_type) {
case ICE_MIN_BW:
if (hw->layer_info[layer_index].max_cir_rl_profiles)
return layer_index;
break;
case ICE_MAX_BW:
if (hw->layer_info[layer_index].max_eir_rl_profiles)
return layer_index;
break;
case ICE_SHARED_BW:
/* if current layer doesn't support SRL profile creation
* then try a layer up or down.
*/
if (hw->layer_info[layer_index].max_srl_profiles)
return layer_index;
else if (layer_index < hw->num_tx_sched_layers - 1 &&
hw->layer_info[layer_index + 1].max_srl_profiles)
return layer_index + 1;
else if (layer_index > 0 &&
hw->layer_info[layer_index - 1].max_srl_profiles)
return layer_index - 1;
break;
default:
break;
}
return ICE_SCHED_INVAL_LAYER_NUM;
}
/**
* ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
* @node: sched node
* @rl_type: rate limit type
*
* If existing profile matches, it returns the corresponding rate
* limit profile ID, otherwise it returns an invalid ID as error.
*/
uint16_t
ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
enum ice_rl_type rl_type)
{
uint16_t rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
struct ice_aqc_txsched_elem *data;
data = &node->info.data;
switch (rl_type) {
case ICE_MIN_BW:
if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
rl_prof_id = le16toh(data->cir_bw.bw_profile_idx);
break;
case ICE_MAX_BW:
if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
rl_prof_id = le16toh(data->eir_bw.bw_profile_idx);
break;
case ICE_SHARED_BW:
if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
rl_prof_id = le16toh(data->srl_id);
break;
default:
break;
}
return rl_prof_id;
}
/**
* ice_sched_cfg_node_bw_lmt - configure node sched params
* @hw: pointer to the HW struct
* @node: sched node to configure
* @rl_type: rate limit type CIR, EIR, or shared
* @rl_prof_id: rate limit profile ID
*
* This function configures node element's BW limit.
*/
enum ice_status
ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
enum ice_rl_type rl_type, uint16_t rl_prof_id)
{
struct ice_aqc_txsched_elem_data buf;
struct ice_aqc_txsched_elem *data;
buf = node->info;
data = &buf.data;
switch (rl_type) {
case ICE_MIN_BW:
data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
data->cir_bw.bw_profile_idx = htole16(rl_prof_id);
break;
case ICE_MAX_BW:
data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
data->eir_bw.bw_profile_idx = htole16(rl_prof_id);
break;
case ICE_SHARED_BW:
data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
data->srl_id = htole16(rl_prof_id);
break;
default:
/* Unknown rate limit type */
return ICE_ERR_PARAM;
}
/* Configure element */
return ice_sched_update_elem(hw, node, &buf);
}
/**
* ice_sched_rm_rl_profile - remove RL profile ID
* @hw: pointer to the hardware structure
* @layer_num: layer number where profiles are saved
* @profile_type: profile type like EIR, CIR, or SRL
* @profile_id: profile ID to remove
*
* This function removes rate limit profile from layer 'layer_num' of type
* 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
* scheduler lock.
*/
enum ice_status
ice_sched_rm_rl_profile(struct ice_hw *hw, uint8_t layer_num,
uint8_t profile_type, uint16_t profile_id)
{
struct ice_aqc_rl_profile_info *rl_prof_elem;
enum ice_status status = ICE_SUCCESS;
if (!hw || layer_num >= hw->num_tx_sched_layers)
return ICE_ERR_PARAM;
/* Check the existing list for RL profile */
TAILQ_FOREACH(rl_prof_elem, &hw->rl_prof_list[layer_num], list_entry) {
if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
profile_type &&
le16toh(rl_prof_elem->profile.profile_id) == profile_id) {
if (rl_prof_elem->prof_id_ref)
rl_prof_elem->prof_id_ref--;
/* Remove old profile ID from database */
status = ice_sched_del_rl_profile(hw,
&hw->rl_prof_list[layer_num], rl_prof_elem);
if (status && status != ICE_ERR_IN_USE)
DNPRINTF(ICE_DBG_SCHED,
"%s: Remove rl profile failed\n", __func__);
break;
}
}
if (status == ICE_ERR_IN_USE)
status = ICE_SUCCESS;
return status;
}
/**
* ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
* @pi: port information structure
* @node: pointer to node structure
* @rl_type: rate limit type min, max, or shared
* @layer_num: layer number where RL profiles are saved
*
* This function configures node element's BW rate limit profile ID of
* type CIR, EIR, or SRL to default. This function needs to be called
* with the scheduler lock held.
*/
enum ice_status
ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
struct ice_sched_node *node,
enum ice_rl_type rl_type, uint8_t layer_num)
{
enum ice_status status;
struct ice_hw *hw;
uint8_t profile_type;
uint16_t rl_prof_id;
uint16_t old_id;
hw = pi->hw;
switch (rl_type) {
case ICE_MIN_BW:
profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
break;
case ICE_MAX_BW:
profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
break;
case ICE_SHARED_BW:
profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
/* No SRL is configured for default case */
rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
break;
default:
return ICE_ERR_PARAM;
}
/* Save existing RL prof ID for later clean up */
old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
/* Configure BW scheduling parameters */
status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
if (status)
return status;
/* Remove stale RL profile ID */
if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
old_id == ICE_SCHED_INVAL_PROF_ID)
return ICE_SUCCESS;
return ice_sched_rm_rl_profile(hw, layer_num, profile_type, old_id);
}
/**
* ice_aq_add_rl_profile - adds rate limiting profile(s)
* @hw: pointer to the HW struct
* @num_profiles: the number of profile(s) to be add
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @num_profiles_added: total number of profiles added to return
* @cd: pointer to command details structure
*
* Add RL profile (0x0410)
*/
enum ice_status
ice_aq_add_rl_profile(struct ice_hw *hw, uint16_t num_profiles,
struct ice_aqc_rl_profile_elem *buf, uint16_t buf_size,
uint16_t *num_profiles_added, struct ice_sq_cd *cd)
{
return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
buf, buf_size, num_profiles_added, cd);
}
/**
* DIV_S64 - Divide signed 64-bit value with signed 64-bit divisor
* @dividend: value to divide
* @divisor: value to divide by
*
* Use DIV_S64 for any 64-bit divide which operates on signed 64-bit dividends.
* Do not use this for unsigned 64-bit dividends as it will not produce
* correct results if the dividend is larger than INT64_MAX.
*/
static inline int64_t DIV_S64(int64_t dividend, int64_t divisor)
{
return dividend / divisor;
}
/**
* DIV_U64 - Divide unsigned 64-bit value by unsigned 64-bit divisor
* @dividend: value to divide
* @divisor: value to divide by
*
* Use DIV_U64 for any 64-bit divide which operates on unsigned 64-bit
* dividends. Do not use this for signed 64-bit dividends as it will not
* handle negative values correctly.
*/
static inline uint64_t DIV_U64(uint64_t dividend, uint64_t divisor)
{
return dividend / divisor;
}
static inline uint64_t round_up_64bit(uint64_t a, uint32_t b)
{
return DIV_U64(((a) + (b) / 2), (b));
}
/**
* ice_sched_calc_wakeup - calculate RL profile wakeup parameter
* @hw: pointer to the HW struct
* @bw: bandwidth in Kbps
*
* This function calculates the wakeup parameter of RL profile.
*/
uint16_t
ice_sched_calc_wakeup(struct ice_hw *hw, int32_t bw)
{
int64_t bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
int32_t wakeup_f_int;
uint16_t wakeup = 0;
/* Get the wakeup integer value */
bytes_per_sec = DIV_S64((int64_t)bw * 1000, 8);
wakeup_int = DIV_S64(hw->psm_clk_freq, bytes_per_sec);
if (wakeup_int > 63) {
wakeup = (uint16_t)((1 << 15) | wakeup_int);
} else {
/* Calculate fraction value up to 4 decimals
* Convert Integer value to a constant multiplier
*/
wakeup_b = (int64_t)ICE_RL_PROF_MULTIPLIER * wakeup_int;
wakeup_a = DIV_S64((int64_t)ICE_RL_PROF_MULTIPLIER *
hw->psm_clk_freq, bytes_per_sec);
/* Get Fraction value */
wakeup_f = wakeup_a - wakeup_b;
/* Round up the Fractional value via Ceil(Fractional value) */
if (wakeup_f > DIV_S64(ICE_RL_PROF_MULTIPLIER, 2))
wakeup_f += 1;
wakeup_f_int = (int32_t)DIV_S64(wakeup_f * ICE_RL_PROF_FRACTION,
ICE_RL_PROF_MULTIPLIER);
wakeup |= (uint16_t)(wakeup_int << 9);
wakeup |= (uint16_t)(0x1ff & wakeup_f_int);
}
return wakeup;
}
/**
* ice_sched_bw_to_rl_profile - convert BW to profile parameters
* @hw: pointer to the HW struct
* @bw: bandwidth in Kbps
* @profile: profile parameters to return
*
* This function converts the BW to profile structure format.
*/
enum ice_status
ice_sched_bw_to_rl_profile(struct ice_hw *hw, uint32_t bw,
struct ice_aqc_rl_profile_elem *profile)
{
enum ice_status status = ICE_ERR_PARAM;
int64_t bytes_per_sec, ts_rate, mv_tmp;
bool found = false;
int32_t encode = 0;
int64_t mv = 0;
int32_t i;
/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
return status;
/* Bytes per second from Kbps */
bytes_per_sec = DIV_S64((int64_t)bw * 1000, 8);
/* encode is 6 bits but really useful are 5 bits */
for (i = 0; i < 64; i++) {
uint64_t pow_result = BIT_ULL(i);
ts_rate = DIV_S64((int64_t)hw->psm_clk_freq,
pow_result * ICE_RL_PROF_TS_MULTIPLIER);
if (ts_rate <= 0)
continue;
/* Multiplier value */
mv_tmp = DIV_S64(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
ts_rate);
/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
/* First multiplier value greater than the given
* accuracy bytes
*/
if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
encode = i;
found = true;
break;
}
}
if (found) {
uint16_t wm;
wm = ice_sched_calc_wakeup(hw, bw);
profile->rl_multiply = htole16(mv);
profile->wake_up_calc = htole16(wm);
profile->rl_encode = htole16(encode);
status = ICE_SUCCESS;
} else {
status = ICE_ERR_DOES_NOT_EXIST;
}
return status;
}
/**
* ice_sched_add_rl_profile - add RL profile
* @hw: pointer to the hardware structure
* @rl_type: type of rate limit BW - min, max, or shared
* @bw: bandwidth in Kbps - Kilo bits per sec
* @layer_num: specifies in which layer to create profile
*
* This function first checks the existing list for corresponding BW
* parameter. If it exists, it returns the associated profile otherwise
* it creates a new rate limit profile for requested BW, and adds it to
* the HW DB and local list. It returns the new profile or null on error.
* The caller needs to hold the scheduler lock.
*/
struct ice_aqc_rl_profile_info *
ice_sched_add_rl_profile(struct ice_hw *hw, enum ice_rl_type rl_type,
uint32_t bw, uint8_t layer_num)
{
struct ice_aqc_rl_profile_info *rl_prof_elem;
uint16_t profiles_added = 0, num_profiles = 1;
struct ice_aqc_rl_profile_elem *buf;
enum ice_status status;
uint8_t profile_type;
if (!hw || layer_num >= hw->num_tx_sched_layers)
return NULL;
switch (rl_type) {
case ICE_MIN_BW:
profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
break;
case ICE_MAX_BW:
profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
break;
case ICE_SHARED_BW:
profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
break;
default:
return NULL;
}
TAILQ_FOREACH(rl_prof_elem, &hw->rl_prof_list[layer_num], list_entry) {
if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
profile_type && rl_prof_elem->bw == bw)
/* Return existing profile ID info */
return rl_prof_elem;
}
/* Create new profile ID */
rl_prof_elem = (struct ice_aqc_rl_profile_info *)
ice_malloc(hw, sizeof(*rl_prof_elem));
if (!rl_prof_elem)
return NULL;
status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
if (status != ICE_SUCCESS)
goto exit_add_rl_prof;
rl_prof_elem->bw = bw;
/* layer_num is zero relative, and fw expects level from 1 to 9 */
rl_prof_elem->profile.level = layer_num + 1;
rl_prof_elem->profile.flags = profile_type;
rl_prof_elem->profile.max_burst_size = htole16(hw->max_burst_size);
/* Create new entry in HW DB */
buf = &rl_prof_elem->profile;
status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
&profiles_added, NULL);
if (status || profiles_added != num_profiles)
goto exit_add_rl_prof;
/* Good entry - add in the list */
rl_prof_elem->prof_id_ref = 0;
TAILQ_INSERT_HEAD(&hw->rl_prof_list[layer_num], rl_prof_elem,
list_entry);
return rl_prof_elem;
exit_add_rl_prof:
ice_free(hw, rl_prof_elem);
return NULL;
}
/**
* ice_sched_set_node_bw - set node's bandwidth
* @pi: port information structure
* @node: tree node
* @rl_type: rate limit type min, max, or shared
* @bw: bandwidth in Kbps - Kilo bits per sec
* @layer_num: layer number
*
* This function adds new profile corresponding to requested BW, configures
* node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
* ID from local database. The caller needs to hold scheduler lock.
*/
enum ice_status
ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
enum ice_rl_type rl_type, uint32_t bw, uint8_t layer_num)
{
struct ice_aqc_rl_profile_info *rl_prof_info;
enum ice_status status = ICE_ERR_PARAM;
struct ice_hw *hw = pi->hw;
uint16_t old_id, rl_prof_id;
rl_prof_info = ice_sched_add_rl_profile(hw, rl_type, bw, layer_num);
if (!rl_prof_info)
return status;
rl_prof_id = le16toh(rl_prof_info->profile.profile_id);
/* Save existing RL prof ID for later clean up */
old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
/* Configure BW scheduling parameters */
status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
if (status)
return status;
/* New changes has been applied */
/* Increment the profile ID reference count */
rl_prof_info->prof_id_ref++;
/* Check for old ID removal */
if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
return ICE_SUCCESS;
return ice_sched_rm_rl_profile(hw, layer_num,
rl_prof_info->profile.flags &
ICE_AQC_RL_PROFILE_TYPE_M, old_id);
}
/**
* ice_sched_set_node_bw_lmt - set node's BW limit
* @pi: port information structure
* @node: tree node
* @rl_type: rate limit type min, max, or shared
* @bw: bandwidth in Kbps - Kilo bits per sec
*
* It updates node's BW limit parameters like BW RL profile ID of type CIR,
* EIR, or SRL. The caller needs to hold scheduler lock.
*
* NOTE: Caller provides the correct SRL node in case of shared profile
* settings.
*/
enum ice_status
ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
enum ice_rl_type rl_type, uint32_t bw)
{
struct ice_hw *hw;
uint8_t layer_num;
if (!pi)
return ICE_ERR_PARAM;
hw = pi->hw;
/* Remove unused RL profile IDs from HW and SW DB */
ice_sched_rm_unused_rl_prof(hw);
layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
node->tx_sched_layer);
if (layer_num >= hw->num_tx_sched_layers)
return ICE_ERR_PARAM;
if (bw == ICE_SCHED_DFLT_BW)
return ice_sched_set_node_bw_dflt(pi, node, rl_type, layer_num);
return ice_sched_set_node_bw(pi, node, rl_type, bw, layer_num);
}
/**
* ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
* @hw: pointer to the HW struct
* @node: sched node to configure
* @rl_type: rate limit type CIR, EIR, or shared
* @bw_alloc: BW weight/allocation
*
* This function configures node element's BW allocation.
*/
enum ice_status
ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
enum ice_rl_type rl_type, uint16_t bw_alloc)
{
struct ice_aqc_txsched_elem_data buf;
struct ice_aqc_txsched_elem *data;
enum ice_status status;
buf = node->info;
data = &buf.data;
if (rl_type == ICE_MIN_BW) {
data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
data->cir_bw.bw_alloc = htole16(bw_alloc);
} else if (rl_type == ICE_MAX_BW) {
data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
data->eir_bw.bw_alloc = htole16(bw_alloc);
} else {
return ICE_ERR_PARAM;
}
/* Configure element */
status = ice_sched_update_elem(hw, node, &buf);
return status;
}
/**
* ice_sched_replay_node_bw - replay node(s) BW
* @hw: pointer to the HW struct
* @node: sched node to configure
* @bw_t_info: BW type information
*
* This function restores node's BW from bw_t_info. The caller needs
* to hold the scheduler lock.
*/
enum ice_status
ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
struct ice_bw_type_info *bw_t_info)
{
struct ice_port_info *pi = hw->port_info;
enum ice_status status = ICE_ERR_PARAM;
uint16_t bw_alloc;
if (!node)
return status;
if (!ice_is_any_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
return ICE_SUCCESS;
if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_PRIO)) {
status = ice_sched_replay_node_prio(hw, node,
bw_t_info->generic);
if (status)
return status;
}
if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR)) {
status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
bw_t_info->cir_bw.bw);
if (status)
return status;
}
if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR_WT)) {
bw_alloc = bw_t_info->cir_bw.bw_alloc;
status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
bw_alloc);
if (status)
return status;
}
if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR)) {
status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
bw_t_info->eir_bw.bw);
if (status)
return status;
}
if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR_WT)) {
bw_alloc = bw_t_info->eir_bw.bw_alloc;
status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
bw_alloc);
if (status)
return status;
}
if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_SHARED))
status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
bw_t_info->shared_bw);
return status;
}
/**
* ice_sched_replay_q_bw - replay queue type node BW
* @pi: port information structure
* @q_ctx: queue context structure
*
* This function replays queue type node bandwidth. This function needs to be
* called with scheduler lock held.
*/
enum ice_status
ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
{
struct ice_sched_node *q_node;
/* Following also checks the presence of node in tree */
q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
if (!q_node)
return ICE_ERR_PARAM;
return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
}
/**
* ice_ena_vsi_txq
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
* @q_handle: software queue handle
* @num_qgrps: Number of added queue groups
* @buf: list of queue groups to be added
* @buf_size: size of buffer for indirect command
* @cd: pointer to command details structure or NULL
*
* This function adds one LAN queue
*/
enum ice_status
ice_ena_vsi_txq(struct ice_port_info *pi, uint16_t vsi_handle, uint8_t tc,
uint16_t q_handle, uint8_t num_qgrps, struct ice_aqc_add_tx_qgrp *buf,
uint16_t buf_size, struct ice_sq_cd *cd)
{
struct ice_aqc_txsched_elem_data node = { 0 };
struct ice_sched_node *parent;
struct ice_q_ctx *q_ctx;
enum ice_status status;
struct ice_hw *hw;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return ICE_ERR_CFG;
if (num_qgrps > 1 || buf->num_txqs > 1)
return ICE_ERR_MAX_LIMIT;
hw = pi->hw;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
#if 0
ice_acquire_lock(&pi->sched_lock);
#endif
q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
if (!q_ctx) {
DNPRINTF(ICE_DBG_SCHED, "%s: Enaq: invalid queue handle %d\n",
__func__, q_handle);
status = ICE_ERR_PARAM;
goto ena_txq_exit;
}
/* find a parent node */
parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
ICE_SCHED_NODE_OWNER_LAN);
if (!parent) {
status = ICE_ERR_PARAM;
goto ena_txq_exit;
}
buf->parent_teid = parent->info.node_teid;
node.parent_teid = parent->info.node_teid;
/* Mark that the values in the "generic" section as valid. The default
* value in the "generic" section is zero. This means that :
* - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
* - 0 priority among siblings, indicated by Bit 1-3.
* - WFQ, indicated by Bit 4.
* - 0 Adjustment value is used in PSM credit update flow, indicated by
* Bit 5-6.
* - Bit 7 is reserved.
* Without setting the generic section as valid in valid_sections, the
* Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
*/
buf->txqs[0].info.valid_sections =
ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
ICE_AQC_ELEM_VALID_EIR;
buf->txqs[0].info.generic = 0;
buf->txqs[0].info.cir_bw.bw_profile_idx =
htole16(ICE_SCHED_DFLT_RL_PROF_ID);
buf->txqs[0].info.cir_bw.bw_alloc =
htole16(ICE_SCHED_DFLT_BW_WT);
buf->txqs[0].info.eir_bw.bw_profile_idx =
htole16(ICE_SCHED_DFLT_RL_PROF_ID);
buf->txqs[0].info.eir_bw.bw_alloc =
htole16(ICE_SCHED_DFLT_BW_WT);
/* add the LAN queue */
status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
if (status != ICE_SUCCESS) {
DNPRINTF(ICE_DBG_SCHED, "%s: enable queue %d failed %d\n",
__func__, le16toh(buf->txqs[0].txq_id),
hw->adminq.sq_last_status);
goto ena_txq_exit;
}
node.node_teid = buf->txqs[0].q_teid;
node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
q_ctx->q_handle = q_handle;
q_ctx->q_teid = le32toh(node.node_teid);
/* add a leaf node into scheduler tree queue layer */
status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node,
NULL);
if (!status)
status = ice_sched_replay_q_bw(pi, q_ctx);
ena_txq_exit:
#if 0
ice_release_lock(&pi->sched_lock);
#endif
return status;
}
/* LAN Tx Queue Context used for set Tx config by ice_aqc_opc_add_txqs,
* Bit[0-175] is valid
*/
const struct ice_ctx_ele ice_tlan_ctx_info[] = {
/* Field Width LSB */
ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
{ 0 }
};
/**
* ice_cfg_vsi_for_tx - Configure the hardware for Tx
* @vsi: the VSI to configure
*
* Configure the device Tx queues through firmware AdminQ commands. After
* this, Tx queues will be ready for transmit.
*/
int
ice_cfg_vsi_for_tx(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
struct ice_aqc_add_tx_qgrp *qg;
struct ice_hw *hw = &vsi->sc->hw;
enum ice_status status;
int i;
int err = 0;
uint16_t qg_size, pf_q;
qg_size = ice_struct_size(qg, txqs, 1);
qg = (struct ice_aqc_add_tx_qgrp *)malloc(qg_size, M_DEVBUF,
M_NOWAIT|M_ZERO);
if (!qg)
return (ENOMEM);
qg->num_txqs = 1;
for (i = 0; i < vsi->num_tx_queues; i++) {
struct ice_tlan_ctx tlan_ctx = { 0 };
struct ice_tx_queue *txq = &vsi->tx_queues[i];
pf_q = vsi->tx_qmap[txq->me];
qg->txqs[0].txq_id = htole16(pf_q);
err = ice_setup_tx_ctx(txq, &tlan_ctx, pf_q);
if (err)
goto free_txqg;
ice_set_ctx(hw, (uint8_t *)&tlan_ctx, qg->txqs[0].txq_ctx,
ice_tlan_ctx_info);
status = ice_ena_vsi_txq(hw->port_info, vsi->idx, txq->tc,
txq->q_handle, 1, qg, qg_size, NULL);
if (status) {
printf("%s: Failed to set LAN Tx queue %d "
"(TC %d, handle %d) context, err %s aq_err %s\n",
sc->sc_dev.dv_xname, i, txq->tc, txq->q_handle,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
err = ENODEV;
goto free_txqg;
}
/* Keep track of the Tx queue TEID */
if (pf_q == le16toh(qg->txqs[0].txq_id))
txq->q_teid = le32toh(qg->txqs[0].q_teid);
}
free_txqg:
free(qg, M_DEVBUF, qg_size);
return (err);
}
/* Different reset sources for which a disable queue AQ call has to be made in
* order to clean the Tx scheduler as a part of the reset
*/
enum ice_disq_rst_src {
ICE_NO_RESET = 0,
ICE_VM_RESET,
ICE_VF_RESET,
};
/**
* ice_aq_dis_lan_txq
* @hw: pointer to the hardware structure
* @num_qgrps: number of groups in the list
* @qg_list: the list of groups to disable
* @buf_size: the total size of the qg_list buffer in bytes
* @rst_src: if called due to reset, specifies the reset source
* @vmvf_num: the relative VM or VF number that is undergoing the reset
* @cd: pointer to command details structure or NULL
*
* Disable LAN Tx queue (0x0C31)
*/
enum ice_status
ice_aq_dis_lan_txq(struct ice_hw *hw, uint8_t num_qgrps,
struct ice_aqc_dis_txq_item *qg_list, uint16_t buf_size,
enum ice_disq_rst_src rst_src, uint16_t vmvf_num,
struct ice_sq_cd *cd)
{
struct ice_aqc_dis_txq_item *item;
struct ice_aqc_dis_txqs *cmd;
struct ice_aq_desc desc;
enum ice_status status;
uint16_t i, sz = 0;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.dis_txqs;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
/* qg_list can be NULL only in VM/VF reset flow */
if (!qg_list && !rst_src)
return ICE_ERR_PARAM;
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
return ICE_ERR_PARAM;
cmd->num_entries = num_qgrps;
cmd->vmvf_and_timeout = htole16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
ICE_AQC_Q_DIS_TIMEOUT_M);
switch (rst_src) {
case ICE_VM_RESET:
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
cmd->vmvf_and_timeout |=
htole16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
break;
case ICE_VF_RESET:
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
/* In this case, FW expects vmvf_num to be absolute VF ID */
cmd->vmvf_and_timeout |=
htole16((vmvf_num + hw->func_caps.vf_base_id) &
ICE_AQC_Q_DIS_VMVF_NUM_M);
break;
case ICE_NO_RESET:
default:
break;
}
/* flush pipe on time out */
cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
/* If no queue group info, we are in a reset flow. Issue the AQ */
if (!qg_list)
goto do_aq;
/* set RD bit to indicate that command buffer is provided by the driver
* and it needs to be read by the firmware
*/
desc.flags |= htole16(ICE_AQ_FLAG_RD);
for (i = 0, item = qg_list; i < num_qgrps; i++) {
uint16_t item_size = ice_struct_size(item, q_id, item->num_qs);
/* If the num of queues is even, add 2 bytes of padding */
if ((item->num_qs % 2) == 0)
item_size += 2;
sz += item_size;
item = (struct ice_aqc_dis_txq_item *)((uint8_t *)item +
item_size);
}
if (buf_size != sz)
return ICE_ERR_PARAM;
do_aq:
status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
if (status) {
if (!qg_list)
DNPRINTF(ICE_DBG_SCHED, "%s: VM%d disable failed %d\n",
__func__, vmvf_num, hw->adminq.sq_last_status);
else
DNPRINTF(ICE_DBG_SCHED,
"%s: disable queue %d failed %d\n", __func__,
le16toh(qg_list[0].q_id[0]),
hw->adminq.sq_last_status);
}
return status;
}
/**
* ice_dis_vsi_txq
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
* @num_queues: number of queues
* @q_handles: pointer to software queue handle array
* @q_ids: pointer to the q_id array
* @q_teids: pointer to queue node teids
* @rst_src: if called due to reset, specifies the reset source
* @vmvf_num: the relative VM or VF number that is undergoing the reset
* @cd: pointer to command details structure or NULL
*
* This function removes queues and their corresponding nodes in SW DB
*/
enum ice_status
ice_dis_vsi_txq(struct ice_port_info *pi, uint16_t vsi_handle, uint8_t tc,
uint8_t num_queues, uint16_t *q_handles, uint16_t *q_ids,
uint32_t *q_teids, enum ice_disq_rst_src rst_src, uint16_t vmvf_num,
struct ice_sq_cd *cd)
{
enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
struct ice_aqc_dis_txq_item *qg_list;
struct ice_q_ctx *q_ctx;
struct ice_hw *hw;
uint16_t i, buf_size;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return ICE_ERR_CFG;
hw = pi->hw;
if (!num_queues) {
/* if queue is disabled already yet the disable queue command
* has to be sent to complete the VF reset, then call
* ice_aq_dis_lan_txq without any queue information
*/
if (rst_src)
return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
vmvf_num, NULL);
return ICE_ERR_CFG;
}
buf_size = ice_struct_size(qg_list, q_id, 1);
qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, buf_size);
if (!qg_list)
return ICE_ERR_NO_MEMORY;
#if 0
ice_acquire_lock(&pi->sched_lock);
#endif
for (i = 0; i < num_queues; i++) {
struct ice_sched_node *node;
node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
if (!node)
continue;
q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
if (!q_ctx) {
DNPRINTF(ICE_DBG_SCHED, "%s: invalid queue handle%d\n",
__func__, q_handles[i]);
continue;
}
if (q_ctx->q_handle != q_handles[i]) {
DNPRINTF(ICE_DBG_SCHED, "%s: Err:handles %d %d\n",
__func__, q_ctx->q_handle, q_handles[i]);
continue;
}
qg_list->parent_teid = node->info.parent_teid;
qg_list->num_qs = 1;
qg_list->q_id[0] = htole16(q_ids[i]);
status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
vmvf_num, cd);
if (status != ICE_SUCCESS)
break;
ice_free_sched_node(pi, node);
q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
}
#if 0
ice_release_lock(&pi->sched_lock);
#endif
ice_free(hw, qg_list);
return status;
}
/**
* ice_vsi_disable_tx - Disable (unconfigure) Tx queues for a VSI
* @vsi: the VSI to disable
*
* Disables the Tx queues associated with this VSI. Essentially the opposite
* of ice_cfg_vsi_for_tx.
*/
int
ice_vsi_disable_tx(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
uint32_t *q_teids;
uint16_t *q_ids, *q_handles;
size_t q_teids_size, q_ids_size, q_handles_size;
int tc, j, buf_idx, err = 0;
if (vsi->num_tx_queues > 255)
return (ENOSYS);
q_teids_size = sizeof(*q_teids) * vsi->num_tx_queues;
q_teids = (uint32_t *)malloc(q_teids_size, M_DEVBUF, M_NOWAIT|M_ZERO);
if (!q_teids)
return (ENOMEM);
q_ids_size = sizeof(*q_ids) * vsi->num_tx_queues;
q_ids = (uint16_t *)malloc(q_ids_size, M_DEVBUF, M_NOWAIT|M_ZERO);
if (!q_ids) {
err = (ENOMEM);
goto free_q_teids;
}
q_handles_size = sizeof(*q_handles) * vsi->num_tx_queues;
q_handles = (uint16_t *)malloc(q_handles_size, M_DEVBUF,
M_NOWAIT|M_ZERO);
if (!q_handles) {
err = (ENOMEM);
goto free_q_ids;
}
ice_for_each_traffic_class(tc) {
struct ice_tc_info *tc_info = &vsi->tc_info[tc];
uint16_t start_idx, end_idx;
/* Skip rest of disabled TCs once the first
* disabled TC is found */
if (!(vsi->tc_map & BIT(tc)))
break;
/* Fill out TX queue information for this TC */
start_idx = tc_info->qoffset;
end_idx = start_idx + tc_info->qcount_tx;
buf_idx = 0;
for (j = start_idx; j < end_idx; j++) {
struct ice_tx_queue *txq = &vsi->tx_queues[j];
q_ids[buf_idx] = vsi->tx_qmap[j];
q_handles[buf_idx] = txq->q_handle;
q_teids[buf_idx] = txq->q_teid;
buf_idx++;
}
status = ice_dis_vsi_txq(hw->port_info, vsi->idx, tc, buf_idx,
q_handles, q_ids, q_teids,
ICE_NO_RESET, 0, NULL);
if (status == ICE_ERR_DOES_NOT_EXIST) {
; /* Queues have been disabled */
} else if (status == ICE_ERR_RESET_ONGOING) {
DPRINTF("%s: Reset in progress. LAN Tx queues already "
"disabled\n", __func__);
break;
} else if (status) {
printf("%s: Failed to disable LAN Tx queues: "
"err %s aq_err %s\n", sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
err = (ENODEV);
break;
}
/* Clear buffers */
memset(q_teids, 0, q_teids_size);
memset(q_ids, 0, q_ids_size);
memset(q_handles, 0, q_handles_size);
}
/* free_q_handles: */
free(q_handles, M_DEVBUF, q_handles_size);
free_q_ids:
free(q_ids, M_DEVBUF, q_ids_size);
free_q_teids:
free(q_teids, M_DEVBUF, q_teids_size);
return err;
}
/**
* ice_copy_rxq_ctx_to_hw
* @hw: pointer to the hardware structure
* @ice_rxq_ctx: pointer to the rxq context
* @rxq_index: the index of the Rx queue
*
* Copies rxq context from dense structure to HW register space
*/
enum ice_status
ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, uint8_t *ice_rxq_ctx,
uint32_t rxq_index)
{
uint8_t i;
if (!ice_rxq_ctx)
return ICE_ERR_BAD_PTR;
if (rxq_index > QRX_CTRL_MAX_INDEX)
return ICE_ERR_PARAM;
/* Copy each dword separately to HW */
for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
ICE_WRITE(hw, QRX_CONTEXT(i, rxq_index),
*((uint32_t *)(ice_rxq_ctx + (i * sizeof(uint32_t)))));
DNPRINTF(ICE_DBG_QCTX, "%s: qrxdata[%d]: %08X\n", __func__,
i, *((uint32_t *)(ice_rxq_ctx + (i * sizeof(uint32_t)))));
}
return ICE_SUCCESS;
}
/* LAN Rx Queue Context */
static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
/* Field Width LSB */
ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
{ 0 }
};
/**
* ice_write_rxq_ctx
* @hw: pointer to the hardware structure
* @rlan_ctx: pointer to the rxq context
* @rxq_index: the index of the Rx queue
*
* Converts rxq context from sparse to dense structure and then writes
* it to HW register space and enables the hardware to prefetch descriptors
* instead of only fetching them on demand
*/
enum ice_status
ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
uint32_t rxq_index)
{
uint8_t ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
if (!rlan_ctx)
return ICE_ERR_BAD_PTR;
rlan_ctx->prefena = 1;
ice_set_ctx(hw, (uint8_t *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
}
/**
* ice_setup_rx_ctx - Setup an Rx context structure for a receive queue
* @rxq: the receive queue to program
*
* Setup an Rx queue context structure and program it into the hardware
* registers. This is a necessary step for enabling the Rx queue.
*/
int
ice_setup_rx_ctx(struct ice_rx_queue *rxq)
{
struct ice_rlan_ctx rlan_ctx = {0};
struct ice_vsi *vsi = rxq->vsi;
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
uint32_t rxdid = ICE_RXDID_FLEX_NIC;
uint32_t regval;
uint16_t pf_q;
pf_q = vsi->rx_qmap[rxq->me];
/* set the receive queue base address, defined in 128 byte units */
rlan_ctx.base = rxq->rx_paddr >> 7;
rlan_ctx.qlen = rxq->desc_count;
rlan_ctx.dbuf = vsi->mbuf_sz >> ICE_RLAN_CTX_DBUF_S;
/* use 32 byte descriptors */
rlan_ctx.dsize = 1;
/* Strip the Ethernet CRC bytes before the packet is posted to the
* host memory.
*/
rlan_ctx.crcstrip = 1;
rlan_ctx.l2tsel = 1;
/* don't do header splitting */
rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
/* strip VLAN from inner headers */
rlan_ctx.showiv = 1;
rlan_ctx.rxmax = MIN(vsi->max_frame_size,
ICE_MAX_RX_SEGS * vsi->mbuf_sz);
rlan_ctx.lrxqthresh = 1;
if (vsi->type != ICE_VSI_VF) {
regval = ICE_READ(hw, QRXFLXP_CNTXT(pf_q));
regval &= ~QRXFLXP_CNTXT_RXDID_IDX_M;
regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
QRXFLXP_CNTXT_RXDID_IDX_M;
regval &= ~QRXFLXP_CNTXT_RXDID_PRIO_M;
regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
QRXFLXP_CNTXT_RXDID_PRIO_M;
ICE_WRITE(hw, QRXFLXP_CNTXT(pf_q), regval);
}
status = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
if (status) {
printf("%s: Failed to set LAN Rx queue context, "
"err %s aq_err %s\n", sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
ICE_WRITE(hw, rxq->tail, 0);
return 0;
}
/**
* ice_cfg_vsi_for_rx - Configure the hardware for Rx
* @vsi: the VSI to configure
*
* Prepare an Rx context descriptor and configure the device to receive
* traffic.
*/
int
ice_cfg_vsi_for_rx(struct ice_vsi *vsi)
{
int i, err;
for (i = 0; i < vsi->num_rx_queues; i++) {
err = ice_setup_rx_ctx(&vsi->rx_queues[i]);
if (err)
return err;
}
return (0);
}
/**
* ice_is_rxq_ready - Check if an Rx queue is ready
* @hw: ice hw structure
* @pf_q: absolute PF queue index to check
* @reg: on successful return, contains qrx_ctrl contents
*
* Reads the QRX_CTRL register and verifies if the queue is in a consistent
* state. That is, QENA_REQ matches QENA_STAT. Used to check before making
* a request to change the queue, as well as to verify the request has
* finished. The queue should change status within a few microseconds, so we
* use a small delay while polling the register.
*
* Returns an error code if the queue does not update after a few retries.
*/
int
ice_is_rxq_ready(struct ice_hw *hw, int pf_q, uint32_t *reg)
{
uint32_t qrx_ctrl, qena_req, qena_stat;
int i;
for (i = 0; i < ICE_Q_WAIT_RETRY_LIMIT; i++) {
qrx_ctrl = ICE_READ(hw, QRX_CTRL(pf_q));
qena_req = (qrx_ctrl >> QRX_CTRL_QENA_REQ_S) & 1;
qena_stat = (qrx_ctrl >> QRX_CTRL_QENA_STAT_S) & 1;
/* if the request and status bits equal, then the queue is
* fully disabled or enabled.
*/
if (qena_req == qena_stat) {
*reg = qrx_ctrl;
return (0);
}
/* wait a few microseconds before we check again */
DELAY(10);
}
return (ETIMEDOUT);
}
/**
* ice_control_rx_queue - Configure hardware to start or stop an Rx queue
* @vsi: VSI containing queue to enable/disable
* @qidx: Queue index in VSI space
* @enable: true to enable queue, false to disable
*
* Control the Rx queue through the QRX_CTRL register, enabling or disabling
* it. Wait for the appropriate time to ensure that the queue has actually
* reached the expected state.
*/
int
ice_control_rx_queue(struct ice_vsi *vsi, uint16_t qidx, bool enable)
{
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
uint32_t qrx_ctrl = 0;
int err;
struct ice_rx_queue *rxq = &vsi->rx_queues[qidx];
int pf_q = vsi->rx_qmap[rxq->me];
err = ice_is_rxq_ready(hw, pf_q, &qrx_ctrl);
if (err) {
printf("%s: Rx queue %d is not ready\n",
sc->sc_dev.dv_xname, pf_q);
return err;
}
/* Skip if the queue is already in correct state */
if (enable == !!(qrx_ctrl & QRX_CTRL_QENA_STAT_M))
return (0);
if (enable)
qrx_ctrl |= QRX_CTRL_QENA_REQ_M;
else
qrx_ctrl &= ~QRX_CTRL_QENA_REQ_M;
ICE_WRITE(hw, QRX_CTRL(pf_q), qrx_ctrl);
/* wait for the queue to finalize the request */
err = ice_is_rxq_ready(hw, pf_q, &qrx_ctrl);
if (err) {
printf("%s: Rx queue %d %sable timeout\n",
sc->sc_dev.dv_xname, pf_q, (enable ? "en" : "dis"));
return err;
}
/* this should never happen */
if (enable != !!(qrx_ctrl & QRX_CTRL_QENA_STAT_M)) {
printf("%s: Rx queue %d invalid state\n",
sc->sc_dev.dv_xname, pf_q);
return (EINVAL);
}
return (0);
}
/**
* ice_control_all_rx_queues - Configure hardware to start or stop the Rx queues
* @vsi: VSI to enable/disable queues
* @enable: true to enable queues, false to disable
*
* Control the Rx queues through the QRX_CTRL register, enabling or disabling
* them. Wait for the appropriate time to ensure that the queues have actually
* reached the expected state.
*/
int
ice_control_all_rx_queues(struct ice_vsi *vsi, bool enable)
{
int i, err;
/* TODO: amortize waits by changing all queues up front and then
* checking their status afterwards. This will become more necessary
* when we have a large number of queues.
*/
for (i = 0; i < vsi->num_rx_queues; i++) {
err = ice_control_rx_queue(vsi, i, enable);
if (err)
break;
}
return (0);
}
/**
* ice_configure_rxq_interrupt - Configure HW Rx queue for an MSI-X interrupt
* @hw: ice hw structure
* @rxqid: Rx queue index in PF space
* @vector: MSI-X vector index in PF/VF space
* @itr_idx: ITR index to use for interrupt
*
* @remark ice_flush() may need to be called after this
*/
void
ice_configure_rxq_interrupt(struct ice_hw *hw, uint16_t rxqid,
uint16_t vector, uint8_t itr_idx)
{
uint32_t val;
KASSERT(itr_idx <= ICE_ITR_NONE);
val = (QINT_RQCTL_CAUSE_ENA_M |
(itr_idx << QINT_RQCTL_ITR_INDX_S) |
(vector << QINT_RQCTL_MSIX_INDX_S));
ICE_WRITE(hw, QINT_RQCTL(rxqid), val);
}
void
ice_configure_all_rxq_interrupts(struct ice_vsi *vsi)
{
struct ice_hw *hw = &vsi->sc->hw;
int i;
for (i = 0; i < vsi->num_rx_queues; i++) {
struct ice_rx_queue *rxq = &vsi->rx_queues[i];
int v = rxq->irqv->iv_qid + 1;
ice_configure_rxq_interrupt(hw, vsi->rx_qmap[rxq->me], v,
ICE_RX_ITR);
DNPRINTF(ICE_DBG_INIT,
"%s: RXQ(%d) intr enable: me %d rxqid %d vector %d\n",
__func__, i, rxq->me, vsi->rx_qmap[rxq->me], v);
}
ice_flush(hw);
}
/**
* ice_itr_to_reg - Convert an ITR setting into its register equivalent
* @hw: The device HW structure
* @itr_setting: the ITR setting to convert
*
* Based on the hardware ITR granularity, convert an ITR setting into the
* correct value to prepare programming to the HW.
*/
static inline uint16_t ice_itr_to_reg(struct ice_hw *hw, uint16_t itr_setting)
{
return itr_setting / hw->itr_gran;
}
/**
* ice_configure_rx_itr - Configure the Rx ITR settings for this VSI
* @vsi: the VSI to configure
*
* Program the hardware ITR registers with the settings for this VSI.
*/
void
ice_configure_rx_itr(struct ice_vsi *vsi)
{
struct ice_hw *hw = &vsi->sc->hw;
int i;
/* TODO: Handle per-queue/per-vector ITR? */
for (i = 0; i < vsi->num_rx_queues; i++) {
struct ice_rx_queue *rxq = &vsi->rx_queues[i];
int v = rxq->irqv->iv_qid + 1;
ICE_WRITE(hw, GLINT_ITR(ICE_RX_ITR, v),
ice_itr_to_reg(hw, vsi->rx_itr));
}
ice_flush(hw);
}
/**
* ice_set_default_promisc_mask - Set default config for promisc settings
* @promisc_mask: bitmask to setup
*
* The ice_(set|clear)_vsi_promisc() function expects a mask of promiscuous
* modes to operate on. The mask used in here is the default one for the
* driver, where promiscuous is enabled/disabled for all types of
* non-VLAN-tagged/VLAN 0 traffic.
*/
void
ice_set_default_promisc_mask(ice_bitmap_t *promisc_mask)
{
ice_zero_bitmap(promisc_mask, ICE_PROMISC_MAX);
ice_set_bit(ICE_PROMISC_UCAST_TX, promisc_mask);
ice_set_bit(ICE_PROMISC_UCAST_RX, promisc_mask);
ice_set_bit(ICE_PROMISC_MCAST_TX, promisc_mask);
ice_set_bit(ICE_PROMISC_MCAST_RX, promisc_mask);
}
/**
* _ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to configure
* @promisc_mask: pointer to mask of promiscuous config bits
* @vid: VLAN ID to set VLAN promiscuous
* @lport: logical port number to configure promisc mode
*/
enum ice_status
ice_set_vsi_promisc(struct ice_hw *hw, uint16_t vsi_handle,
ice_bitmap_t *promisc_mask, uint16_t vid)
{
struct ice_switch_info *sw = hw->switch_info;
uint8_t lport = hw->port_info->lport;
enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
ice_declare_bitmap(p_mask, ICE_PROMISC_MAX);
struct ice_fltr_list_entry f_list_entry;
struct ice_fltr_info new_fltr;
enum ice_status status = ICE_SUCCESS;
bool is_tx_fltr, is_rx_lb_fltr;
uint16_t hw_vsi_id;
int pkt_type;
uint8_t recipe_id;
DNPRINTF(ICE_DBG_TRACE, "%s\n", __func__);
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
hw_vsi_id = hw->vsi_ctx[vsi_handle]->vsi_num;
memset(&new_fltr, 0, sizeof(new_fltr));
/* Do not modify original bitmap */
ice_cp_bitmap(p_mask, promisc_mask, ICE_PROMISC_MAX);
if (ice_is_bit_set(p_mask, ICE_PROMISC_VLAN_RX) &&
ice_is_bit_set(p_mask, ICE_PROMISC_VLAN_TX)) {
new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
new_fltr.l_data.mac_vlan.vlan_id = vid;
recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
} else {
new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
recipe_id = ICE_SW_LKUP_PROMISC;
}
/* Separate filters must be set for each direction/packet type
* combination, so we will loop over the mask value, store the
* individual type, and clear it out in the input mask as it
* is found.
*/
while (ice_is_any_bit_set(p_mask, ICE_PROMISC_MAX)) {
struct ice_sw_recipe *recp_list;
uint8_t *mac_addr;
pkt_type = 0;
is_tx_fltr = false;
is_rx_lb_fltr = false;
if (ice_test_and_clear_bit(ICE_PROMISC_UCAST_RX,
p_mask)) {
pkt_type = UCAST_FLTR;
} else if (ice_test_and_clear_bit(ICE_PROMISC_UCAST_TX,
p_mask)) {
pkt_type = UCAST_FLTR;
is_tx_fltr = true;
} else if (ice_test_and_clear_bit(ICE_PROMISC_MCAST_RX,
p_mask)) {
pkt_type = MCAST_FLTR;
} else if (ice_test_and_clear_bit(ICE_PROMISC_MCAST_TX,
p_mask)) {
pkt_type = MCAST_FLTR;
is_tx_fltr = true;
} else if (ice_test_and_clear_bit(ICE_PROMISC_BCAST_RX,
p_mask)) {
pkt_type = BCAST_FLTR;
} else if (ice_test_and_clear_bit(ICE_PROMISC_BCAST_TX,
p_mask)) {
pkt_type = BCAST_FLTR;
is_tx_fltr = true;
} else if (ice_test_and_clear_bit(ICE_PROMISC_UCAST_RX_LB,
p_mask)) {
pkt_type = UCAST_FLTR;
is_rx_lb_fltr = true;
}
/* Check for VLAN promiscuous flag */
if (ice_is_bit_set(p_mask, ICE_PROMISC_VLAN_RX)) {
ice_clear_bit(ICE_PROMISC_VLAN_RX, p_mask);
} else if (ice_test_and_clear_bit(ICE_PROMISC_VLAN_TX,
p_mask)) {
is_tx_fltr = true;
}
/* Set filter DA based on packet type */
mac_addr = new_fltr.l_data.mac.mac_addr;
if (pkt_type == BCAST_FLTR) {
memset(mac_addr, 0xff, ETHER_ADDR_LEN);
} else if (pkt_type == MCAST_FLTR ||
pkt_type == UCAST_FLTR) {
/* Use the dummy ether header DA */
memcpy(mac_addr, dummy_eth_header, ETHER_ADDR_LEN);
if (pkt_type == MCAST_FLTR)
mac_addr[0] |= 0x1; /* Set multicast bit */
}
/* Need to reset this to zero for all iterations */
new_fltr.flag = 0;
if (is_tx_fltr) {
new_fltr.flag |= ICE_FLTR_TX;
new_fltr.src = hw_vsi_id;
} else if (is_rx_lb_fltr) {
new_fltr.flag |= ICE_FLTR_RX_LB;
new_fltr.src = hw_vsi_id;
} else {
new_fltr.flag |= ICE_FLTR_RX;
new_fltr.src = lport;
}
new_fltr.fltr_act = ICE_FWD_TO_VSI;
new_fltr.vsi_handle = vsi_handle;
new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
f_list_entry.fltr_info = new_fltr;
recp_list = &sw->recp_list[recipe_id];
status = ice_add_rule_internal(hw, recp_list, lport,
&f_list_entry);
if (status != ICE_SUCCESS)
goto set_promisc_exit;
}
set_promisc_exit:
return status;
}
/**
* ice_vsi_uses_fltr - Determine if given VSI uses specified filter
* @fm_entry: filter entry to inspect
* @vsi_handle: VSI handle to compare with filter info
*/
bool
ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry,
uint16_t vsi_handle)
{
return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
fm_entry->fltr_info.vsi_handle == vsi_handle) ||
(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
fm_entry->vsi_list_info &&
(ice_is_bit_set(fm_entry->vsi_list_info->vsi_map,
vsi_handle))));
}
/**
* ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to remove filters from
* @vsi_list_head: pointer to the list to add entry to
* @fi: pointer to fltr_info of filter entry to copy & add
*
* Helper function, used when creating a list of filters to remove from
* a specific VSI. The entry added to vsi_list_head is a COPY of the
* original filter entry, with the exception of fltr_info.fltr_act and
* fltr_info.fwd_id fields. These are set such that later logic can
* extract which VSI to remove the fltr from, and pass on that information.
*/
enum ice_status
ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, uint16_t vsi_handle,
struct ice_fltr_list_head *vsi_list_head,
struct ice_fltr_info *fi)
{
struct ice_fltr_list_entry *tmp;
/* this memory is freed up in the caller function
* once filters for this VSI are removed
*/
tmp = (struct ice_fltr_list_entry *)ice_malloc(hw, sizeof(*tmp));
if (!tmp)
return ICE_ERR_NO_MEMORY;
tmp->fltr_info = *fi;
/* Overwrite these fields to indicate which VSI to remove filter from,
* so find and remove logic can extract the information from the
* list entries. Note that original entries will still have proper
* values.
*/
tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
tmp->fltr_info.vsi_handle = vsi_handle;
tmp->fltr_info.fwd_id.hw_vsi_id = hw->vsi_ctx[vsi_handle]->vsi_num;
TAILQ_INSERT_HEAD(vsi_list_head, tmp, list_entry);
return ICE_SUCCESS;
}
/**
* ice_determine_promisc_mask
* @fi: filter info to parse
* @promisc_mask: pointer to mask to be filled in
*
* Helper function to determine which ICE_PROMISC_ mask corresponds
* to given filter into.
*/
void ice_determine_promisc_mask(struct ice_fltr_info *fi,
ice_bitmap_t *promisc_mask)
{
uint16_t vid = fi->l_data.mac_vlan.vlan_id;
uint8_t *macaddr = fi->l_data.mac.mac_addr;
bool is_rx_lb_fltr = false;
bool is_tx_fltr = false;
ice_zero_bitmap(promisc_mask, ICE_PROMISC_MAX);
if (fi->flag == ICE_FLTR_TX)
is_tx_fltr = true;
if (fi->flag == ICE_FLTR_RX_LB)
is_rx_lb_fltr = true;
if (ETHER_IS_BROADCAST(macaddr)) {
ice_set_bit(is_tx_fltr ? ICE_PROMISC_BCAST_TX
: ICE_PROMISC_BCAST_RX, promisc_mask);
} else if (ETHER_IS_MULTICAST(macaddr)) {
ice_set_bit(is_tx_fltr ? ICE_PROMISC_MCAST_TX
: ICE_PROMISC_MCAST_RX, promisc_mask);
} else {
if (is_tx_fltr)
ice_set_bit(ICE_PROMISC_UCAST_TX, promisc_mask);
else if (is_rx_lb_fltr)
ice_set_bit(ICE_PROMISC_UCAST_RX_LB, promisc_mask);
else
ice_set_bit(ICE_PROMISC_UCAST_RX, promisc_mask);
}
if (vid) {
ice_set_bit(is_tx_fltr ? ICE_PROMISC_VLAN_TX
: ICE_PROMISC_VLAN_RX, promisc_mask);
}
}
/**
* ice_remove_vsi_list_rule
* @hw: pointer to the hardware structure
* @vsi_list_id: VSI list ID generated as part of allocate resource
* @lkup_type: switch rule filter lookup type
*
* The VSI list should be emptied before this function is called to remove the
* VSI list.
*/
enum ice_status
ice_remove_vsi_list_rule(struct ice_hw *hw, uint16_t vsi_list_id,
enum ice_sw_lkup_type lkup_type)
{
/* Free the vsi_list resource that we allocated. It is assumed that the
* list is empty at this point.
*/
return ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
ice_aqc_opc_free_res);
}
/**
* ice_rem_update_vsi_list
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle of the VSI to remove
* @fm_list: filter management entry for which the VSI list management needs to
* be done
*/
enum ice_status
ice_rem_update_vsi_list(struct ice_hw *hw, uint16_t vsi_handle,
struct ice_fltr_mgmt_list_entry *fm_list)
{
struct ice_switch_info *sw = hw->switch_info;
enum ice_sw_lkup_type lkup_type;
enum ice_status status = ICE_SUCCESS;
uint16_t vsi_list_id;
if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
fm_list->vsi_count == 0)
return ICE_ERR_PARAM;
/* A rule with the VSI being removed does not exist */
if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle))
return ICE_ERR_DOES_NOT_EXIST;
lkup_type = fm_list->fltr_info.lkup_type;
vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
ice_aqc_opc_update_sw_rules,
lkup_type);
if (status)
return status;
fm_list->vsi_count--;
ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
struct ice_vsi_list_map_info *vsi_list_info =
fm_list->vsi_list_info;
uint16_t rem_vsi_handle;
rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map,
ICE_MAX_VSI);
if (!ice_is_vsi_valid(hw, rem_vsi_handle))
return ICE_ERR_OUT_OF_RANGE;
/* Make sure VSI list is empty before removing it below */
status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
vsi_list_id, true,
ice_aqc_opc_update_sw_rules,
lkup_type);
if (status)
return status;
tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
tmp_fltr_info.fwd_id.hw_vsi_id =
hw->vsi_ctx[rem_vsi_handle]->vsi_num;
tmp_fltr_info.vsi_handle = rem_vsi_handle;
status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
if (status) {
DNPRINTF(ICE_DBG_SW, "%s: Failed to update pkt fwd "
"rule to FWD_TO_VSI on HW VSI %d, error %d\n",
__func__,
tmp_fltr_info.fwd_id.hw_vsi_id, status);
return status;
}
fm_list->fltr_info = tmp_fltr_info;
}
if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
(fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
struct ice_vsi_list_map_info *vsi_list_info =
fm_list->vsi_list_info;
/* Remove the VSI list since it is no longer used */
status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
if (status) {
DNPRINTF(ICE_DBG_SW, "%s: Failed to remove "
"VSI list %d, error %d\n", __func__,
vsi_list_id, status);
return status;
}
TAILQ_REMOVE(&sw->vsi_list_map_head, vsi_list_info, list_entry);
ice_free(hw, vsi_list_info);
fm_list->vsi_list_info = NULL;
}
return status;
}
/**
* ice_remove_rule_internal - Remove a filter rule of a given type
* @hw: pointer to the hardware structure
* @recp_list: recipe list for which the rule needs to removed
* @f_entry: rule entry containing filter information
*/
enum ice_status
ice_remove_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
struct ice_fltr_list_entry *f_entry)
{
struct ice_fltr_mgmt_list_entry *list_elem;
#if 0
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
#endif
enum ice_status status = ICE_SUCCESS;
bool remove_rule = false;
uint16_t vsi_handle;
if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
return ICE_ERR_PARAM;
f_entry->fltr_info.fwd_id.hw_vsi_id =
hw->vsi_ctx[f_entry->fltr_info.vsi_handle]->vsi_num;
#if 0
rule_lock = &recp_list->filt_rule_lock;
ice_acquire_lock(rule_lock);
#endif
list_elem = ice_find_rule_entry(&recp_list->filt_rules,
&f_entry->fltr_info);
if (!list_elem) {
status = ICE_ERR_DOES_NOT_EXIST;
goto exit;
}
if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
remove_rule = true;
} else if (!list_elem->vsi_list_info) {
status = ICE_ERR_DOES_NOT_EXIST;
goto exit;
} else if (list_elem->vsi_list_info->ref_cnt > 1) {
/* a ref_cnt > 1 indicates that the vsi_list is being
* shared by multiple rules. Decrement the ref_cnt and
* remove this rule, but do not modify the list, as it
* is in-use by other rules.
*/
list_elem->vsi_list_info->ref_cnt--;
remove_rule = true;
} else {
/* a ref_cnt of 1 indicates the vsi_list is only used
* by one rule. However, the original removal request is only
* for a single VSI. Update the vsi_list first, and only
* remove the rule if there are no further VSIs in this list.
*/
vsi_handle = f_entry->fltr_info.vsi_handle;
status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
if (status)
goto exit;
/* if VSI count goes to zero after updating the VSI list */
if (list_elem->vsi_count == 0)
remove_rule = true;
}
if (remove_rule) {
/* Remove the lookup rule */
struct ice_sw_rule_lkup_rx_tx *s_rule;
s_rule = (struct ice_sw_rule_lkup_rx_tx *)
ice_malloc(hw, ice_struct_size(s_rule, hdr_data, 0));
if (!s_rule) {
status = ICE_ERR_NO_MEMORY;
goto exit;
}
ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
ice_aqc_opc_remove_sw_rules);
status = ice_aq_sw_rules(hw, s_rule,
ice_struct_size(s_rule, hdr_data, 0),
1, ice_aqc_opc_remove_sw_rules, NULL);
/* Remove a book keeping from the list */
ice_free(hw, s_rule);
if (status)
goto exit;
TAILQ_REMOVE(&recp_list->filt_rules, list_elem, list_entry);
ice_free(hw, list_elem);
}
exit:
#if 0
ice_release_lock(rule_lock);
#endif
return status;
}
/**
* ice_remove_promisc - Remove promisc based filter rules
* @hw: pointer to the hardware structure
* @recp_id: recipe ID for which the rule needs to removed
* @v_list: list of promisc entries
*/
enum ice_status
ice_remove_promisc(struct ice_hw *hw, uint8_t recp_id,
struct ice_fltr_list_head *v_list)
{
struct ice_fltr_list_entry *v_list_itr, *tmp;
struct ice_sw_recipe *recp_list;
recp_list = &hw->switch_info->recp_list[recp_id];
TAILQ_FOREACH_SAFE(v_list_itr, v_list, list_entry, tmp) {
v_list_itr->status =
ice_remove_rule_internal(hw, recp_list, v_list_itr);
if (v_list_itr->status)
return v_list_itr->status;
}
return ICE_SUCCESS;
}
/**
* ice_clear_vsi_promisc - clear specified promiscuous mode(s)
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to clear mode
* @promisc_mask: pointer to mask of promiscuous config bits to clear
* @vid: VLAN ID to clear VLAN promiscuous
*/
enum ice_status
ice_clear_vsi_promisc(struct ice_hw *hw, uint16_t vsi_handle,
ice_bitmap_t *promisc_mask, uint16_t vid)
{
struct ice_switch_info *sw = hw->switch_info;
ice_declare_bitmap(compl_promisc_mask, ICE_PROMISC_MAX);
ice_declare_bitmap(fltr_promisc_mask, ICE_PROMISC_MAX);
struct ice_fltr_list_entry *fm_entry, *tmp;
struct ice_fltr_list_head remove_list_head;
struct ice_fltr_mgmt_list_entry *itr;
struct ice_fltr_mgmt_list_head *rule_head;
#if 0
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
#endif
enum ice_status status = ICE_SUCCESS;
uint8_t recipe_id;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
if (ice_is_bit_set(promisc_mask, ICE_PROMISC_VLAN_RX) &&
ice_is_bit_set(promisc_mask, ICE_PROMISC_VLAN_TX))
recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
else
recipe_id = ICE_SW_LKUP_PROMISC;
rule_head = &sw->recp_list[recipe_id].filt_rules;
#if 0
rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
#endif
TAILQ_INIT(&remove_list_head);
#if 0
ice_acquire_lock(rule_lock);
#endif
TAILQ_FOREACH(itr, rule_head, list_entry) {
struct ice_fltr_info *fltr_info;
ice_zero_bitmap(compl_promisc_mask, ICE_PROMISC_MAX);
if (!ice_vsi_uses_fltr(itr, vsi_handle))
continue;
fltr_info = &itr->fltr_info;
if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
vid != fltr_info->l_data.mac_vlan.vlan_id)
continue;
ice_determine_promisc_mask(fltr_info, fltr_promisc_mask);
ice_andnot_bitmap(compl_promisc_mask, fltr_promisc_mask,
promisc_mask, ICE_PROMISC_MAX);
/* Skip if filter is not completely specified by given mask */
if (ice_is_any_bit_set(compl_promisc_mask, ICE_PROMISC_MAX))
continue;
status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
&remove_list_head,
fltr_info);
if (status) {
#if 0
ice_release_lock(rule_lock);
#endif
goto free_fltr_list;
}
}
#if 0
ice_release_lock(rule_lock);
#endif
status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
free_fltr_list:
TAILQ_FOREACH_SAFE(fm_entry, &remove_list_head, list_entry, tmp) {
TAILQ_REMOVE(&remove_list_head, fm_entry, list_entry);
ice_free(hw, fm_entry);
}
return status;
}
/**
* ice_if_promisc_set - Set device promiscuous mode
*
* @remark Calls to this function will always overwrite the previous setting
*/
int
ice_if_promisc_set(struct ice_softc *sc)
{
struct ifnet *ifp = &sc->sc_ac.ac_if;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
bool promisc_enable = ifp->if_flags & IFF_PROMISC;
bool multi_enable = ifp->if_flags & IFF_ALLMULTI;
ice_declare_bitmap(promisc_mask, ICE_PROMISC_MAX);
/* Do not support configuration when in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return (ENOSYS);
ice_set_default_promisc_mask(promisc_mask);
if (multi_enable)
return (EOPNOTSUPP);
if (promisc_enable) {
status = ice_set_vsi_promisc(hw, sc->pf_vsi.idx,
promisc_mask, 0);
if (status && status != ICE_ERR_ALREADY_EXISTS) {
printf("%s: Failed to enable promiscuous mode for "
"PF VSI, err %s aq_err %s\n",
sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
} else {
status = ice_clear_vsi_promisc(hw, sc->pf_vsi.idx,
promisc_mask, 0);
if (status) {
printf("%s: Failed to disable promiscuous mode for "
"PF VSI, err %s aq_err %s\n",
sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
}
return (0);
}
/**
* ice_enable_intr - Enable interrupts for given vector
* @hw: the device private HW structure
* @vector: the interrupt index in PF space
*
* In MSI or Legacy interrupt mode, interrupt 0 is the only valid index.
*/
void
ice_enable_intr(struct ice_hw *hw, int vector)
{
uint32_t dyn_ctl;
/* Use ITR_NONE so that ITR configuration is not changed. */
dyn_ctl = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
(ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
ICE_WRITE(hw, GLINT_DYN_CTL(vector), dyn_ctl);
}
/**
* ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
* @pi: port information structure
* @caps: PHY ability structure to copy data from
* @cfg: PHY configuration structure to copy data to
*
* Helper function to copy AQC PHY get ability data to PHY set configuration
* data structure
*/
void
ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
struct ice_aqc_get_phy_caps_data *caps,
struct ice_aqc_set_phy_cfg_data *cfg)
{
if (!pi || !caps || !cfg)
return;
memset(cfg, 0, sizeof(*cfg));
cfg->phy_type_low = caps->phy_type_low;
cfg->phy_type_high = caps->phy_type_high;
cfg->caps = caps->caps;
cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
cfg->eee_cap = caps->eee_cap;
cfg->eeer_value = caps->eeer_value;
cfg->link_fec_opt = caps->link_fec_options;
cfg->module_compliance_enforcement =
caps->module_compliance_enforcement;
}
#define ICE_PHYS_100MB \
(ICE_PHY_TYPE_LOW_100BASE_TX | \
ICE_PHY_TYPE_LOW_100M_SGMII)
#define ICE_PHYS_1000MB \
(ICE_PHY_TYPE_LOW_1000BASE_T | \
ICE_PHY_TYPE_LOW_1000BASE_SX | \
ICE_PHY_TYPE_LOW_1000BASE_LX | \
ICE_PHY_TYPE_LOW_1000BASE_KX | \
ICE_PHY_TYPE_LOW_1G_SGMII)
#define ICE_PHYS_2500MB \
(ICE_PHY_TYPE_LOW_2500BASE_T | \
ICE_PHY_TYPE_LOW_2500BASE_X | \
ICE_PHY_TYPE_LOW_2500BASE_KX)
#define ICE_PHYS_5GB \
(ICE_PHY_TYPE_LOW_5GBASE_T | \
ICE_PHY_TYPE_LOW_5GBASE_KR)
#define ICE_PHYS_10GB \
(ICE_PHY_TYPE_LOW_10GBASE_T | \
ICE_PHY_TYPE_LOW_10G_SFI_DA | \
ICE_PHY_TYPE_LOW_10GBASE_SR | \
ICE_PHY_TYPE_LOW_10GBASE_LR | \
ICE_PHY_TYPE_LOW_10GBASE_KR_CR1 | \
ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC | \
ICE_PHY_TYPE_LOW_10G_SFI_C2C)
#define ICE_PHYS_25GB \
(ICE_PHY_TYPE_LOW_25GBASE_T | \
ICE_PHY_TYPE_LOW_25GBASE_CR | \
ICE_PHY_TYPE_LOW_25GBASE_CR_S | \
ICE_PHY_TYPE_LOW_25GBASE_CR1 | \
ICE_PHY_TYPE_LOW_25GBASE_SR | \
ICE_PHY_TYPE_LOW_25GBASE_LR | \
ICE_PHY_TYPE_LOW_25GBASE_KR | \
ICE_PHY_TYPE_LOW_25GBASE_KR_S | \
ICE_PHY_TYPE_LOW_25GBASE_KR1 | \
ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC | \
ICE_PHY_TYPE_LOW_25G_AUI_C2C)
#define ICE_PHYS_40GB \
(ICE_PHY_TYPE_LOW_40GBASE_CR4 | \
ICE_PHY_TYPE_LOW_40GBASE_SR4 | \
ICE_PHY_TYPE_LOW_40GBASE_LR4 | \
ICE_PHY_TYPE_LOW_40GBASE_KR4 | \
ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC | \
ICE_PHY_TYPE_LOW_40G_XLAUI)
#define ICE_PHYS_50GB \
(ICE_PHY_TYPE_LOW_50GBASE_CR2 | \
ICE_PHY_TYPE_LOW_50GBASE_SR2 | \
ICE_PHY_TYPE_LOW_50GBASE_LR2 | \
ICE_PHY_TYPE_LOW_50GBASE_KR2 | \
ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC | \
ICE_PHY_TYPE_LOW_50G_LAUI2 | \
ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC | \
ICE_PHY_TYPE_LOW_50G_AUI2 | \
ICE_PHY_TYPE_LOW_50GBASE_CP | \
ICE_PHY_TYPE_LOW_50GBASE_SR | \
ICE_PHY_TYPE_LOW_50GBASE_FR | \
ICE_PHY_TYPE_LOW_50GBASE_LR | \
ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4 | \
ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC | \
ICE_PHY_TYPE_LOW_50G_AUI1)
#define ICE_PHYS_100GB_LOW \
(ICE_PHY_TYPE_LOW_100GBASE_CR4 | \
ICE_PHY_TYPE_LOW_100GBASE_SR4 | \
ICE_PHY_TYPE_LOW_100GBASE_LR4 | \
ICE_PHY_TYPE_LOW_100GBASE_KR4 | \
ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC | \
ICE_PHY_TYPE_LOW_100G_CAUI4 | \
ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC | \
ICE_PHY_TYPE_LOW_100G_AUI4 | \
ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4 | \
ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4 | \
ICE_PHY_TYPE_LOW_100GBASE_CP2 | \
ICE_PHY_TYPE_LOW_100GBASE_SR2 | \
ICE_PHY_TYPE_LOW_100GBASE_DR)
#define ICE_PHYS_100GB_HIGH \
(ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4 | \
ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC | \
ICE_PHY_TYPE_HIGH_100G_CAUI2 | \
ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC | \
ICE_PHY_TYPE_HIGH_100G_AUI2)
/**
* ice_sysctl_speeds_to_aq_phy_types - Convert sysctl speed flags to AQ PHY flags
* @sysctl_speeds: 16-bit sysctl speeds or AQ_LINK_SPEED flags
* @phy_type_low: output parameter for lower AQ PHY flags
* @phy_type_high: output parameter for higher AQ PHY flags
*
* Converts the given link speed flags into AQ PHY type flag sets appropriate
* for use in a Set PHY Config command.
*/
void
ice_sysctl_speeds_to_aq_phy_types(uint16_t sysctl_speeds,
uint64_t *phy_type_low, uint64_t *phy_type_high)
{
*phy_type_low = 0, *phy_type_high = 0;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_100MB)
*phy_type_low |= ICE_PHYS_100MB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_1000MB)
*phy_type_low |= ICE_PHYS_1000MB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_2500MB)
*phy_type_low |= ICE_PHYS_2500MB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_5GB)
*phy_type_low |= ICE_PHYS_5GB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_10GB)
*phy_type_low |= ICE_PHYS_10GB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_25GB)
*phy_type_low |= ICE_PHYS_25GB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_40GB)
*phy_type_low |= ICE_PHYS_40GB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_50GB)
*phy_type_low |= ICE_PHYS_50GB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_100GB) {
*phy_type_low |= ICE_PHYS_100GB_LOW;
*phy_type_high |= ICE_PHYS_100GB_HIGH;
}
}
/**
* @struct ice_phy_data
* @brief PHY caps and link speeds
*
* Buffer providing report mode and user speeds;
* returning intersection of PHY types and speeds.
*/
struct ice_phy_data {
uint64_t phy_low_orig; /* PHY low quad from report */
uint64_t phy_high_orig; /* PHY high quad from report */
uint64_t phy_low_intr; /* low quad intersection with user speeds */
uint64_t phy_high_intr; /* high quad intersection with user speeds */
uint16_t user_speeds_orig; /* Input from caller - ICE_AQ_LINK_SPEED_* */
uint16_t user_speeds_intr; /* Intersect with report speeds */
uint8_t report_mode; /* See ICE_AQC_REPORT_* */
};
/**
* @var phy_link_speeds
* @brief PHY link speed conversion array
*
* Array of link speeds to convert ICE_PHY_TYPE_LOW and ICE_PHY_TYPE_HIGH into
* link speeds used by the link speed sysctls.
*
* @remark these are based on the indices used in the BIT() macros for the
* ICE_PHY_TYPE_LOW_* and ICE_PHY_TYPE_HIGH_* definitions.
*/
static const uint16_t phy_link_speeds[] = {
ICE_AQ_LINK_SPEED_100MB,
ICE_AQ_LINK_SPEED_100MB,
ICE_AQ_LINK_SPEED_1000MB,
ICE_AQ_LINK_SPEED_1000MB,
ICE_AQ_LINK_SPEED_1000MB,
ICE_AQ_LINK_SPEED_1000MB,
ICE_AQ_LINK_SPEED_1000MB,
ICE_AQ_LINK_SPEED_2500MB,
ICE_AQ_LINK_SPEED_2500MB,
ICE_AQ_LINK_SPEED_2500MB,
ICE_AQ_LINK_SPEED_5GB,
ICE_AQ_LINK_SPEED_5GB,
ICE_AQ_LINK_SPEED_10GB,
ICE_AQ_LINK_SPEED_10GB,
ICE_AQ_LINK_SPEED_10GB,
ICE_AQ_LINK_SPEED_10GB,
ICE_AQ_LINK_SPEED_10GB,
ICE_AQ_LINK_SPEED_10GB,
ICE_AQ_LINK_SPEED_10GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_40GB,
ICE_AQ_LINK_SPEED_40GB,
ICE_AQ_LINK_SPEED_40GB,
ICE_AQ_LINK_SPEED_40GB,
ICE_AQ_LINK_SPEED_40GB,
ICE_AQ_LINK_SPEED_40GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
/* These rates are for ICE_PHY_TYPE_HIGH_* */
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB
};
/**
* ice_aq_phy_types_to_link_speeds - Convert the PHY Types to speeds
* @phy_type_low: lower 64-bit PHY Type bitmask
* @phy_type_high: upper 64-bit PHY Type bitmask
*
* Convert the PHY Type fields from Get PHY Abilities and Set PHY Config into
* link speed flags. If phy_type_high has an unknown PHY type, then the return
* value will include the "ICE_AQ_LINK_SPEED_UNKNOWN" flag as well.
*/
uint16_t
ice_aq_phy_types_to_link_speeds(uint64_t phy_type_low, uint64_t phy_type_high)
{
uint16_t sysctl_speeds = 0;
int bit;
for (bit = 0; bit < 64; bit++) {
if (phy_type_low & (1ULL << bit))
sysctl_speeds |= phy_link_speeds[bit];
}
for (bit = 0; bit < 64; bit++) {
if ((phy_type_high & (1ULL << bit)) == 0)
continue;
if ((bit + 64) < (int)nitems(phy_link_speeds))
sysctl_speeds |= phy_link_speeds[bit + 64];
else
sysctl_speeds |= ICE_AQ_LINK_SPEED_UNKNOWN;
}
return (sysctl_speeds);
}
/**
* ice_apply_supported_speed_filter - Mask off unsupported speeds
* @report_speeds: bit-field for the desired link speeds
* @mod_type: type of module/sgmii connection we have
*
* Given a bitmap of the desired lenient mode link speeds,
* this function will mask off the speeds that are not currently
* supported by the device.
*/
uint16_t
ice_apply_supported_speed_filter(uint16_t report_speeds, uint8_t mod_type)
{
uint16_t speed_mask;
enum { IS_SGMII, IS_SFP, IS_QSFP } module;
/*
* The SFF specification says 0 is unknown, so we'll
* treat it like we're connected through SGMII for now.
* This may need revisiting if a new type is supported
* in the future.
*/
switch (mod_type) {
case 0:
module = IS_SGMII;
break;
case 3:
module = IS_SFP;
break;
default:
module = IS_QSFP;
break;
}
/* We won't offer anything lower than 100M for any part,
* but we'll need to mask off other speeds based on the
* device and module type.
*/
speed_mask = ~((uint16_t)ICE_AQ_LINK_SPEED_100MB - 1);
if ((report_speeds & ICE_AQ_LINK_SPEED_10GB) && (module == IS_SFP))
speed_mask = ~((uint16_t)ICE_AQ_LINK_SPEED_1000MB - 1);
if (report_speeds & ICE_AQ_LINK_SPEED_25GB)
speed_mask = ~((uint16_t)ICE_AQ_LINK_SPEED_1000MB - 1);
if (report_speeds & ICE_AQ_LINK_SPEED_50GB) {
speed_mask = ~((uint16_t)ICE_AQ_LINK_SPEED_1000MB - 1);
if (module == IS_QSFP)
speed_mask = ~((uint16_t)ICE_AQ_LINK_SPEED_10GB - 1);
}
if (report_speeds & ICE_AQ_LINK_SPEED_100GB)
speed_mask = ~((uint16_t)ICE_AQ_LINK_SPEED_25GB - 1);
return (report_speeds & speed_mask);
}
/**
* ice_intersect_phy_types_and_speeds - Return intersection of link speeds
* @sc: device private structure
* @phy_data: device PHY data
*
* On read: Displays the currently supported speeds
* On write: Sets the device's supported speeds
* Valid input flags: see ICE_SYSCTL_HELP_ADVERTISE_SPEED
*/
int
ice_intersect_phy_types_and_speeds(struct ice_softc *sc,
struct ice_phy_data *phy_data)
{
struct ice_aqc_get_phy_caps_data pcaps = { 0 };
const char *report_types[5] = { "w/o MEDIA",
"w/MEDIA",
"ACTIVE",
"EDOOFUS", /* Not used */
"DFLT" };
struct ice_hw *hw = &sc->hw;
struct ice_port_info *pi = hw->port_info;
enum ice_status status;
uint16_t report_speeds, temp_speeds;
uint8_t report_type;
bool apply_speed_filter = false;
switch (phy_data->report_mode) {
case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
case ICE_AQC_REPORT_ACTIVE_CFG:
case ICE_AQC_REPORT_DFLT_CFG:
report_type = phy_data->report_mode >> 1;
break;
default:
DPRINTF("%s: phy_data.report_mode \"%u\" doesn't exist\n",
__func__, phy_data->report_mode);
return (EINVAL);
}
/* 0 is treated as "Auto"; the driver will handle selecting the
* correct speeds. Including, in some cases, applying an override
* if provided.
*/
if (phy_data->user_speeds_orig == 0)
phy_data->user_speeds_orig = USHRT_MAX;
else if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_LENIENT_LINK_MODE))
apply_speed_filter = true;
status = ice_aq_get_phy_caps(pi, false, phy_data->report_mode, &pcaps, NULL);
if (status != ICE_SUCCESS) {
printf("%s: ice_aq_get_phy_caps (%s) failed; status %s, "
"aq_err %s\n", sc->sc_dev.dv_xname,
report_types[report_type], ice_status_str(status),
ice_aq_str(sc->hw.adminq.sq_last_status));
return (EIO);
}
phy_data->phy_low_orig = le64toh(pcaps.phy_type_low);
phy_data->phy_high_orig = le64toh(pcaps.phy_type_high);
report_speeds = ice_aq_phy_types_to_link_speeds(phy_data->phy_low_orig,
phy_data->phy_high_orig);
if (apply_speed_filter) {
temp_speeds = ice_apply_supported_speed_filter(report_speeds,
pcaps.module_type[0]);
if ((phy_data->user_speeds_orig & temp_speeds) == 0) {
printf("%s: User-specified speeds (\"0x%04X\") not "
"supported\n", sc->sc_dev.dv_xname,
phy_data->user_speeds_orig);
return (EINVAL);
}
report_speeds = temp_speeds;
}
ice_sysctl_speeds_to_aq_phy_types(phy_data->user_speeds_orig,
&phy_data->phy_low_intr, &phy_data->phy_high_intr);
phy_data->user_speeds_intr = phy_data->user_speeds_orig & report_speeds;
phy_data->phy_low_intr &= phy_data->phy_low_orig;
phy_data->phy_high_intr &= phy_data->phy_high_orig;
return (0);
}
/**
* ice_apply_saved_phy_req_to_cfg -- Write saved user PHY settings to cfg data
* @sc: device private structure
* @cfg: new PHY config data to be modified
*
* Applies user settings for advertised speeds to the PHY type fields in the
* supplied PHY config struct. It uses the data from pcaps to check if the
* saved settings are invalid and uses the pcaps data instead if they are
* invalid.
*/
int
ice_apply_saved_phy_req_to_cfg(struct ice_softc *sc,
struct ice_aqc_set_phy_cfg_data *cfg)
{
struct ice_phy_data phy_data = { 0 };
struct ice_port_info *pi = sc->hw.port_info;
uint64_t phy_low = 0, phy_high = 0;
uint16_t link_speeds;
int ret;
link_speeds = pi->phy.curr_user_speed_req;
if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_LINK_MGMT_VER_2)) {
memset(&phy_data, 0, sizeof(phy_data));
phy_data.report_mode = ICE_AQC_REPORT_DFLT_CFG;
phy_data.user_speeds_orig = link_speeds;
ret = ice_intersect_phy_types_and_speeds(sc, &phy_data);
if (ret != 0)
return (ret);
phy_low = phy_data.phy_low_intr;
phy_high = phy_data.phy_high_intr;
if (link_speeds == 0 || phy_data.user_speeds_intr)
goto finalize_link_speed;
if (ice_is_bit_set(sc->feat_en,
ICE_FEATURE_LENIENT_LINK_MODE)) {
memset(&phy_data, 0, sizeof(phy_data));
phy_data.report_mode = ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA;
phy_data.user_speeds_orig = link_speeds;
ret = ice_intersect_phy_types_and_speeds(sc, &phy_data);
if (ret != 0)
return (ret);
phy_low = phy_data.phy_low_intr;
phy_high = phy_data.phy_high_intr;
if (!phy_data.user_speeds_intr) {
phy_low = phy_data.phy_low_orig;
phy_high = phy_data.phy_high_orig;
}
goto finalize_link_speed;
}
/* If we're here, then it means the benefits of Version 2
* link management aren't utilized. We fall through to
* handling Strict Link Mode the same as Version 1 link
* management.
*/
}
memset(&phy_data, 0, sizeof(phy_data));
if ((link_speeds == 0) &&
(sc->ldo_tlv.phy_type_low || sc->ldo_tlv.phy_type_high))
phy_data.report_mode = ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA;
else
phy_data.report_mode = ICE_AQC_REPORT_TOPO_CAP_MEDIA;
phy_data.user_speeds_orig = link_speeds;
ret = ice_intersect_phy_types_and_speeds(sc, &phy_data);
if (ret != 0)
return (ret);
phy_low = phy_data.phy_low_intr;
phy_high = phy_data.phy_high_intr;
if (!ice_is_bit_set(sc->feat_en, ICE_FEATURE_LENIENT_LINK_MODE)) {
if (phy_low == 0 && phy_high == 0) {
printf("%s: The selected speed is not supported by "
"the current media. Please select a link speed "
"that is supported by the current media.\n",
sc->sc_dev.dv_xname);
return (EINVAL);
}
} else {
if (link_speeds == 0) {
if (sc->ldo_tlv.phy_type_low & phy_low ||
sc->ldo_tlv.phy_type_high & phy_high) {
phy_low &= sc->ldo_tlv.phy_type_low;
phy_high &= sc->ldo_tlv.phy_type_high;
}
} else if (phy_low == 0 && phy_high == 0) {
memset(&phy_data, 0, sizeof(phy_data));
phy_data.report_mode = ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA;
phy_data.user_speeds_orig = link_speeds;
ret = ice_intersect_phy_types_and_speeds(sc, &phy_data);
if (ret != 0)
return (ret);
phy_low = phy_data.phy_low_intr;
phy_high = phy_data.phy_high_intr;
if (!phy_data.user_speeds_intr) {
phy_low = phy_data.phy_low_orig;
phy_high = phy_data.phy_high_orig;
}
}
}
finalize_link_speed:
/* Cache new user settings for speeds */
pi->phy.curr_user_speed_req = phy_data.user_speeds_intr;
cfg->phy_type_low = htole64(phy_low);
cfg->phy_type_high = htole64(phy_high);
return (ret);
}
/**
* ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
* @hw: pointer to hardware structure
* @module_tlv: pointer to module TLV to return
* @module_tlv_len: pointer to module TLV length to return
* @module_type: module type requested
*
* Finds the requested sub module TLV type from the Preserved Field
* Area (PFA) and returns the TLV pointer and length. The caller can
* use these to read the variable length TLV value.
*/
enum ice_status
ice_get_pfa_module_tlv(struct ice_hw *hw, uint16_t *module_tlv,
uint16_t *module_tlv_len, uint16_t module_type)
{
enum ice_status status;
uint16_t pfa_len, pfa_ptr;
uint16_t next_tlv;
status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
if (status != ICE_SUCCESS) {
DNPRINTF(ICE_DBG_INIT, "%s: Preserved Field Array pointer.\n",
__func__);
return status;
}
status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
if (status != ICE_SUCCESS) {
DNPRINTF(ICE_DBG_INIT, "%s: Failed to read PFA length.\n",
__func__);
return status;
}
/* Starting with first TLV after PFA length, iterate through the list
* of TLVs to find the requested one.
*/
next_tlv = pfa_ptr + 1;
while (next_tlv < pfa_ptr + pfa_len) {
uint16_t tlv_sub_module_type;
uint16_t tlv_len;
/* Read TLV type */
status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
if (status != ICE_SUCCESS) {
DNPRINTF(ICE_DBG_INIT, "%s: Failed to read TLV type.\n",
__func__);
break;
}
/* Read TLV length */
status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
if (status != ICE_SUCCESS) {
DNPRINTF(ICE_DBG_INIT,
"%s: Failed to read TLV length.\n", __func__);
break;
}
if (tlv_sub_module_type == module_type) {
if (tlv_len) {
*module_tlv = next_tlv;
*module_tlv_len = tlv_len;
return ICE_SUCCESS;
}
return ICE_ERR_INVAL_SIZE;
}
/* Check next TLV, i.e. current TLV pointer + length + 2 words
* (for current TLV's type and length)
*/
next_tlv = next_tlv + tlv_len + 2;
}
/* Module does not exist */
return ICE_ERR_DOES_NOT_EXIST;
}
/**
* ice_get_link_default_override
* @ldo: pointer to the link default override struct
* @pi: pointer to the port info struct
*
* Gets the link default override for a port
*/
enum ice_status
ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
struct ice_port_info *pi)
{
uint16_t i, tlv, tlv_len, tlv_start, buf, offset;
struct ice_hw *hw = pi->hw;
enum ice_status status;
status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
if (status) {
DNPRINTF(ICE_DBG_INIT,
"%s: Failed to read link override TLV.\n", __func__);
return status;
}
/* Each port has its own config; calculate for our port */
tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
/* link options first */
status = ice_read_sr_word(hw, tlv_start, &buf);
if (status) {
DNPRINTF(ICE_DBG_INIT,
"%s: Failed to read override link options.\n", __func__);
return status;
}
ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
ICE_LINK_OVERRIDE_PHY_CFG_S;
/* link PHY config */
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
status = ice_read_sr_word(hw, offset, &buf);
if (status) {
DNPRINTF(ICE_DBG_INIT,
"%s: Failed to read override phy config.\n", __func__);
return status;
}
ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
/* PHY types low */
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
status = ice_read_sr_word(hw, (offset + i), &buf);
if (status) {
DNPRINTF(ICE_DBG_INIT,
"%s: Failed to read override link options.\n",
__func__);
return status;
}
/* shift 16 bits at a time to fill 64 bits */
ldo->phy_type_low |= ((uint64_t)buf << (i * 16));
}
/* PHY types high */
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
status = ice_read_sr_word(hw, (offset + i), &buf);
if (status) {
DNPRINTF(ICE_DBG_INIT,
"%s: Failed to read override link options.\n",
__func__);
return status;
}
/* shift 16 bits at a time to fill 64 bits */
ldo->phy_type_high |= ((uint64_t)buf << (i * 16));
}
return status;
}
/**
* ice_fw_supports_fec_dis_auto
* @hw: pointer to the hardware structure
*
* Checks if the firmware supports FEC disable in Auto FEC mode
*/
bool ice_fw_supports_fec_dis_auto(struct ice_hw *hw)
{
return ice_is_fw_min_ver(hw, ICE_FW_VER_BRANCH_E810,
ICE_FW_FEC_DIS_AUTO_MAJ,
ICE_FW_FEC_DIS_AUTO_MIN,
ICE_FW_FEC_DIS_AUTO_PATCH) ||
ice_is_fw_min_ver(hw, ICE_FW_VER_BRANCH_E82X,
ICE_FW_FEC_DIS_AUTO_MAJ_E82X,
ICE_FW_FEC_DIS_AUTO_MIN_E82X,
ICE_FW_FEC_DIS_AUTO_PATCH_E82X);
}
/**
* ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
* @pi: port information structure
* @cfg: PHY configuration data to set FEC mode
* @fec: FEC mode to configure
*/
enum ice_status
ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
enum ice_fec_mode fec)
{
struct ice_aqc_get_phy_caps_data *pcaps;
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw;
if (!pi || !cfg)
return ICE_ERR_BAD_PTR;
hw = pi->hw;
pcaps = (struct ice_aqc_get_phy_caps_data *)
ice_malloc(hw, sizeof(*pcaps));
if (!pcaps)
return ICE_ERR_NO_MEMORY;
status = ice_aq_get_phy_caps(pi, false,
(ice_fw_supports_report_dflt_cfg(hw) ?
ICE_AQC_REPORT_DFLT_CFG :
ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps,
NULL);
if (status)
goto out;
cfg->caps |= (pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC);
cfg->link_fec_opt = pcaps->link_fec_options;
switch (fec) {
case ICE_FEC_BASER:
/* Clear RS bits, and AND BASE-R ability
* bits and OR request bits.
*/
cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
ICE_AQC_PHY_FEC_25G_KR_REQ;
break;
case ICE_FEC_RS:
/* Clear BASE-R bits, and AND RS ability
* bits and OR request bits.
*/
cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
ICE_AQC_PHY_FEC_25G_RS_544_REQ;
break;
case ICE_FEC_NONE:
/* Clear all FEC option bits. */
cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
break;
case ICE_FEC_DIS_AUTO:
/* Set No FEC and auto FEC */
if (!ice_fw_supports_fec_dis_auto(hw)) {
status = ICE_ERR_NOT_SUPPORTED;
goto out;
}
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_DIS;
/* fall-through */
case ICE_FEC_AUTO:
/* AND auto FEC bit, and all caps bits. */
cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
cfg->link_fec_opt |= pcaps->link_fec_options;
break;
default:
status = ICE_ERR_PARAM;
break;
}
if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw) &&
!ice_fw_supports_report_dflt_cfg(pi->hw)) {
struct ice_link_default_override_tlv tlv;
if (ice_get_link_default_override(&tlv, pi))
goto out;
if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
(tlv.options & ICE_LINK_OVERRIDE_EN))
cfg->link_fec_opt = tlv.fec_options;
}
out:
ice_free(hw, pcaps);
return status;
}
/**
* ice_apply_saved_fec_req_to_cfg -- Write saved user FEC mode to cfg data
* @sc: device private structure
* @cfg: new PHY config data to be modified
*
* Applies user setting for FEC mode to PHY config struct. It uses the data
* from pcaps to check if the saved settings are invalid and uses the pcaps
* data instead if they are invalid.
*/
int
ice_apply_saved_fec_req_to_cfg(struct ice_softc *sc,
struct ice_aqc_set_phy_cfg_data *cfg)
{
struct ice_port_info *pi = sc->hw.port_info;
enum ice_status status;
cfg->caps &= ~ICE_AQC_PHY_EN_AUTO_FEC;
status = ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
if (status)
return (EIO);
return (0);
}
/**
* ice_apply_saved_fc_req_to_cfg -- Write saved user flow control mode to cfg data
* @pi: port info struct
* @cfg: new PHY config data to be modified
*
* Applies user setting for flow control mode to PHY config struct. There are
* no invalid flow control mode settings; if there are, then this function
* treats them like "ICE_FC_NONE".
*/
void
ice_apply_saved_fc_req_to_cfg(struct ice_port_info *pi,
struct ice_aqc_set_phy_cfg_data *cfg)
{
cfg->caps &= ~(ICE_AQ_PHY_ENA_TX_PAUSE_ABILITY |
ICE_AQ_PHY_ENA_RX_PAUSE_ABILITY);
switch (pi->phy.curr_user_fc_req) {
case ICE_FC_FULL:
cfg->caps |= ICE_AQ_PHY_ENA_TX_PAUSE_ABILITY |
ICE_AQ_PHY_ENA_RX_PAUSE_ABILITY;
break;
case ICE_FC_RX_PAUSE:
cfg->caps |= ICE_AQ_PHY_ENA_RX_PAUSE_ABILITY;
break;
case ICE_FC_TX_PAUSE:
cfg->caps |= ICE_AQ_PHY_ENA_TX_PAUSE_ABILITY;
break;
default:
/* ICE_FC_NONE */
break;
}
}
/**
* ice_caps_to_fc_mode
* @caps: PHY capabilities
*
* Convert PHY FC capabilities to ice FC mode
*/
enum ice_fc_mode
ice_caps_to_fc_mode(uint8_t caps)
{
if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
return ICE_FC_FULL;
if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
return ICE_FC_TX_PAUSE;
if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
return ICE_FC_RX_PAUSE;
return ICE_FC_NONE;
}
/**
* ice_caps_to_fec_mode
* @caps: PHY capabilities
* @fec_options: Link FEC options
*
* Convert PHY FEC capabilities to ice FEC mode
*/
enum ice_fec_mode
ice_caps_to_fec_mode(uint8_t caps, uint8_t fec_options)
{
if (caps & ICE_AQC_PHY_EN_AUTO_FEC) {
if (fec_options & ICE_AQC_PHY_FEC_DIS)
return ICE_FEC_DIS_AUTO;
else
return ICE_FEC_AUTO;
}
if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
ICE_AQC_PHY_FEC_25G_KR_REQ))
return ICE_FEC_BASER;
if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
ICE_AQC_PHY_FEC_25G_RS_544_REQ |
ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
return ICE_FEC_RS;
return ICE_FEC_NONE;
}
/**
* ice_aq_set_phy_cfg
* @hw: pointer to the HW struct
* @pi: port info structure of the interested logical port
* @cfg: structure with PHY configuration data to be set
* @cd: pointer to command details structure or NULL
*
* Set the various PHY configuration parameters supported on the Port.
* One or more of the Set PHY config parameters may be ignored in an MFP
* mode as the PF may not have the privilege to set some of the PHY Config
* parameters. This status will be indicated by the command response (0x0601).
*/
enum ice_status
ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
enum ice_status status;
if (!cfg)
return ICE_ERR_PARAM;
/* Ensure that only valid bits of cfg->caps can be turned on. */
if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
DNPRINTF(ICE_DBG_PHY, "%s: Invalid bit is set in "
"ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
__func__, cfg->caps);
cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
}
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
desc.params.set_phy.lport_num = pi->lport;
desc.flags |= htole16(ICE_AQ_FLAG_RD);
DNPRINTF(ICE_DBG_LINK, "set phy cfg\n");
DNPRINTF(ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
(unsigned long long)le64toh(cfg->phy_type_low));
DNPRINTF(ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
(unsigned long long)le64toh(cfg->phy_type_high));
DNPRINTF(ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
DNPRINTF(ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
cfg->low_power_ctrl_an);
DNPRINTF(ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
DNPRINTF(ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
DNPRINTF(ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
cfg->link_fec_opt);
status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
status = ICE_SUCCESS;
if (!status)
pi->phy.curr_user_phy_cfg = *cfg;
return status;
}
/**
* ice_apply_saved_phy_cfg -- Re-apply user PHY config settings
* @sc: device private structure
* @settings: which settings to apply
*
* Applies user settings for advertised speeds, FEC mode, and flow
* control mode to a PHY config struct; it uses the data from pcaps
* to check if the saved settings are invalid and uses the pcaps
* data instead if they are invalid.
*
* For things like sysctls where only one setting needs to be
* updated, the bitmap allows the caller to specify which setting
* to update.
*/
int
ice_apply_saved_phy_cfg(struct ice_softc *sc, uint8_t settings)
{
struct ice_aqc_set_phy_cfg_data cfg = { 0 };
struct ice_port_info *pi = sc->hw.port_info;
struct ice_aqc_get_phy_caps_data pcaps = { 0 };
struct ice_hw *hw = &sc->hw;
uint64_t phy_low, phy_high;
enum ice_status status;
enum ice_fec_mode dflt_fec_mode;
uint16_t dflt_user_speed;
if (!settings || settings > ICE_APPLY_LS_FEC_FC) {
DNPRINTF(ICE_DBG_LINK, "%s: Settings out-of-bounds: %u\n",
__func__, settings);
return EINVAL;
}
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
&pcaps, NULL);
if (status != ICE_SUCCESS) {
printf("%s: ice_aq_get_phy_caps (ACTIVE) failed; "
"status %s, aq_err %s\n",
sc->sc_dev.dv_xname, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
phy_low = le64toh(pcaps.phy_type_low);
phy_high = le64toh(pcaps.phy_type_high);
/* Save off initial config parameters */
dflt_user_speed = ice_aq_phy_types_to_link_speeds(phy_low, phy_high);
dflt_fec_mode = ice_caps_to_fec_mode(pcaps.caps,
pcaps.link_fec_options);
/* Setup new PHY config */
ice_copy_phy_caps_to_cfg(pi, &pcaps, &cfg);
/* On error, restore active configuration values */
if ((settings & ICE_APPLY_LS) &&
ice_apply_saved_phy_req_to_cfg(sc, &cfg)) {
pi->phy.curr_user_speed_req = dflt_user_speed;
cfg.phy_type_low = pcaps.phy_type_low;
cfg.phy_type_high = pcaps.phy_type_high;
}
if ((settings & ICE_APPLY_FEC) &&
ice_apply_saved_fec_req_to_cfg(sc, &cfg)) {
pi->phy.curr_user_fec_req = dflt_fec_mode;
}
if (settings & ICE_APPLY_FC) {
/* No real error indicators for this process,
* so we'll just have to assume it works. */
ice_apply_saved_fc_req_to_cfg(pi, &cfg);
}
/* Enable link and re-negotiate it */
cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
if (status != ICE_SUCCESS) {
/* Don't indicate failure if there's no media in the port.
* The settings have been saved and will apply when media
* is inserted.
*/
if ((status == ICE_ERR_AQ_ERROR) &&
(hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)) {
DPRINTF("%s: Setting will be applied when media is "
"inserted\n", __func__);
return (0);
} else {
printf("%s: ice_aq_set_phy_cfg failed; status %s, "
"aq_err %s\n", sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
}
return (0);
}
/**
* ice_aq_set_link_restart_an
* @pi: pointer to the port information structure
* @ena_link: if true: enable link, if false: disable link
* @cd: pointer to command details structure or NULL
*
* Sets up the link and restarts the Auto-Negotiation over the link.
*/
enum ice_status
ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
struct ice_sq_cd *cd)
{
enum ice_status status = ICE_ERR_AQ_ERROR;
struct ice_aqc_restart_an *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.restart_an;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
cmd->lport_num = pi->lport;
if (ena_link)
cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
else
cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
status = ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
if (status)
return status;
if (ena_link)
pi->phy.curr_user_phy_cfg.caps |= ICE_AQC_PHY_EN_LINK;
else
pi->phy.curr_user_phy_cfg.caps &= ~ICE_AQC_PHY_EN_LINK;
return ICE_SUCCESS;
}
/**
* ice_set_link -- Set up/down link on phy
* @sc: device private structure
* @enabled: link status to set up
*
* This should be called when change of link status is needed.
*/
void
ice_set_link(struct ice_softc *sc, bool enabled)
{
struct ice_hw *hw = &sc->hw;
enum ice_status status;
if (ice_driver_is_detaching(sc))
return;
if (ice_test_state(&sc->state, ICE_STATE_NO_MEDIA))
return;
if (enabled)
ice_apply_saved_phy_cfg(sc, ICE_APPLY_LS_FEC_FC);
else {
status = ice_aq_set_link_restart_an(hw->port_info, false, NULL);
if (status != ICE_SUCCESS) {
if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
printf("%s: Link control not enabled in "
"current device mode\n",
sc->sc_dev.dv_xname);
else
printf("%s: could not restart link: status %s, "
"aq_err %s\n", sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
} else
sc->link_up = false;
}
}
int
ice_up(struct ice_softc *sc)
{
struct ifnet *ifp = &sc->sc_ac.ac_if;
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_rx_queue *rxq;
struct ice_tx_queue *txq;
struct ifiqueue *ifiq;
struct ice_intr_vector *iv;
int i, err;
ice_update_laa_mac(sc);
/* Initialize software Tx tracking values */
ice_init_tx_tracking(&sc->pf_vsi);
for (i = 0, rxq = vsi->rx_queues; i < vsi->num_rx_queues; i++, rxq++) {
ice_rxfill(sc, rxq);
/* wire everything together */
iv = &sc->sc_vectors[i];
iv->iv_rxq = rxq;
rxq->irqv = iv;
ifiq = ifp->if_iqs[i];
ifiq->ifiq_softc = rxq;
rxq->rxq_ifiq = ifiq;
}
for (i = 0, txq = vsi->tx_queues; i < vsi->num_tx_queues; i++, txq++) {
/* wire everything together */
iv = &sc->sc_vectors[i];
iv->iv_txq = txq;
txq->irqv = iv;
}
err = ice_cfg_vsi_for_tx(&sc->pf_vsi);
if (err) {
printf("%s: Unable to configure the main VSI for Tx: err %d\n",
sc->sc_dev.dv_xname, err);
return err;
}
err = ice_cfg_vsi_for_rx(&sc->pf_vsi);
if (err) {
printf("%s: Unable to configure the main VSI for Rx: err %d\n",
sc->sc_dev.dv_xname, err);
goto err_cleanup_tx;
}
err = ice_control_all_rx_queues(&sc->pf_vsi, true);
if (err) {
printf("%s: Could not enable Rx rings: err %d\n",
sc->sc_dev.dv_xname, err);
goto err_cleanup_tx;
}
err = ice_cfg_pf_default_mac_filters(sc);
if (err) {
printf("%s: Unable to configure default MAC filters: %d\n",
sc->sc_dev.dv_xname, err);
goto err_stop_rx;
}
ice_configure_all_rxq_interrupts(&sc->pf_vsi);
ice_configure_rx_itr(&sc->pf_vsi);
/* Configure promiscuous mode */
ice_if_promisc_set(sc);
if (!ice_testandclear_state(&sc->state, ICE_STATE_FIRST_INIT_LINK) &&
(!sc->link_up && ((ifp->if_flags & IFF_UP) ||
ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN))))
ice_set_link(sc, true);
/* Enable Rx queue interrupts */
for (i = 0; i < vsi->num_rx_queues; i++) {
int v = vsi->rx_queues[i].irqv->iv_qid + 1;
ice_enable_intr(&sc->hw, v);
}
timeout_add_nsec(&sc->sc_admin_timer, SEC_TO_NSEC(1));
ifp->if_flags |= IFF_RUNNING;
ice_set_state(&sc->state, ICE_STATE_DRIVER_INITIALIZED);
return 0;
err_stop_rx:
ice_control_all_rx_queues(&sc->pf_vsi, false);
err_cleanup_tx:
ice_vsi_disable_tx(&sc->pf_vsi);
return err;
}
/**
* ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry
* @list_head: head of rule list
* @f_info: rule information
*
* Helper function to search for a unicast rule entry - this is to be used
* to remove unicast MAC filter that is not shared with other VSIs on the
* PF switch.
*
* Returns pointer to entry storing the rule if found
*/
struct ice_fltr_mgmt_list_entry *
ice_find_ucast_rule_entry(struct ice_fltr_mgmt_list_head *list_head,
struct ice_fltr_info *f_info)
{
struct ice_fltr_mgmt_list_entry *list_itr;
TAILQ_FOREACH(list_itr, list_head, list_entry) {
if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
sizeof(f_info->l_data)) &&
f_info->fwd_id.hw_vsi_id ==
list_itr->fltr_info.fwd_id.hw_vsi_id &&
f_info->flag == list_itr->fltr_info.flag)
return list_itr;
}
return NULL;
}
/**
* ice_remove_mac_rule - remove a MAC based filter rule
* @hw: pointer to the hardware structure
* @m_list: list of MAC addresses and forwarding information
* @recp_list: list from which function remove MAC address
*
* This function removes either a MAC filter rule or a specific VSI from a
* VSI list for a multicast MAC address.
*
* Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by
* ice_add_mac. Caller should be aware that this call will only work if all
* the entries passed into m_list were added previously. It will not attempt to
* do a partial remove of entries that were found.
*/
enum ice_status
ice_remove_mac_rule(struct ice_hw *hw, struct ice_fltr_list_head *m_list,
struct ice_sw_recipe *recp_list)
{
struct ice_fltr_list_entry *list_itr, *tmp;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
if (!m_list)
return ICE_ERR_PARAM;
rule_lock = &recp_list->filt_rule_lock;
TAILQ_FOREACH_SAFE(list_itr, m_list, list_entry, tmp) {
enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
uint8_t *add = &list_itr->fltr_info.l_data.mac.mac_addr[0];
uint16_t vsi_handle;
if (l_type != ICE_SW_LKUP_MAC)
return ICE_ERR_PARAM;
vsi_handle = list_itr->fltr_info.vsi_handle;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
list_itr->fltr_info.fwd_id.hw_vsi_id =
hw->vsi_ctx[vsi_handle]->vsi_num;
if (!ETHER_IS_MULTICAST(add) && !hw->umac_shared) {
/* Don't remove the unicast address that belongs to
* another VSI on the switch, since it is not being
* shared...
*/
#if 0
ice_acquire_lock(rule_lock);
#endif
if (!ice_find_ucast_rule_entry(&recp_list->filt_rules,
&list_itr->fltr_info)) {
#if 0
ice_release_lock(rule_lock);
#endif
return ICE_ERR_DOES_NOT_EXIST;
}
#if 0
ice_release_lock(rule_lock);
#endif
}
list_itr->status = ice_remove_rule_internal(hw, recp_list,
list_itr);
if (list_itr->status)
return list_itr->status;
}
return ICE_SUCCESS;
}
/**
* ice_remove_mac - remove a MAC address based filter rule
* @hw: pointer to the hardware structure
* @m_list: list of MAC addresses and forwarding information
*
*/
enum ice_status
ice_remove_mac(struct ice_hw *hw, struct ice_fltr_list_head *m_list)
{
struct ice_sw_recipe *recp_list;
recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
return ice_remove_mac_rule(hw, m_list, recp_list);
}
/**
* ice_remove_vsi_mac_filter - Remove a MAC address filter for a VSI
* @vsi: the VSI to add the filter for
* @addr: MAC address to remove a filter for
*
* Remove a MAC address filter from a given VSI. This is a wrapper around
* ice_remove_mac to simplify the interface. First, it only accepts a single
* address, so we don't have to mess around with the list setup in other
* functions. Second, it ignores the ICE_ERR_DOES_NOT_EXIST error, so that
* callers don't need to worry about attempting to remove filters which
* haven't yet been added.
*/
int
ice_remove_vsi_mac_filter(struct ice_vsi *vsi, uint8_t *addr)
{
struct ice_softc *sc = vsi->sc;
struct ice_fltr_list_head mac_addr_list;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
int err = 0;
TAILQ_INIT(&mac_addr_list);
err = ice_add_mac_to_list(vsi, &mac_addr_list, addr, ICE_FWD_TO_VSI);
if (err)
goto free_mac_list;
status = ice_remove_mac(hw, &mac_addr_list);
if (status && status != ICE_ERR_DOES_NOT_EXIST) {
DPRINTF("%s: failed to remove a filter for MAC %s, "
"err %s aq_err %s\n", __func__,
ether_sprintf(addr), ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
err = EIO;
}
free_mac_list:
ice_free_fltr_list(&mac_addr_list);
return err;
}
/**
* ice_rm_pf_default_mac_filters - Remove default unicast and broadcast addrs
* @sc: device softc structure
*
* Remove the default unicast and broadcast filters from the PF VSI.
*/
int
ice_rm_pf_default_mac_filters(struct ice_softc *sc)
{
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_hw *hw = &sc->hw;
int err;
/* Remove the LAN MAC address */
err = ice_remove_vsi_mac_filter(vsi, hw->port_info->mac.lan_addr);
if (err)
return err;
/* Remove the broadcast address */
err = ice_remove_vsi_mac_filter(vsi, etherbroadcastaddr);
if (err)
return (EIO);
return (0);
}
/**
* ice_flush_rxq_interrupts - Unconfigure Hw Rx queues MSI-X interrupt cause
* @vsi: the VSI to configure
*
* Unset the CAUSE_ENA flag of the TQCTL register for each queue, then trigger
* a software interrupt on that cause. This is required as part of the Rx
* queue disable logic to dissociate the Rx queue from the interrupt.
*
* This function must be called prior to disabling Rx queues with
* ice_control_all_rx_queues, otherwise the Rx queue may not be disabled
* properly.
*/
void
ice_flush_rxq_interrupts(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
int i;
for (i = 0; i < vsi->num_rx_queues; i++) {
struct ice_rx_queue *rxq = &vsi->rx_queues[i];
uint32_t reg, val;
int v = rxq->irqv->iv_qid + 1;
int tries = 0;
/* Clear the CAUSE_ENA flag */
reg = vsi->rx_qmap[rxq->me];
val = ICE_READ(hw, QINT_RQCTL(reg));
val &= ~QINT_RQCTL_CAUSE_ENA_M;
ICE_WRITE(hw, QINT_RQCTL(reg), val);
ice_flush(hw);
/* Trigger a software interrupt to complete interrupt
* dissociation.
*/
sc->sw_intr[v] = -1;
ICE_WRITE(hw, GLINT_DYN_CTL(v),
GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
do {
int ret;
/* Sleep to allow interrupt processing to occur. */
ret = tsleep_nsec(&sc->sw_intr[v], 0, "iceswi",
USEC_TO_NSEC(1));
if (ret == 0 && sc->sw_intr[v] == 1) {
sc->sw_intr[v] = 0;
break;
}
tries++;
} while (tries < 10);
if (tries == 10)
DPRINTF("%s: missed software interrupt\n", __func__);
}
}
/**
* ice_flush_txq_interrupts - Unconfigure Hw Tx queues MSI-X interrupt cause
* @vsi: the VSI to configure
*
* Unset the CAUSE_ENA flag of the TQCTL register for each queue, then trigger
* a software interrupt on that cause. This is required as part of the Tx
* queue disable logic to dissociate the Tx queue from the interrupt.
*
* This function must be called prior to ice_vsi_disable_tx, otherwise
* the Tx queue disable may not complete properly.
*/
void
ice_flush_txq_interrupts(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
int i;
for (i = 0; i < vsi->num_tx_queues; i++) {
struct ice_tx_queue *txq = &vsi->tx_queues[i];
uint32_t reg, val;
int v = txq->irqv->iv_qid + 1;
int tries = 0;
/* Clear the CAUSE_ENA flag */
reg = vsi->tx_qmap[txq->me];
val = ICE_READ(hw, QINT_TQCTL(reg));
val &= ~QINT_TQCTL_CAUSE_ENA_M;
ICE_WRITE(hw, QINT_TQCTL(reg), val);
ice_flush(hw);
/* Trigger a software interrupt to complete interrupt
* dissociation.
*/
sc->sw_intr[v] = -1;
ICE_WRITE(hw, GLINT_DYN_CTL(v),
GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
do {
int ret;
/* Sleep to allow interrupt processing to occur. */
ret = tsleep_nsec(&sc->sw_intr[v], 0, "iceswi",
USEC_TO_NSEC(1));
if (ret == 0 && sc->sw_intr[v] == 1) {
sc->sw_intr[v] = 0;
break;
}
tries++;
} while (tries < 10);
if (tries == 10)
DPRINTF("%s: missed software interrupt\n", __func__);
}
}
int
ice_down(struct ice_softc *sc)
{
struct ifnet *ifp = &sc->sc_ac.ac_if;
timeout_del(&sc->sc_admin_timer);
ifp->if_flags &= ~IFF_RUNNING;
#if 0
ASSERT_CTX_LOCKED(sc);
#endif
if (!ice_testandclear_state(&sc->state, ICE_STATE_DRIVER_INITIALIZED))
return 0;
if (ice_test_state(&sc->state, ICE_STATE_RESET_FAILED)) {
printf("%s: request to stop interface cannot be completed "
"as the device failed to reset\n", sc->sc_dev.dv_xname);
return ENODEV;
}
if (ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) {
DPRINTF("%s: request to stop interface while device is "
"prepared for impending reset\n", __func__);
return EBUSY;
}
#if 0
ice_rdma_pf_stop(sc);
#endif
/* Remove the MAC filters, stop Tx, and stop Rx. We don't check the
* return of these functions because there's nothing we can really do
* if they fail, and the functions already print error messages.
* Just try to shut down as much as we can.
*/
ice_rm_pf_default_mac_filters(sc);
/* Dissociate the Tx and Rx queues from the interrupts */
ice_flush_txq_interrupts(&sc->pf_vsi);
ice_flush_rxq_interrupts(&sc->pf_vsi);
/* Disable the Tx and Rx queues */
ice_vsi_disable_tx(&sc->pf_vsi);
ice_control_all_rx_queues(&sc->pf_vsi, false);
if (!ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN) &&
!(ifp->if_flags & IFF_UP) && sc->link_up)
ice_set_link(sc, false);
#if 0
if (sc->mirr_if && ice_test_state(&mif->state, ICE_STATE_SUBIF_NEEDS_REINIT)) {
ice_subif_if_stop(sc->mirr_if->subctx);
device_printf(sc->dev, "The subinterface also comes down and up after reset\n");
}
#endif
return 0;
}
int
ice_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ice_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
/* FALLTHROUGH */
case SIOCSIFFLAGS:
if (ISSET(ifp->if_flags, IFF_UP)) {
if (ISSET(ifp->if_flags, IFF_RUNNING))
error = ENETRESET;
else
error = ice_up(sc);
} else {
if (ISSET(ifp->if_flags, IFF_RUNNING))
error = ice_down(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
break;
default:
error = ether_ioctl(ifp, &sc->sc_ac, cmd, data);
break;
}
if (error == ENETRESET) {
error = 0;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
ice_down(sc);
error = ice_up(sc);
}
}
splx(s);
return error;
}
void
ice_start(struct ifqueue *ifq)
{
printf("%s\n", __func__);
}
void
ice_watchdog(struct ifnet * ifp)
{
printf("%s\n", __func__);
}
int
ice_media_change(struct ifnet *ifp)
{
printf("%s\n", __func__);
return ENXIO;
}
/**
* ice_get_phy_type_low - Get media associated with phy_type_low
* @phy_type_low: the low 64bits of phy_type from the AdminQ
*
* Given the lower 64bits of the phy_type from the hardware, return the
* ifm_active bit associated. Return IFM_INST_ANY when phy_type_low is unknown.
* Note that only one of ice_get_phy_type_low or ice_get_phy_type_high should
* be called. If phy_type_low is zero, call ice_phy_type_high.
*/
uint64_t
ice_get_phy_type_low(uint64_t phy_type_low)
{
switch (phy_type_low) {
case ICE_PHY_TYPE_LOW_100BASE_TX:
return IFM_100_TX;
#if 0
case ICE_PHY_TYPE_LOW_100M_SGMII:
return IFM_100_SGMII;
#endif
case ICE_PHY_TYPE_LOW_1000BASE_T:
return IFM_1000_T;
case ICE_PHY_TYPE_LOW_1000BASE_SX:
return IFM_1000_SX;
case ICE_PHY_TYPE_LOW_1000BASE_LX:
return IFM_1000_LX;
case ICE_PHY_TYPE_LOW_1000BASE_KX:
return IFM_1000_KX;
#if 0
case ICE_PHY_TYPE_LOW_1G_SGMII:
return IFM_1000_SGMII;
#endif
case ICE_PHY_TYPE_LOW_2500BASE_T:
return IFM_2500_T;
#if 0
case ICE_PHY_TYPE_LOW_2500BASE_X:
return IFM_2500_X;
#endif
case ICE_PHY_TYPE_LOW_2500BASE_KX:
return IFM_2500_KX;
case ICE_PHY_TYPE_LOW_5GBASE_T:
return IFM_5000_T;
#if 0
case ICE_PHY_TYPE_LOW_5GBASE_KR:
return IFM_5000_KR;
#endif
case ICE_PHY_TYPE_LOW_10GBASE_T:
return IFM_10G_T;
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
return IFM_10G_SFP_CU;
case ICE_PHY_TYPE_LOW_10GBASE_SR:
return IFM_10G_SR;
case ICE_PHY_TYPE_LOW_10GBASE_LR:
return IFM_10G_LR;
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
return IFM_10G_KR;
case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
return IFM_10G_AOC;
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
return IFM_10G_SFI;
#if 0
case ICE_PHY_TYPE_LOW_25GBASE_T:
return IFM_25G_T;
#endif
case ICE_PHY_TYPE_LOW_25GBASE_CR:
return IFM_25G_CR;
#if 0
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
return IFM_25G_CR_S;
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
return IFM_25G_CR1;
#endif
case ICE_PHY_TYPE_LOW_25GBASE_SR:
return IFM_25G_SR;
case ICE_PHY_TYPE_LOW_25GBASE_LR:
return IFM_25G_LR;
case ICE_PHY_TYPE_LOW_25GBASE_KR:
return IFM_25G_KR;
#if 0
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
return IFM_25G_KR_S;
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
return IFM_25G_KR1;
#endif
case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
return IFM_25G_AOC;
#if 0
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
return IFM_25G_AUI;
#endif
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
return IFM_40G_CR4;
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
return IFM_40G_SR4;
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
return IFM_40G_LR4;
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
return IFM_40G_KR4;
#if 0
case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
return IFM_40G_XLAUI_AC;
case ICE_PHY_TYPE_LOW_40G_XLAUI:
return IFM_40G_XLAUI;
#endif
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
return IFM_50G_CR2;
#if 0
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
return IFM_50G_SR2;
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
return IFM_50G_LR2;
#endif
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
return IFM_50G_KR2;
#if 0
case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
return IFM_50G_LAUI2_AC;
case ICE_PHY_TYPE_LOW_50G_LAUI2:
return IFM_50G_LAUI2;
case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
return IFM_50G_AUI2_AC;
case ICE_PHY_TYPE_LOW_50G_AUI2:
return IFM_50G_AUI2;
case ICE_PHY_TYPE_LOW_50GBASE_CP:
return IFM_50G_CP;
case ICE_PHY_TYPE_LOW_50GBASE_SR:
return IFM_50G_SR;
case ICE_PHY_TYPE_LOW_50GBASE_FR:
return IFM_50G_FR;
case ICE_PHY_TYPE_LOW_50GBASE_LR:
return IFM_50G_LR;
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
return IFM_50G_KR_PAM4;
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
return IFM_50G_AUI1_AC;
case ICE_PHY_TYPE_LOW_50G_AUI1:
return IFM_50G_AUI1;
#endif
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
return IFM_100G_CR4;
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
return IFM_100G_SR4;
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
return IFM_100G_LR4;
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
return IFM_100G_KR4;
#if 0
case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
return IFM_100G_CAUI4_AC;
case ICE_PHY_TYPE_LOW_100G_CAUI4:
return IFM_100G_CAUI4;
case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
return IFM_100G_AUI4_AC;
case ICE_PHY_TYPE_LOW_100G_AUI4:
return IFM_100G_AUI4;
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
return IFM_100G_CR_PAM4;
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
return IFM_100G_KR_PAM4;
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
return IFM_100G_CP2;
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
return IFM_100G_SR2;
case ICE_PHY_TYPE_LOW_100GBASE_DR:
return IFM_100G_DR;
#endif
default:
return IFM_INST_ANY;
}
}
/**
* ice_get_phy_type_high - Get media associated with phy_type_high
* @phy_type_high: the upper 64bits of phy_type from the AdminQ
*
* Given the upper 64bits of the phy_type from the hardware, return the
* ifm_active bit associated. Return IFM_INST_ANY on an unknown value. Note
* that only one of ice_get_phy_type_low or ice_get_phy_type_high should be
* called. If phy_type_high is zero, call ice_get_phy_type_low.
*/
uint64_t
ice_get_phy_type_high(uint64_t phy_type_high)
{
switch (phy_type_high) {
#if 0
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
return IFM_100G_KR2_PAM4;
case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
return IFM_100G_CAUI2_AC;
case ICE_PHY_TYPE_HIGH_100G_CAUI2:
return IFM_100G_CAUI2;
case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
return IFM_100G_AUI2_AC;
case ICE_PHY_TYPE_HIGH_100G_AUI2:
return IFM_100G_AUI2;
#endif
default:
return IFM_INST_ANY;
}
}
void
ice_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct ice_softc *sc = ifp->if_softc;
struct ice_link_status *li = &sc->hw.port_info->phy.link_info;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
/* Never report link up or media types when in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return;
if (!sc->link_up)
return;
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= IFM_FDX;
if (li->phy_type_low)
ifmr->ifm_active |= ice_get_phy_type_low(li->phy_type_low);
else if (li->phy_type_high)
ifmr->ifm_active |= ice_get_phy_type_high(li->phy_type_high);
/* Report flow control status as well */
if (li->an_info & ICE_AQ_LINK_PAUSE_TX)
ifmr->ifm_active |= IFM_ETH_TXPAUSE;
if (li->an_info & ICE_AQ_LINK_PAUSE_RX)
ifmr->ifm_active |= IFM_ETH_RXPAUSE;
}
/**
* ice_add_media_types - Add supported media types to the media structure
* @sc: ice private softc structure
* @media: ifmedia structure to setup
*
* Looks up the supported phy types, and initializes the various media types
* available.
*
* @pre this function must be protected from being called while another thread
* is accessing the ifmedia types.
*/
enum ice_status
ice_add_media_types(struct ice_softc *sc, struct ifmedia *media)
{
struct ice_aqc_get_phy_caps_data pcaps = { 0 };
struct ice_port_info *pi = sc->hw.port_info;
enum ice_status status;
uint64_t phy_low, phy_high;
int bit;
#if 0
ASSERT_CFG_LOCKED(sc);
#endif
/* the maximum possible media type index is 511. We probably don't
* need most of this space, but this ensures future compatibility when
* additional media types are used.
*/
ice_declare_bitmap(already_added, 511);
/* Remove all previous media types */
ifmedia_delete_instance(media, IFM_INST_ANY);
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
&pcaps, NULL);
if (status != ICE_SUCCESS) {
printf("%s: ice_aq_get_phy_caps (ACTIVE) failed; status %s, aq_err %s\n",
sc->sc_dev.dv_xname, ice_status_str(status),
ice_aq_str(sc->hw.adminq.sq_last_status));
return (status);
}
/* make sure the added bitmap is zero'd */
memset(already_added, 0, sizeof(already_added));
phy_low = le64toh(pcaps.phy_type_low);
for (bit = 0; bit < 64; bit++) {
uint64_t type = BIT_ULL(bit);
uint64_t ostype;
if ((phy_low & type) == 0)
continue;
/* get the OS media type */
ostype = ice_get_phy_type_low(type);
/* don't bother adding the unknown type */
if (ostype == IFM_INST_ANY)
continue;
/* only add each media type to the list once */
if (ice_is_bit_set(already_added, ostype))
continue;
ifmedia_add(media, IFM_ETHER | ostype, 0, NULL);
ice_set_bit(ostype, already_added);
}
phy_high = le64toh(pcaps.phy_type_high);
for (bit = 0; bit < 64; bit++) {
uint64_t type = BIT_ULL(bit);
uint64_t ostype;
if ((phy_high & type) == 0)
continue;
/* get the OS media type */
ostype = ice_get_phy_type_high(type);
/* don't bother adding the unknown type */
if (ostype == IFM_INST_ANY)
continue;
/* only add each media type to the list once */
if (ice_is_bit_set(already_added, ostype))
continue;
ifmedia_add(media, IFM_ETHER | ostype, 0, NULL);
ice_set_bit(ostype, already_added);
}
/* Use autoselect media by default */
ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(media, IFM_ETHER | IFM_AUTO);
return (ICE_SUCCESS);
}
/**
* ice_is_fw_health_report_supported
* @hw: pointer to the hardware structure
*
* Return true if firmware supports health status reports,
* false otherwise
*/
bool
ice_is_fw_health_report_supported(struct ice_hw *hw)
{
if (hw->api_maj_ver > ICE_FW_API_HEALTH_REPORT_MAJ)
return true;
if (hw->api_maj_ver == ICE_FW_API_HEALTH_REPORT_MAJ) {
if (hw->api_min_ver > ICE_FW_API_HEALTH_REPORT_MIN)
return true;
if (hw->api_min_ver == ICE_FW_API_HEALTH_REPORT_MIN &&
hw->api_patch >= ICE_FW_API_HEALTH_REPORT_PATCH)
return true;
}
return false;
}
/**
* ice_init_device_features - Init device driver features
* @sc: driver softc structure
*
* @pre assumes that the function capabilities bits have been set up by
* ice_init_hw().
*/
void
ice_init_device_features(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
/* Set capabilities that all devices support */
ice_set_bit(ICE_FEATURE_SRIOV, sc->feat_cap);
ice_set_bit(ICE_FEATURE_RSS, sc->feat_cap);
ice_set_bit(ICE_FEATURE_RDMA, sc->feat_cap);
ice_set_bit(ICE_FEATURE_LENIENT_LINK_MODE, sc->feat_cap);
ice_set_bit(ICE_FEATURE_LINK_MGMT_VER_1, sc->feat_cap);
ice_set_bit(ICE_FEATURE_LINK_MGMT_VER_2, sc->feat_cap);
ice_set_bit(ICE_FEATURE_HEALTH_STATUS, sc->feat_cap);
ice_set_bit(ICE_FEATURE_FW_LOGGING, sc->feat_cap);
ice_set_bit(ICE_FEATURE_HAS_PBA, sc->feat_cap);
ice_set_bit(ICE_FEATURE_DCB, sc->feat_cap);
ice_set_bit(ICE_FEATURE_TX_BALANCE, sc->feat_cap);
/* Disable features due to hardware limitations... */
if (!hw->func_caps.common_cap.rss_table_size)
ice_clear_bit(ICE_FEATURE_RSS, sc->feat_cap);
if (!hw->func_caps.common_cap.iwarp /* || !ice_enable_irdma */)
ice_clear_bit(ICE_FEATURE_RDMA, sc->feat_cap);
if (!hw->func_caps.common_cap.dcb)
ice_clear_bit(ICE_FEATURE_DCB, sc->feat_cap);
/* Disable features due to firmware limitations... */
if (!ice_is_fw_health_report_supported(hw))
ice_clear_bit(ICE_FEATURE_HEALTH_STATUS, sc->feat_cap);
if (!ice_fwlog_supported(hw))
ice_clear_bit(ICE_FEATURE_FW_LOGGING, sc->feat_cap);
if (hw->fwlog_cfg.options & ICE_FWLOG_OPTION_IS_REGISTERED) {
if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_FW_LOGGING))
ice_set_bit(ICE_FEATURE_FW_LOGGING, sc->feat_en);
else
ice_fwlog_unregister(hw);
}
#if 0
/* Disable capabilities not supported by the OS */
ice_disable_unsupported_features(sc->feat_cap);
/* RSS is always enabled for iflib */
if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_RSS))
ice_set_bit(ICE_FEATURE_RSS, sc->feat_en);
/* Disable features based on sysctl settings */
if (!ice_tx_balance_en)
ice_clear_bit(ICE_FEATURE_TX_BALANCE, sc->feat_cap);
#endif
if (hw->dev_caps.supported_sensors & ICE_SENSOR_SUPPORT_E810_INT_TEMP) {
ice_set_bit(ICE_FEATURE_TEMP_SENSOR, sc->feat_cap);
ice_set_bit(ICE_FEATURE_TEMP_SENSOR, sc->feat_en);
}
}
/**
* ice_aq_send_driver_ver
* @hw: pointer to the HW struct
* @dv: driver's major, minor version
* @cd: pointer to command details structure or NULL
*
* Send the driver version (0x0002) to the firmware
*/
enum ice_status
ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
struct ice_sq_cd *cd)
{
struct ice_aqc_driver_ver *cmd;
struct ice_aq_desc desc;
uint16_t len;
cmd = &desc.params.driver_ver;
if (!dv)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
desc.flags |= htole16(ICE_AQ_FLAG_RD);
cmd->major_ver = dv->major_ver;
cmd->minor_ver = dv->minor_ver;
cmd->build_ver = dv->build_ver;
cmd->subbuild_ver = dv->subbuild_ver;
len = strlen(dv->driver_string);
return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
}
/**
* ice_send_version - Send driver version to firmware
* @sc: the device private softc
*
* Send the driver version to the firmware. This must be called as early as
* possible after ice_init_hw().
*/
int
ice_send_version(struct ice_softc *sc)
{
struct ice_driver_ver driver_version = {0};
struct ice_hw *hw = &sc->hw;
enum ice_status status;
driver_version.major_ver = ice_major_version;
driver_version.minor_ver = ice_minor_version;
driver_version.build_ver = ice_patch_version;
driver_version.subbuild_ver = ice_rc_version;
strlcpy((char *)driver_version.driver_string, ice_driver_version,
sizeof(driver_version.driver_string));
status = ice_aq_send_driver_ver(hw, &driver_version, NULL);
if (status) {
printf("%s: Unable to send driver version to firmware, "
"err %s aq_err %s\n", sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
return (0);
}
void
ice_reinit_hw(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
ice_deinit_hw(hw);
printf("%s: not implemented\n", __func__);
}
/**
* ice_cfg_tx_topo - Initialize new tx topology if available
* @hw: pointer to the HW struct
* @buf: pointer to Tx topology buffer
* @len: buffer size
*
* The function will apply the new Tx topology from the package buffer
* if available.
*/
enum ice_status
ice_cfg_tx_topo(struct ice_hw *hw, uint8_t *buf, uint32_t len)
{
#if 0
u8 *current_topo, *new_topo = NULL;
struct ice_run_time_cfg_seg *seg;
struct ice_buf_hdr *section;
struct ice_pkg_hdr *pkg_hdr;
enum ice_ddp_state state;
u16 i, size = 0, offset;
enum ice_status status;
u32 reg = 0;
u8 flags;
if (!buf || !len)
return ICE_ERR_PARAM;
/* Does FW support new Tx topology mode ? */
if (!hw->func_caps.common_cap.tx_sched_topo_comp_mode_en) {
ice_debug(hw, ICE_DBG_INIT, "FW doesn't support compatibility mode\n");
return ICE_ERR_NOT_SUPPORTED;
}
current_topo = (u8 *)ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
if (!current_topo)
return ICE_ERR_NO_MEMORY;
/* get the current Tx topology */
status = ice_get_set_tx_topo(hw, current_topo, ICE_AQ_MAX_BUF_LEN, NULL,
&flags, false);
ice_free(hw, current_topo);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Get current topology is failed\n");
return status;
}
/* Is default topology already applied ? */
if (!(flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) &&
hw->num_tx_sched_layers == 9) {
ice_debug(hw, ICE_DBG_INIT, "Loaded default topology\n");
/* Already default topology is loaded */
return ICE_ERR_ALREADY_EXISTS;
}
/* Is new topology already applied ? */
if ((flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) &&
hw->num_tx_sched_layers == 5) {
ice_debug(hw, ICE_DBG_INIT, "Loaded new topology\n");
/* Already new topology is loaded */
return ICE_ERR_ALREADY_EXISTS;
}
/* Is set topology issued already ? */
if (flags & ICE_AQC_TX_TOPO_FLAGS_ISSUED) {
ice_debug(hw, ICE_DBG_INIT, "Update tx topology was done by another PF\n");
/* add a small delay before exiting */
for (i = 0; i < 20; i++)
ice_msec_delay(100, true);
return ICE_ERR_ALREADY_EXISTS;
}
/* Change the topology from new to default (5 to 9) */
if (!(flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) &&
hw->num_tx_sched_layers == 5) {
ice_debug(hw, ICE_DBG_INIT, "Change topology from 5 to 9 layers\n");
goto update_topo;
}
pkg_hdr = (struct ice_pkg_hdr *)buf;
state = ice_verify_pkg(pkg_hdr, len);
if (state) {
ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
state);
return ICE_ERR_CFG;
}
/* find run time configuration segment */
seg = (struct ice_run_time_cfg_seg *)
ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE_RUN_TIME_CFG, pkg_hdr);
if (!seg) {
ice_debug(hw, ICE_DBG_INIT, "5 layer topology segment is missing\n");
return ICE_ERR_CFG;
}
if (LE32_TO_CPU(seg->buf_table.buf_count) < ICE_MIN_S_COUNT) {
ice_debug(hw, ICE_DBG_INIT, "5 layer topology segment count(%d) is wrong\n",
seg->buf_table.buf_count);
return ICE_ERR_CFG;
}
section = ice_pkg_val_buf(seg->buf_table.buf_array);
if (!section || LE32_TO_CPU(section->section_entry[0].type) !=
ICE_SID_TX_5_LAYER_TOPO) {
ice_debug(hw, ICE_DBG_INIT, "5 layer topology section type is wrong\n");
return ICE_ERR_CFG;
}
size = LE16_TO_CPU(section->section_entry[0].size);
offset = LE16_TO_CPU(section->section_entry[0].offset);
if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) {
ice_debug(hw, ICE_DBG_INIT, "5 layer topology section size is wrong\n");
return ICE_ERR_CFG;
}
/* make sure the section fits in the buffer */
if (offset + size > ICE_PKG_BUF_SIZE) {
ice_debug(hw, ICE_DBG_INIT, "5 layer topology buffer > 4K\n");
return ICE_ERR_CFG;
}
/* Get the new topology buffer */
new_topo = ((u8 *)section) + offset;
update_topo:
/* acquire global lock to make sure that set topology issued
* by one PF
*/
status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, ICE_RES_WRITE,
ICE_GLOBAL_CFG_LOCK_TIMEOUT);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to acquire global lock\n");
return status;
}
/* check reset was triggered already or not */
reg = rd32(hw, GLGEN_RSTAT);
if (reg & GLGEN_RSTAT_DEVSTATE_M) {
/* Reset is in progress, re-init the hw again */
ice_debug(hw, ICE_DBG_INIT, "Reset is in progress. layer topology might be applied already\n");
ice_check_reset(hw);
return ICE_SUCCESS;
}
/* set new topology */
status = ice_get_set_tx_topo(hw, new_topo, size, NULL, NULL, true);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Set tx topology is failed\n");
return status;
}
/* new topology is updated, delay 1 second before issuing the CORRER */
for (i = 0; i < 10; i++)
ice_msec_delay(100, true);
ice_reset(hw, ICE_RESET_CORER);
/* CORER will clear the global lock, so no explicit call
* required for release
*/
return ICE_SUCCESS;
#else
return ICE_ERR_NOT_IMPL;
#endif
}
/**
* pkg_ver_empty - Check if a package version is empty
* @pkg_ver: the package version to check
* @pkg_name: the package name to check
*
* Checks if the package version structure is empty. We consider a package
* version as empty if none of the versions are non-zero and the name string
* is null as well.
*
* This is used to check if the package version was initialized by the driver,
* as we do not expect an actual DDP package file to have a zero'd version and
* name.
*
* @returns true if the package version is valid, or false otherwise.
*/
bool
pkg_ver_empty(struct ice_pkg_ver *pkg_ver, uint8_t *pkg_name)
{
return (pkg_name[0] == '\0' &&
pkg_ver->major == 0 &&
pkg_ver->minor == 0 &&
pkg_ver->update == 0 &&
pkg_ver->draft == 0);
}
/**
* ice_active_pkg_version_str - Format active package version info into a buffer
* @hw: device hw structure
* @buf: string buffer to store name/version string
*
* Formats the name and version of the active DDP package info into a string
* buffer for use.
*/
void
ice_active_pkg_version_str(struct ice_hw *hw, char *buf, size_t bufsize)
{
char name_buf[ICE_PKG_NAME_SIZE];
/* If the active DDP package info is empty, use "None" */
if (pkg_ver_empty(&hw->active_pkg_ver, hw->active_pkg_name)) {
snprintf(buf, bufsize, "None");
return;
}
/*
* This should already be null-terminated, but since this is a raw
* value from an external source, strlcpy() into a new buffer to
* make sure.
*/
strlcpy(name_buf, (char *)hw->active_pkg_name, bufsize);
snprintf(buf, bufsize, "%s version %u.%u.%u.%u, track id 0x%08x",
name_buf,
hw->active_pkg_ver.major,
hw->active_pkg_ver.minor,
hw->active_pkg_ver.update,
hw->active_pkg_ver.draft,
hw->active_track_id);
}
/**
* ice_os_pkg_version_str - Format OS package version info into a buffer
* @hw: device hw structure
* @buf: string buffer to store name/version string
*
* Formats the name and version of the OS DDP package as found in the ice_ddp
* module into a string.
*
* @remark This will almost always be the same as the active package, but
* could be different in some cases. Use ice_active_pkg_version_str to get the
* version of the active DDP package.
*/
void
ice_os_pkg_version_str(struct ice_hw *hw, char *buf, size_t bufsize)
{
char name_buf[ICE_PKG_NAME_SIZE];
/* If the OS DDP package info is empty, use "None" */
if (pkg_ver_empty(&hw->pkg_ver, hw->pkg_name)) {
snprintf(buf, bufsize, "None");
return;
}
/*
* This should already be null-terminated, but since this is a raw
* value from an external source, strlcpy() into a new buffer to
* make sure.
*/
strlcpy(name_buf, (char *)hw->pkg_name, bufsize);
snprintf(buf, bufsize, "%s version %u.%u.%u.%u",
name_buf,
hw->pkg_ver.major,
hw->pkg_ver.minor,
hw->pkg_ver.update,
hw->pkg_ver.draft);
}
/**
* ice_is_init_pkg_successful - check if DDP init was successful
* @state: state of the DDP pkg after download
*/
bool
ice_is_init_pkg_successful(enum ice_ddp_state state)
{
switch (state) {
case ICE_DDP_PKG_SUCCESS:
case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
return true;
default:
return false;
}
}
/**
* ice_pkg_ver_compatible - Check if the package version is compatible
* @pkg_ver: the package version to check
*
* Compares the package version number to the driver's expected major/minor
* version. Returns an integer indicating whether the version is older, newer,
* or compatible with the driver.
*
* @returns 0 if the package version is compatible, -1 if the package version
* is older, and 1 if the package version is newer than the driver version.
*/
int
ice_pkg_ver_compatible(struct ice_pkg_ver *pkg_ver)
{
if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ)
return (1); /* newer */
else if ((pkg_ver->major == ICE_PKG_SUPP_VER_MAJ) &&
(pkg_ver->minor > ICE_PKG_SUPP_VER_MNR))
return (1); /* newer */
else if ((pkg_ver->major == ICE_PKG_SUPP_VER_MAJ) &&
(pkg_ver->minor == ICE_PKG_SUPP_VER_MNR))
return (0); /* compatible */
else
return (-1); /* older */
}
/**
* ice_log_pkg_init - Log a message about status of DDP initialization
* @sc: the device softc pointer
* @pkg_status: the status result of ice_copy_and_init_pkg
*
* Called by ice_load_pkg after an attempt to download the DDP package
* contents to the device to log an appropriate message for the system
* administrator about download status.
*
* @post ice_is_init_pkg_successful function is used to determine
* whether the download was successful and DDP package is compatible
* with this driver. Otherwise driver will transition to Safe Mode.
*/
void
ice_log_pkg_init(struct ice_softc *sc, enum ice_ddp_state pkg_status)
{
struct ice_hw *hw = &sc->hw;
char active_pkg[ICE_PKG_NAME_SIZE];
char os_pkg[ICE_PKG_NAME_SIZE];
ice_active_pkg_version_str(hw, active_pkg, sizeof(active_pkg));
ice_os_pkg_version_str(hw, os_pkg, sizeof(os_pkg));
switch (pkg_status) {
case ICE_DDP_PKG_SUCCESS:
DPRINTF("%s: The DDP package was successfully loaded: %s.\n",
__func__, active_pkg);
break;
case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
case ICE_DDP_PKG_ALREADY_LOADED:
DPRINTF("%s: DDP package already present on device: %s.\n",
__func__, active_pkg);
break;
case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
DPRINTF("%s: The driver could not load the DDP package file "
"because a compatible DDP package is already present on "
"the device. The device has package %s. The ice-ddp "
"file has package: %s.\n", __func__, active_pkg, os_pkg);
break;
case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
printf("%s: The device has a DDP package that is higher than "
"the driver supports. The device has package %s. The "
"driver requires version %d.%d.x.x. Entering Safe Mode.\n",
sc->sc_dev.dv_xname, active_pkg, ICE_PKG_SUPP_VER_MAJ,
ICE_PKG_SUPP_VER_MNR);
break;
case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
printf("%s: The device has a DDP package that is lower than "
"the driver supports. The device has package %s. The "
"driver requires version %d.%d.x.x. Entering Safe Mode.\n",
sc->sc_dev.dv_xname, active_pkg, ICE_PKG_SUPP_VER_MAJ,
ICE_PKG_SUPP_VER_MNR);
break;
case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
/*
* This assumes that the active_pkg_ver will not be
* initialized if the ice_ddp package version is not
* supported.
*/
if (pkg_ver_empty(&hw->active_pkg_ver, hw->active_pkg_name)) {
/* The ice_ddp version is not supported */
if (ice_pkg_ver_compatible(&hw->pkg_ver) > 0) {
DPRINTF("%s: The DDP package in the ice-ddp file "
"is higher than the driver supports. The "
"ice-ddp file has package %s. The driver "
"requires version %d.%d.x.x. Please use "
"an updated driver. Entering Safe Mode.\n",
__func__, os_pkg, ICE_PKG_SUPP_VER_MAJ,
ICE_PKG_SUPP_VER_MNR);
} else if (ice_pkg_ver_compatible(&hw->pkg_ver) < 0) {
DPRINTF("%s: The DDP package in the "
"ice-ddp file is lower than the driver "
"supports. The ice_ddp module has package "
"%s. The driver requires version "
"%d.%d.x.x. Please use an updated "
"ice-ddp file. Entering Safe Mode.\n",
__func__, os_pkg, ICE_PKG_SUPP_VER_MAJ,
ICE_PKG_SUPP_VER_MNR);
} else {
printf("%s: An unknown error occurred when "
"loading the DDP package. The ice-ddp "
"file has package %s. The device has "
"package %s. The driver requires version "
"%d.%d.x.x. Entering Safe Mode.\n",
sc->sc_dev.dv_xname, os_pkg, active_pkg,
ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
}
} else {
if (ice_pkg_ver_compatible(&hw->active_pkg_ver) > 0) {
DPRINTF("%s: The device has a DDP package "
"that is higher than the driver supports. "
"The device has package %s. The driver "
"requires version %d.%d.x.x. Entering "
"Safe Mode.\n", __func__, active_pkg,
ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
} else if (ice_pkg_ver_compatible(&hw->active_pkg_ver)
< 0) {
DPRINTF("%s: The device has a DDP package that "
"is lower than the driver supports. The "
"device has package %s. The driver "
"requires version %d.%d.x.x. "
"Entering Safe Mode.\n", __func__,
active_pkg, ICE_PKG_SUPP_VER_MAJ,
ICE_PKG_SUPP_VER_MNR);
} else {
printf("%s: An unknown error occurred when "
"loading the DDP package. The ice-ddp "
"file has package %s. The device has "
"package %s. The driver requires "
"version %d.%d.x.x. Entering Safe Mode.\n",
sc->sc_dev.dv_xname, os_pkg, active_pkg,
ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
}
}
break;
case ICE_DDP_PKG_INVALID_FILE:
printf("%s: The DDP package in the ice-ddp file is invalid. "
"Entering Safe Mode\n", sc->sc_dev.dv_xname);
break;
case ICE_DDP_PKG_FW_MISMATCH:
printf("%s: The firmware loaded on the device is not "
"compatible with the DDP package. "
"Please update the device's NVM. Entering safe mode.\n",
sc->sc_dev.dv_xname);
break;
case ICE_DDP_PKG_NO_SEC_MANIFEST:
case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
printf("%s: The DDP package in the ice-ddp file cannot be "
"loaded because its signature is not valid. Please "
"use a valid ice-ddp file. Entering Safe Mode.\n",
sc->sc_dev.dv_xname);
break;
case ICE_DDP_PKG_SECURE_VERSION_NBR_TOO_LOW:
printf("%s: The DDP package in the ice-ddp file could not "
"be loaded because its security revision is too low. "
"Please use an updated ice-ddp file. "
"Entering Safe Mode.\n", sc->sc_dev.dv_xname);
break;
case ICE_DDP_PKG_MANIFEST_INVALID:
case ICE_DDP_PKG_BUFFER_INVALID:
printf("%s: An error occurred on the device while loading "
"the DDP package. Entering Safe Mode.\n",
sc->sc_dev.dv_xname);
break;
default:
printf("%s: An unknown error occurred when loading the "
"DDP package. Entering Safe Mode.\n",
sc->sc_dev.dv_xname);
break;
}
}
/**
* ice_copy_and_init_pkg - initialize/download a copy of the package
* @hw: pointer to the hardware structure
* @buf: pointer to the package buffer
* @len: size of the package buffer
*
* This function copies the package buffer, and then calls ice_init_pkg() to
* initialize the copied package contents.
*
* The copying is necessary if the package buffer supplied is constant, or if
* the memory may disappear shortly after calling this function.
*
* If the package buffer resides in the data segment and can be modified, the
* caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
*
* However, if the package buffer needs to be copied first, such as when being
* read from a file, the caller should use ice_copy_and_init_pkg().
*
* This function will first copy the package buffer, before calling
* ice_init_pkg(). The caller is free to immediately destroy the original
* package buffer, as the new copy will be managed by this function and
* related routines.
*/
enum ice_ddp_state
ice_copy_and_init_pkg(struct ice_hw *hw, const uint8_t *buf, uint32_t len)
{
#if 0
enum ice_ddp_state state;
u8 *buf_copy;
if (!buf || !len)
return ICE_DDP_PKG_ERR;
buf_copy = (u8 *)ice_memdup(hw, buf, len, ICE_NONDMA_TO_NONDMA);
state = ice_init_pkg(hw, buf_copy, len);
if (!ice_is_init_pkg_successful(state)) {
/* Free the copy, since we failed to initialize the package */
ice_free(hw, buf_copy);
} else {
/* Track the copied pkg so we can free it later */
hw->pkg_copy = buf_copy;
hw->pkg_size = len;
}
return state;
#else
return ICE_DDP_PKG_ERR;
#endif
}
/**
* ice_load_pkg_file - Load the DDP package file using firmware_get
* @sc: device private softc
*
* Use firmware_get to load the DDP package memory and then request that
* firmware download the package contents and program the relevant hardware
* bits.
*
* This function makes a copy of the DDP package memory which is tracked in
* the ice_hw structure. The copy will be managed and released by
* ice_deinit_hw(). This allows the firmware reference to be immediately
* released using firmware_put.
*/
enum ice_status
ice_load_pkg_file(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
enum ice_ddp_state state;
uint8_t *pkg;
size_t pkg_size;
enum ice_status status = ICE_SUCCESS;
uint8_t cached_layer_count;
const char *fwname = "ice-ddp";
int err;
err = loadfirmware(fwname, &pkg, &pkg_size);
if (err) {
printf("%s: could not read firmware %s (error %d); "
"entering safe mode\n", sc->sc_dev.dv_xname, fwname, err);
status = ICE_ERR_CFG;
goto err_load_pkg;
}
/* Check for topology change */
if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_TX_BALANCE)) {
cached_layer_count = hw->num_tx_sched_layers;
status = ice_cfg_tx_topo(&sc->hw, pkg, pkg_size);
/* Success indicates a change was made */
if (status == ICE_SUCCESS) {
/* 9 -> 5 */
if (cached_layer_count == 9)
DPRINTF("%s: Transmit balancing feature "
"enabled\n", __func__);
else
DPRINTF("%s: Transmit balancing feature "
"disabled\n", __func__);
ice_set_bit(ICE_FEATURE_TX_BALANCE, sc->feat_en);
free(pkg, M_DEVBUF, pkg_size);
return (status);
} else if (status == ICE_ERR_CFG) {
/* DDP does not support transmit balancing */
DPRINTF("%s: DDP package does not support transmit balancing "
"feature - please update to the latest DDP package and "
"try again\n", __func__);
}
}
/* Copy and download the pkg contents */
state = ice_copy_and_init_pkg(hw, (const uint8_t *)pkg, pkg_size);
/* Release the firmware reference */
free(pkg, M_DEVBUF, pkg_size);
/* Check the active DDP package version and log a message */
ice_log_pkg_init(sc, state);
/* Place the driver into safe mode */
if (ice_is_init_pkg_successful(state))
return (ICE_ERR_ALREADY_EXISTS);
err_load_pkg:
ice_zero_bitmap(sc->feat_cap, ICE_FEATURE_COUNT);
ice_zero_bitmap(sc->feat_en, ICE_FEATURE_COUNT);
ice_set_bit(ICE_FEATURE_SAFE_MODE, sc->feat_cap);
ice_set_bit(ICE_FEATURE_SAFE_MODE, sc->feat_en);
return (status);
}
/**
* ice_aq_set_event_mask
* @hw: pointer to the HW struct
* @port_num: port number of the physical function
* @mask: event mask to be set
* @cd: pointer to command details structure or NULL
*
* Set event mask (0x0613)
*/
enum ice_status
ice_aq_set_event_mask(struct ice_hw *hw, uint8_t port_num, uint16_t mask,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_event_mask *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.set_event_mask;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
cmd->lport_num = port_num;
cmd->event_mask = htole16(mask);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_init_link_events - Initialize Link Status Events mask
* @sc: the device softc
*
* Initialize the Link Status Events mask to disable notification of link
* events we don't care about in software. Also request that link status
* events be enabled.
*/
int
ice_init_link_events(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
enum ice_status status;
uint16_t wanted_events;
/* Set the bits for the events that we want to be notified by */
wanted_events = (ICE_AQ_LINK_EVENT_UPDOWN |
ICE_AQ_LINK_EVENT_MEDIA_NA |
ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL);
/* request that every event except the wanted events be masked */
status = ice_aq_set_event_mask(hw, hw->port_info->lport, ~wanted_events, NULL);
if (status) {
printf("%s: Failed to set link status event mask, "
"err %s aq_err %s\n", sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
/* Request link info with the LSE bit set to enable link status events */
status = ice_aq_get_link_info(hw->port_info, true, NULL, NULL);
if (status) {
printf("%s: Failed to enable link status events, "
"err %s aq_err %s\n", sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
return (0);
}
/**
* ice_pkg_get_supported_vlan_mode - chk if DDP supports Double VLAN mode (DVM)
* @hw: pointer to the HW struct
* @dvm: output variable to determine if DDP supports DVM(true) or SVM(false)
*/
enum ice_status
ice_pkg_get_supported_vlan_mode(struct ice_hw *hw, bool *dvm)
{
#if 0
u16 meta_init_size = sizeof(struct ice_meta_init_section);
struct ice_meta_init_section *sect;
struct ice_buf_build *bld;
enum ice_status status;
/* if anything fails, we assume there is no DVM support */
*dvm = false;
bld = ice_pkg_buf_alloc_single_section(hw,
ICE_SID_RXPARSER_METADATA_INIT,
meta_init_size, (void **)§);
if (!bld)
return ICE_ERR_NO_MEMORY;
/* only need to read a single section */
sect->count = CPU_TO_LE16(1);
sect->offset = CPU_TO_LE16(ICE_META_VLAN_MODE_ENTRY);
status = ice_aq_upload_section(hw,
(struct ice_buf_hdr *)ice_pkg_buf(bld),
ICE_PKG_BUF_SIZE, NULL);
if (!status) {
ice_declare_bitmap(entry, ICE_META_INIT_BITS);
u32 arr[ICE_META_INIT_DW_CNT];
u16 i;
/* convert to host bitmap format */
for (i = 0; i < ICE_META_INIT_DW_CNT; i++)
arr[i] = LE32_TO_CPU(sect->entry[0].bm[i]);
ice_bitmap_from_array32(entry, arr, (u16)ICE_META_INIT_BITS);
/* check if DVM is supported */
*dvm = ice_is_bit_set(entry, ICE_META_VLAN_MODE_BIT);
}
ice_pkg_buf_free(hw, bld);
return status;
#else
return ICE_ERR_NOT_IMPL;
#endif
}
/**
* ice_pkg_supports_dvm - find out if DDP supports DVM
* @hw: pointer to the HW structure
*/
bool
ice_pkg_supports_dvm(struct ice_hw *hw)
{
enum ice_status status;
bool pkg_supports_dvm;
status = ice_pkg_get_supported_vlan_mode(hw, &pkg_supports_dvm);
if (status) {
DNPRINTF(ICE_DBG_PKG,
"Failed to get supported VLAN mode, status %d\n", status);
return false;
}
return pkg_supports_dvm;
}
/**
* ice_aq_get_vlan_mode - get the VLAN mode of the device
* @hw: pointer to the HW structure
* @get_params: structure FW fills in based on the current VLAN mode config
*
* Get VLAN Mode Parameters (0x020D)
*/
enum ice_status
ice_aq_get_vlan_mode(struct ice_hw *hw,
struct ice_aqc_get_vlan_mode *get_params)
{
struct ice_aq_desc desc;
if (!get_params)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc,
ice_aqc_opc_get_vlan_mode_parameters);
return ice_aq_send_cmd(hw, &desc, get_params, sizeof(*get_params),
NULL);
}
/**
* ice_fw_supports_dvm - find out if FW supports DVM
* @hw: pointer to the HW structure
*/
bool
ice_fw_supports_dvm(struct ice_hw *hw)
{
struct ice_aqc_get_vlan_mode get_vlan_mode = { 0 };
enum ice_status status;
/* If firmware returns success, then it supports DVM, else it only
* supports SVM
*/
status = ice_aq_get_vlan_mode(hw, &get_vlan_mode);
if (status) {
DNPRINTF(ICE_DBG_NVM,
"%s: Failed to get VLAN mode, status %d\n",
__func__, status);
return false;
}
return true;
}
/**
* ice_is_dvm_supported - check if Double VLAN Mode is supported
* @hw: pointer to the hardware structure
*
* Returns true if Double VLAN Mode (DVM) is supported and false if only Single
* VLAN Mode (SVM) is supported. In order for DVM to be supported the DDP and
* firmware must support it, otherwise only SVM is supported. This function
* should only be called while the global config lock is held and after the
* package has been successfully downloaded.
*/
bool
ice_is_dvm_supported(struct ice_hw *hw)
{
if (!ice_pkg_supports_dvm(hw)) {
DNPRINTF(ICE_DBG_PKG, "DDP doesn't support DVM\n");
return false;
}
if (!ice_fw_supports_dvm(hw)) {
DNPRINTF(ICE_DBG_PKG, "FW doesn't support DVM\n");
return false;
}
return true;
}
/**
* ice_aq_set_port_params - set physical port parameters
* @pi: pointer to the port info struct
* @bad_frame_vsi: defines the VSI to which bad frames are forwarded
* @save_bad_pac: if set packets with errors are forwarded to the bad frames VSI
* @pad_short_pac: if set transmit packets smaller than 60 bytes are padded
* @double_vlan: if set double VLAN is enabled
* @cd: pointer to command details structure or NULL
*
* Set Physical port parameters (0x0203)
*/
enum ice_status
ice_aq_set_port_params(struct ice_port_info *pi, uint16_t bad_frame_vsi,
bool save_bad_pac, bool pad_short_pac, bool double_vlan,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_port_params *cmd;
struct ice_hw *hw = pi->hw;
struct ice_aq_desc desc;
uint16_t cmd_flags = 0;
cmd = &desc.params.set_port_params;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
cmd->bad_frame_vsi = htole16(bad_frame_vsi);
if (save_bad_pac)
cmd_flags |= ICE_AQC_SET_P_PARAMS_SAVE_BAD_PACKETS;
if (pad_short_pac)
cmd_flags |= ICE_AQC_SET_P_PARAMS_PAD_SHORT_PACKETS;
if (double_vlan)
cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
cmd->cmd_flags = htole16(cmd_flags);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_set_vlan_mode - set the VLAN mode of the device
* @hw: pointer to the HW structure
* @set_params: requested VLAN mode configuration
*
* Set VLAN Mode Parameters (0x020C)
*/
enum ice_status
ice_aq_set_vlan_mode(struct ice_hw *hw,
struct ice_aqc_set_vlan_mode *set_params)
{
uint8_t rdma_packet, mng_vlan_prot_id;
struct ice_aq_desc desc;
if (!set_params)
return ICE_ERR_PARAM;
if (set_params->l2tag_prio_tagging > ICE_AQ_VLAN_PRIO_TAG_MAX)
return ICE_ERR_PARAM;
rdma_packet = set_params->rdma_packet;
if (rdma_packet != ICE_AQ_SVM_VLAN_RDMA_PKT_FLAG_SETTING &&
rdma_packet != ICE_AQ_DVM_VLAN_RDMA_PKT_FLAG_SETTING)
return ICE_ERR_PARAM;
mng_vlan_prot_id = set_params->mng_vlan_prot_id;
if (mng_vlan_prot_id != ICE_AQ_VLAN_MNG_PROTOCOL_ID_OUTER &&
mng_vlan_prot_id != ICE_AQ_VLAN_MNG_PROTOCOL_ID_INNER)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc,
ice_aqc_opc_set_vlan_mode_parameters);
desc.flags |= htole16(ICE_AQ_FLAG_RD);
return ice_aq_send_cmd(hw, &desc, set_params, sizeof(*set_params),
NULL);
}
/**
* ice_set_svm - set single VLAN mode
* @hw: pointer to the HW structure
*/
enum ice_status
ice_set_svm(struct ice_hw *hw)
{
struct ice_aqc_set_vlan_mode *set_params;
enum ice_status status;
status = ice_aq_set_port_params(hw->port_info, 0,
false, false, false, NULL);
if (status) {
DNPRINTF(ICE_DBG_INIT,
"Failed to set port parameters for single VLAN mode\n");
return status;
}
set_params = (struct ice_aqc_set_vlan_mode *)
ice_malloc(hw, sizeof(*set_params));
if (!set_params)
return ICE_ERR_NO_MEMORY;
/* default configuration for SVM configurations */
set_params->l2tag_prio_tagging = ICE_AQ_VLAN_PRIO_TAG_INNER_CTAG;
set_params->rdma_packet = ICE_AQ_SVM_VLAN_RDMA_PKT_FLAG_SETTING;
set_params->mng_vlan_prot_id = ICE_AQ_VLAN_MNG_PROTOCOL_ID_INNER;
status = ice_aq_set_vlan_mode(hw, set_params);
if (status)
DNPRINTF(ICE_DBG_INIT,
"Failed to configure port in single VLAN mode\n");
ice_free(hw, set_params);
return status;
}
/**
* ice_set_vlan_mode
* @hw: pointer to the HW structure
*/
enum ice_status
ice_set_vlan_mode(struct ice_hw *hw)
{
if (!ice_is_dvm_supported(hw))
return ICE_SUCCESS;
return ice_set_svm(hw);
}
/**
* ice_nvm_version_str - Format the NVM version information into a sbuf
* @hw: device hw structure
* @buf: string buffer to store version string
*
* Formats the NVM information including firmware version, API version, NVM
* version, the EETRACK id, and OEM specific version information into a string
* buffer.
*/
const char *
ice_nvm_version_str(struct ice_hw *hw, char *buf, size_t bufsize)
{
struct ice_nvm_info *nvm = &hw->flash.nvm;
struct ice_orom_info *orom = &hw->flash.orom;
struct ice_netlist_info *netlist = &hw->flash.netlist;
/* Note that the netlist versions are stored in packed Binary Coded
* Decimal format. The use of '%x' will correctly display these as
* decimal numbers. This works because every 4 bits will be displayed
* as a hexadecimal digit, and the BCD format will only use the values
* 0-9.
*/
snprintf(buf, bufsize,
"fw %u.%u.%u api %u.%u nvm %x.%02x etid %08x netlist %x.%x.%x-%x.%x.%x.%04x oem %u.%u.%u",
hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch,
hw->api_maj_ver, hw->api_min_ver,
nvm->major, nvm->minor, nvm->eetrack,
netlist->major, netlist->minor,
netlist->type >> 16, netlist->type & 0xFFFF,
netlist->rev, netlist->cust_ver, netlist->hash,
orom->major, orom->build, orom->patch);
return buf;
}
/**
* ice_print_nvm_version - Print the NVM info to the kernel message log
* @sc: the device softc structure
*
* Format and print an NVM version string using ice_nvm_version_str().
*/
void
ice_print_nvm_version(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
static char buf[512];
printf("%s: %s, address %s\n", sc->sc_dev.dv_xname,
ice_nvm_version_str(hw, buf, sizeof(buf)),
ether_sprintf(hw->port_info->mac.perm_addr));
}
/**
* ice_setup_scctx - Setup the softc context structure; in the FreeBSD
* driver this function sets up a context used by iflib. Instead, the
* OpenBSD driver uses it to initialize softc fields which depend on
* driver mode and hw capabilities.
*/
void
ice_setup_scctx(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
bool safe_mode, recovery_mode;
int i;
safe_mode = ice_is_bit_set(sc->feat_en, ICE_FEATURE_SAFE_MODE);
recovery_mode = ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE);
/*
* If the driver loads in Safe mode or Recovery mode, limit iflib to
* a single queue pair.
*/
if (safe_mode || recovery_mode) {
sc->isc_ntxqsets = sc->isc_nrxqsets = 1;
sc->isc_ntxqsets_max = 1;
sc->isc_nrxqsets_max = 1;
} else {
sc->isc_ntxqsets = hw->func_caps.common_cap.rss_table_size;
sc->isc_nrxqsets = hw->func_caps.common_cap.rss_table_size;
sc->isc_ntxqsets_max = hw->func_caps.common_cap.num_txq;
sc->isc_nrxqsets_max = hw->func_caps.common_cap.num_rxq;
}
sc->isc_txqsizes[0] = roundup(sc->isc_ntxd[0]
* sizeof(struct ice_tx_desc), DBA_ALIGN);
sc->isc_rxqsizes[0] = roundup(sc->isc_nrxd[0]
* sizeof(union ice_32b_rx_flex_desc), DBA_ALIGN);
sc->isc_tx_nsegments = ICE_MAX_TX_SEGS;
sc->isc_tx_tso_segments_max = ICE_MAX_TSO_SEGS;
sc->isc_tx_tso_size_max = ICE_TSO_SIZE;
sc->isc_tx_tso_segsize_max = ICE_MAX_DMA_SEG_SIZE;
#if 0
sc->isc_msix_bar = pci_msix_table_bar(dev);
#endif
sc->isc_rss_table_size = hw->func_caps.common_cap.rss_table_size;
#if 0
/*
* If the driver loads in recovery mode, disable Tx/Rx functionality
*/
if (recovery_mode)
scctx->isc_txrx = &ice_recovery_txrx;
else
scctx->isc_txrx = &ice_txrx;
#endif
/*
* If the driver loads in Safe mode or Recovery mode, disable
* advanced features including hardware offloads.
*/
if (safe_mode || recovery_mode) {
sc->isc_capenable = ICE_SAFE_CAPS;
sc->isc_tx_csum_flags = 0;
} else {
sc->isc_capenable = ICE_FULL_CAPS;
#if 0
sc->isc_tx_csum_flags = ICE_CSUM_OFFLOAD;
#endif
}
sc->isc_capabilities = sc->isc_capenable;
for (i = 0; i < nitems(sc->isc_ntxd); i++)
sc->isc_ntxd[i] = ICE_DEFAULT_DESC_COUNT;
for (i = 0; i < nitems(sc->isc_nrxd); i++)
sc->isc_nrxd[i] = ICE_DEFAULT_DESC_COUNT;
} /* ice_setup_scctx */
/**
* ice_resmgr_init - Initialize a resource manager structure
* @resmgr: structure to track the resource manager state
* @num_res: the maximum number of resources it can assign
*
* Initialize the state of a resource manager structure, allocating space to
* assign up to the requested number of resources. Uses bit strings to track
* which resources have been assigned. This type of resmgr is intended to be
* used for tracking LAN queue assignments between VSIs.
*/
int
ice_resmgr_init(struct ice_resmgr *resmgr, uint16_t num_res)
{
resmgr->resources = ice_bit_alloc(num_res);
if (resmgr->resources == NULL)
return (ENOMEM);
resmgr->num_res = num_res;
resmgr->contig_only = false;
return (0);
}
/**
* ice_resmgr_init_contig_only - Initialize a resource manager structure
* @resmgr: structure to track the resource manager state
* @num_res: the maximum number of resources it can assign
*
* Functions similarly to ice_resmgr_init(), but the resulting resmgr structure
* will only allow contiguous allocations. This type of resmgr is intended to
* be used with tracking device MSI-X interrupt allocations.
*/
int
ice_resmgr_init_contig_only(struct ice_resmgr *resmgr, uint16_t num_res)
{
int error;
error = ice_resmgr_init(resmgr, num_res);
if (error)
return (error);
resmgr->contig_only = true;
return (0);
}
/**
* ice_resmgr_destroy - Deallocate memory associated with a resource manager
* @resmgr: resource manager structure
*
* De-allocates the bit string associated with this resource manager. It is
* expected that this function will not be called until all of the assigned
* resources have been released.
*/
void
ice_resmgr_destroy(struct ice_resmgr *resmgr)
{
if (resmgr->resources != NULL) {
int set;
set = ice_bit_count(resmgr->resources, 0, resmgr->num_res);
KASSERT(set == 0);
free(resmgr->resources, M_DEVBUF,
ice_bitstr_size(resmgr->num_res));
resmgr->resources = NULL;
}
resmgr->num_res = 0;
}
/**
* ice_resmgr_assign_contiguous - Assign contiguous mapping of resources
* @resmgr: resource manager structure
* @idx: memory to store mapping, at least num_res wide
* @num_res: the number of resources to assign
*
* Assign num_res number of contiguous resources into the idx mapping. On
* success, idx will be updated to map each index to a PF resource.
*
* This function guarantees that the resource mapping will be contiguous, and
* will fail if that is not possible.
*/
int
ice_resmgr_assign_contiguous(struct ice_resmgr *resmgr, uint16_t *idx,
uint16_t num_res)
{
int start, i;
ice_bit_ffc_area(resmgr->resources, resmgr->num_res, num_res, &start);
if (start < 0)
return (ENOSPC);
/* Set each bit and update the index array */
for (i = 0; i < num_res; i++) {
ice_bit_set(resmgr->resources, start + i);
idx[i] = start + i;
}
return (0);
}
/**
* ice_alloc_intr_tracking - Setup interrupt tracking structures
* @sc: device softc structure
*
* Sets up the resource manager for keeping track of interrupt allocations,
* and initializes the tracking maps for the PF's interrupt allocations.
*
* Unlike the scheme for queues, this is done in one step since both the
* manager and the maps both have the same lifetime.
*
* @returns 0 on success, or an error code on failure.
*/
int
ice_alloc_intr_tracking(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
size_t nvec;
int err, i;
nvec = hw->func_caps.common_cap.num_msix_vectors;
/* Initialize the interrupt allocation manager */
err = ice_resmgr_init_contig_only(&sc->dev_imgr, nvec);
if (err) {
printf("%s: Unable to initialize PF interrupt manager: "
"error %d\n", sc->sc_dev.dv_xname, err);
return (err);
}
/* Allocate PF interrupt mapping storage */
sc->pf_imap = (uint16_t *)mallocarray(nvec, sizeof(uint16_t),
M_DEVBUF, M_NOWAIT);
if (sc->pf_imap == NULL) {
printf("%s: Unable to allocate PF imap memory\n",
sc->sc_dev.dv_xname);
err = ENOMEM;
goto free_imgr;
}
#if 0
sc->rdma_imap = (uint16_t *)mallocarray(nvec, sizeof(uint16_t),
M_DEVBUF, M_NOWAIT);
if (sc->sc_rdma_imap == NULL) {
printf("%s: Unable to allocate RDMA imap memory\n",
sc->sc_dev.dv_xname);
err = ENOMEM;
goto free_pf_imap;
}
#endif
for (i = 0; i < nvec; i++) {
sc->pf_imap[i] = ICE_INVALID_RES_IDX;
#if 0
sc->rdma_imap[i] = ICE_INVALID_RES_IDX;
#endif
}
return (0);
#if 0
free_pf_imap:
free(sc->pf_imap, M_DEVBUF, nvec * sizeof(uint16_t));
sc->pf_imap = NULL;
#endif
free_imgr:
ice_resmgr_destroy(&sc->dev_imgr);
return (err);
}
/**
* ice_resmgr_release_map - Release previously assigned resource mapping
* @resmgr: the resource manager structure
* @idx: previously assigned resource mapping
* @num_res: number of resources in the mapping
*
* Clears the assignment of each resource in the provided resource index.
* Updates the idx to indicate that each of the virtual indexes have
* invalid resource mappings by assigning them to ICE_INVALID_RES_IDX.
*/
void
ice_resmgr_release_map(struct ice_resmgr *resmgr, uint16_t *idx,
uint16_t num_res)
{
int i;
for (i = 0; i < num_res; i++) {
if (idx[i] < resmgr->num_res)
ice_bit_clear(resmgr->resources, idx[i]);
idx[i] = ICE_INVALID_RES_IDX;
}
}
/**
* ice_free_intr_tracking - Free PF interrupt tracking structures
* @sc: device softc structure
*
* Frees the interrupt resource allocation manager and the PF's owned maps.
*
* VF maps are released when the owning VF's are destroyed, which should always
* happen before this function is called.
*/
void
ice_free_intr_tracking(struct ice_softc *sc)
{
if (sc->pf_imap) {
ice_resmgr_release_map(&sc->dev_imgr, sc->pf_imap,
sc->lan_vectors);
free(sc->pf_imap, M_DEVBUF,
sizeof(uint16_t) * sc->lan_vectors);
sc->pf_imap = NULL;
}
#if 0
if (sc->rdma_imap) {
ice_resmgr_release_map(&sc->dev_imgr, sc->rdma_imap,
sc->lan_vectors);
free(sc->rdma_imap, M_DEVBUF,
sizeof(uint16_t) * sc->lan_vectors);
sc->rdma_imap = NULL;
}
#endif
ice_resmgr_destroy(&sc->dev_imgr);
ice_resmgr_destroy(&sc->os_imgr);
}
/**
* ice_setup_vsi_common - Common VSI setup for both dynamic and static VSIs
* @sc: the device private softc structure
* @vsi: the VSI to setup
* @type: the VSI type of the new VSI
* @idx: the index in the all_vsi array to use
* @dynamic: whether this VSI memory was dynamically allocated
*
* Perform setup for a VSI that is common to both dynamically allocated VSIs
* and the static PF VSI which is embedded in the softc structure.
*/
void
ice_setup_vsi_common(struct ice_softc *sc, struct ice_vsi *vsi,
enum ice_vsi_type type, int idx, bool dynamic)
{
struct ice_hw *hw = &sc->hw;
/* Store important values in VSI struct */
vsi->type = type;
vsi->sc = sc;
vsi->idx = idx;
sc->all_vsi[idx] = vsi;
vsi->dynamic = dynamic;
/* Set default mirroring rule information */
vsi->rule_mir_ingress = ICE_INVAL_MIRROR_RULE_ID;
vsi->rule_mir_egress = ICE_INVAL_MIRROR_RULE_ID;
#if 0
/* Setup the VSI tunables now */
ice_add_vsi_tunables(vsi, sc->vsi_sysctls);
#endif
vsi->mbuf_sz = MCLBYTES + ETHER_ALIGN;
vsi->max_frame_size = hw->port_info->phy.link_info.max_frame_size;
}
/**
* ice_setup_pf_vsi - Setup the PF VSI
* @sc: the device private softc
*
* Setup the PF VSI structure which is embedded as sc->pf_vsi in the device
* private softc. Unlike other VSIs, the PF VSI memory is allocated as part of
* the softc memory, instead of being dynamically allocated at creation.
*/
void
ice_setup_pf_vsi(struct ice_softc *sc)
{
ice_setup_vsi_common(sc, &sc->pf_vsi, ICE_VSI_PF, 0, false);
}
/**
* ice_alloc_vsi_qmap
* @vsi: VSI structure
* @max_tx_queues: Number of transmit queues to identify
* @max_rx_queues: Number of receive queues to identify
*
* Allocates a max_[t|r]x_queues array of words for the VSI where each
* word contains the index of the queue it represents. In here, all
* words are initialized to an index of ICE_INVALID_RES_IDX, indicating
* all queues for this VSI are not yet assigned an index and thus,
* not ready for use.
*
* Returns an error code on failure.
*/
int
ice_alloc_vsi_qmap(struct ice_vsi *vsi, const int max_tx_queues,
const int max_rx_queues)
{
struct ice_softc *sc = vsi->sc;
int i;
KASSERT(max_tx_queues > 0);
KASSERT(max_rx_queues > 0);
/* Allocate Tx queue mapping memory */
vsi->tx_qmap = (uint16_t *)mallocarray(max_tx_queues, sizeof(uint16_t),
M_DEVBUF, M_WAITOK);
if (!vsi->tx_qmap) {
printf("%s: Unable to allocate Tx qmap memory\n",
sc->sc_dev.dv_xname);
return (ENOMEM);
}
/* Allocate Rx queue mapping memory */
vsi->rx_qmap = (uint16_t *) mallocarray(max_rx_queues, sizeof(uint16_t),
M_DEVBUF, M_WAITOK);
if (!vsi->rx_qmap) {
printf("%s: Unable to allocate Rx qmap memory\n",
sc->sc_dev.dv_xname);
goto free_tx_qmap;
}
/* Mark every queue map as invalid to start with */
for (i = 0; i < max_tx_queues; i++)
vsi->tx_qmap[i] = ICE_INVALID_RES_IDX;
for (i = 0; i < max_rx_queues; i++)
vsi->rx_qmap[i] = ICE_INVALID_RES_IDX;
return 0;
free_tx_qmap:
free(vsi->tx_qmap, M_DEVBUF, max_tx_queues * sizeof(uint16_t));
vsi->tx_qmap = NULL;
return (ENOMEM);
}
/**
* ice_vsig_find_vsi - find a VSIG that contains a specified VSI
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsi: VSI of interest
* @vsig: pointer to receive the VSI group
*
* This function will lookup the VSI entry in the XLT2 list and return
* the VSI group its associated with.
*/
enum ice_status
ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, uint16_t vsi,
uint16_t *vsig)
{
if (!vsig || vsi >= ICE_MAX_VSI)
return ICE_ERR_PARAM;
/* As long as there's a default or valid VSIG associated with the input
* VSI, the functions returns a success. Any handling of VSIG will be
* done by the following add, update or remove functions.
*/
*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
return ICE_SUCCESS;
}
/**
* ice_vsig_prof_id_count - count profiles in a VSIG
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsig: VSIG to remove the profile from
*/
uint16_t
ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk,
uint16_t vsig)
{
uint16_t idx = vsig & ICE_VSIG_IDX_M, count = 0;
struct ice_vsig_prof *p;
TAILQ_FOREACH(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, list)
count++;
return count;
}
/**
* ice_vsig_get_ref - returns number of VSIs belong to a VSIG
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsig: VSIG to query
* @refs: pointer to variable to receive the reference count
*/
enum ice_status
ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, uint16_t vsig,
uint16_t *refs)
{
uint16_t idx = vsig & ICE_VSIG_IDX_M;
struct ice_vsig_vsi *ptr;
*refs = 0;
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
return ICE_ERR_DOES_NOT_EXIST;
ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
while (ptr) {
(*refs)++;
ptr = ptr->next_vsi;
}
return ICE_SUCCESS;
}
/* Key creation */
#define ICE_DC_KEY 0x1 /* don't care */
#define ICE_DC_KEYINV 0x1
#define ICE_NM_KEY 0x0 /* never match */
#define ICE_NM_KEYINV 0x0
#define ICE_0_KEY 0x1 /* match 0 */
#define ICE_0_KEYINV 0x0
#define ICE_1_KEY 0x0 /* match 1 */
#define ICE_1_KEYINV 0x1
/**
* ice_gen_key_word - generate 16-bits of a key/mask word
* @val: the value
* @valid: valid bits mask (change only the valid bits)
* @dont_care: don't care mask
* @nvr_mtch: never match mask
* @key: pointer to an array of where the resulting key portion
* @key_inv: pointer to an array of where the resulting key invert portion
*
* This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
* and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
* of key and 8 bits of key invert.
*
* '0' = b01, always match a 0 bit
* '1' = b10, always match a 1 bit
* '?' = b11, don't care bit (always matches)
* '~' = b00, never match bit
*
* Input:
* val: b0 1 0 1 0 1
* dont_care: b0 0 1 1 0 0
* never_mtch: b0 0 0 0 1 1
* ------------------------------
* Result: key: b01 10 11 11 00 00
*/
enum ice_status
ice_gen_key_word(uint8_t val, uint8_t valid, uint8_t dont_care,
uint8_t nvr_mtch, uint8_t *key, uint8_t *key_inv)
{
uint8_t in_key = *key, in_key_inv = *key_inv;
uint8_t i;
/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
return ICE_ERR_CFG;
*key = 0;
*key_inv = 0;
/* encode the 8 bits into 8-bit key and 8-bit key invert */
for (i = 0; i < 8; i++) {
*key >>= 1;
*key_inv >>= 1;
if (!(valid & 0x1)) { /* change only valid bits */
*key |= (in_key & 0x1) << 7;
*key_inv |= (in_key_inv & 0x1) << 7;
} else if (dont_care & 0x1) { /* don't care bit */
*key |= ICE_DC_KEY << 7;
*key_inv |= ICE_DC_KEYINV << 7;
} else if (nvr_mtch & 0x1) { /* never match bit */
*key |= ICE_NM_KEY << 7;
*key_inv |= ICE_NM_KEYINV << 7;
} else if (val & 0x01) { /* exact 1 match */
*key |= ICE_1_KEY << 7;
*key_inv |= ICE_1_KEYINV << 7;
} else { /* exact 0 match */
*key |= ICE_0_KEY << 7;
*key_inv |= ICE_0_KEYINV << 7;
}
dont_care >>= 1;
nvr_mtch >>= 1;
valid >>= 1;
val >>= 1;
in_key >>= 1;
in_key_inv >>= 1;
}
return ICE_SUCCESS;
}
/**
* ice_bits_max_set - determine if the number of bits set is within a maximum
* @mask: pointer to the byte array which is the mask
* @size: the number of bytes in the mask
* @max: the max number of set bits
*
* This function determines if there are at most 'max' number of bits set in an
* array. Returns true if the number for bits set is <= max or will return false
* otherwise.
*/
bool
ice_bits_max_set(const uint8_t *mask, uint16_t size, uint16_t max)
{
uint16_t count = 0;
uint16_t i;
/* check each byte */
for (i = 0; i < size; i++) {
/* if 0, go to next byte */
if (!mask[i])
continue;
/* We know there is at least one set bit in this byte because of
* the above check; if we already have found 'max' number of
* bits set, then we can return failure now.
*/
if (count == max)
return false;
/* count the bits in this byte, checking threshold */
count += ice_popcount16(mask[i]);
if (count > max)
return false;
}
return true;
}
/**
* ice_set_key - generate a variable sized key with multiples of 16-bits
* @key: pointer to where the key will be stored
* @size: the size of the complete key in bytes (must be even)
* @val: array of 8-bit values that makes up the value portion of the key
* @upd: array of 8-bit masks that determine what key portion to update
* @dc: array of 8-bit masks that make up the don't care mask
* @nm: array of 8-bit masks that make up the never match mask
* @off: the offset of the first byte in the key to update
* @len: the number of bytes in the key update
*
* This function generates a key from a value, a don't care mask and a never
* match mask.
* upd, dc, and nm are optional parameters, and can be NULL:
* upd == NULL --> upd mask is all 1's (update all bits)
* dc == NULL --> dc mask is all 0's (no don't care bits)
* nm == NULL --> nm mask is all 0's (no never match bits)
*/
enum ice_status
ice_set_key(uint8_t *key, uint16_t size, uint8_t *val, uint8_t *upd,
uint8_t *dc, uint8_t *nm, uint16_t off, uint16_t len)
{
uint16_t half_size;
uint16_t i;
/* size must be a multiple of 2 bytes. */
if (size % 2)
return ICE_ERR_CFG;
half_size = size / 2;
if (off + len > half_size)
return ICE_ERR_CFG;
/* Make sure at most one bit is set in the never match mask. Having more
* than one never match mask bit set will cause HW to consume excessive
* power otherwise; this is a power management efficiency check.
*/
#define ICE_NVR_MTCH_BITS_MAX 1
if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
return ICE_ERR_CFG;
for (i = 0; i < len; i++)
if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
dc ? dc[i] : 0, nm ? nm[i] : 0,
key + off + i, key + half_size + off + i))
return ICE_ERR_CFG;
return ICE_SUCCESS;
}
/**
* ice_prof_gen_key - generate profile ID key
* @hw: pointer to the HW struct
* @blk: the block in which to write profile ID to
* @ptg: packet type group (PTG) portion of key
* @vsig: VSIG portion of key
* @cdid: CDID portion of key
* @flags: flag portion of key
* @vl_msk: valid mask
* @dc_msk: don't care mask
* @nm_msk: never match mask
* @key: output of profile ID key
*/
enum ice_status
ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, uint8_t ptg,
uint16_t vsig, uint8_t cdid, uint16_t flags,
uint8_t vl_msk[ICE_TCAM_KEY_VAL_SZ],
uint8_t dc_msk[ICE_TCAM_KEY_VAL_SZ],
uint8_t nm_msk[ICE_TCAM_KEY_VAL_SZ],
uint8_t key[ICE_TCAM_KEY_SZ])
{
struct ice_prof_id_key inkey;
inkey.xlt1 = ptg;
inkey.xlt2_cdid = htole16(vsig);
inkey.flags = htole16(flags);
switch (hw->blk[blk].prof.cdid_bits) {
case 0:
break;
case 2:
#define ICE_CD_2_M 0xC000U
#define ICE_CD_2_S 14
inkey.xlt2_cdid &= ~htole16(ICE_CD_2_M);
inkey.xlt2_cdid |= htole16(BIT(cdid) << ICE_CD_2_S);
break;
case 4:
#define ICE_CD_4_M 0xF000U
#define ICE_CD_4_S 12
inkey.xlt2_cdid &= ~htole16(ICE_CD_4_M);
inkey.xlt2_cdid |= htole16(BIT(cdid) << ICE_CD_4_S);
break;
case 8:
#define ICE_CD_8_M 0xFF00U
#define ICE_CD_8_S 16
inkey.xlt2_cdid &= ~htole16(ICE_CD_8_M);
inkey.xlt2_cdid |= htole16(BIT(cdid) << ICE_CD_8_S);
break;
default:
DNPRINTF(ICE_DBG_PKG, "%s: Error in profile config\n",
__func__);
break;
}
return ice_set_key(key, ICE_TCAM_KEY_SZ, (uint8_t *)&inkey,
vl_msk, dc_msk, nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
}
/**
* ice_tcam_write_entry - write TCAM entry
* @hw: pointer to the HW struct
* @blk: the block in which to write profile ID to
* @idx: the entry index to write to
* @prof_id: profile ID
* @ptg: packet type group (PTG) portion of key
* @vsig: VSIG portion of key
* @cdid: CDID portion of key
* @flags: flag portion of key
* @vl_msk: valid mask
* @dc_msk: don't care mask
* @nm_msk: never match mask
*/
enum ice_status
ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, uint16_t idx,
uint8_t prof_id, uint8_t ptg, uint16_t vsig, uint8_t cdid, uint16_t flags,
uint8_t vl_msk[ICE_TCAM_KEY_VAL_SZ],
uint8_t dc_msk[ICE_TCAM_KEY_VAL_SZ],
uint8_t nm_msk[ICE_TCAM_KEY_VAL_SZ])
{
struct ice_prof_tcam_entry;
enum ice_status status;
status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
if (!status) {
hw->blk[blk].prof.t[idx].addr = htole16(idx);
hw->blk[blk].prof.t[idx].prof_id = prof_id;
}
return status;
}
/**
* ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
* @blk: the block type
* @rsrc_type: pointer to variable to receive the resource type
*/
bool
ice_tcam_ent_rsrc_type(enum ice_block blk, uint16_t *rsrc_type)
{
switch (blk) {
case ICE_BLK_RSS:
*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
break;
case ICE_BLK_PE:
*rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_TCAM;
break;
default:
return false;
}
return true;
}
/**
* ice_alloc_hw_res - allocate resource
* @hw: pointer to the HW struct
* @type: type of resource
* @num: number of resources to allocate
* @btm: allocate from bottom
* @res: pointer to array that will receive the resources
*/
enum ice_status
ice_alloc_hw_res(struct ice_hw *hw, uint16_t type, uint16_t num, bool btm,
uint16_t *res)
{
struct ice_aqc_alloc_free_res_elem *buf;
enum ice_status status;
uint16_t buf_len;
buf_len = ice_struct_size(buf, elem, num);
buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!buf)
return ICE_ERR_NO_MEMORY;
/* Prepare buffer to allocate resource. */
buf->num_elems = htole16(num);
buf->res_type = htole16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
if (btm)
buf->res_type |= htole16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
ice_aqc_opc_alloc_res, NULL);
if (status)
goto ice_alloc_res_exit;
memcpy(res, buf->elem, sizeof(*buf->elem) * num);
ice_alloc_res_exit:
ice_free(hw, buf);
return status;
}
/**
* ice_free_hw_res - free allocated HW resource
* @hw: pointer to the HW struct
* @type: type of resource to free
* @num: number of resources
* @res: pointer to array that contains the resources to free
*/
enum ice_status
ice_free_hw_res(struct ice_hw *hw, uint16_t type, uint16_t num, uint16_t *res)
{
struct ice_aqc_alloc_free_res_elem *buf;
enum ice_status status;
uint16_t buf_len;
/* prevent overflow; all callers currently hard-code num as 1 */
KASSERT(num == 1);
buf_len = ice_struct_size(buf, elem, num);
buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!buf)
return ICE_ERR_NO_MEMORY;
/* Prepare buffer to free resource. */
buf->num_elems = htole16(num);
buf->res_type = htole16(type);
memcpy(buf->elem, res, sizeof(*buf->elem) * num);
status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
ice_aqc_opc_free_res, NULL);
ice_free(hw, buf);
return status;
}
/**
* ice_free_tcam_ent - free hardware TCAM entry
* @hw: pointer to the HW struct
* @blk: the block from which to free the TCAM entry
* @tcam_idx: the TCAM entry to free
*
* This function frees an entry in a Profile ID TCAM for a specific block.
*/
enum ice_status
ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, uint16_t tcam_idx)
{
uint16_t res_type;
if (!ice_tcam_ent_rsrc_type(blk, &res_type))
return ICE_ERR_PARAM;
return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
}
/**
* ice_rel_tcam_idx - release a TCAM index
* @hw: pointer to the HW struct
* @blk: hardware block
* @idx: the index to release
*/
enum ice_status
ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, uint16_t idx)
{
/* Masks to invoke a never match entry */
uint8_t vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
uint8_t dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
uint8_t nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
enum ice_status status;
/* write the TCAM entry */
status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
dc_msk, nm_msk);
if (status)
return status;
/* release the TCAM entry */
status = ice_free_tcam_ent(hw, blk, idx);
return status;
}
/**
* ice_rem_prof_id - remove one profile from a VSIG
* @hw: pointer to the HW struct
* @blk: hardware block
* @prof: pointer to profile structure to remove
*/
enum ice_status
ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
struct ice_vsig_prof *prof)
{
enum ice_status status;
uint16_t i;
for (i = 0; i < prof->tcam_count; i++)
if (prof->tcam[i].in_use) {
prof->tcam[i].in_use = false;
status = ice_rel_tcam_idx(hw, blk,
prof->tcam[i].tcam_idx);
if (status)
return ICE_ERR_HW_TABLE;
}
return ICE_SUCCESS;
}
/**
* ice_rem_vsig - remove VSIG
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsig: the VSIG to remove
* @chg: the change list
*/
enum ice_status
ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, uint16_t vsig,
struct ice_chs_chg_head *chg)
{
uint16_t idx = vsig & ICE_VSIG_IDX_M;
struct ice_vsig_vsi *vsi_cur;
struct ice_vsig_prof *d, *t;
/* remove TCAM entries */
TAILQ_FOREACH_SAFE(d, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
list, t) {
enum ice_status status;
status = ice_rem_prof_id(hw, blk, d);
if (status)
return status;
TAILQ_REMOVE(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
d, list);
ice_free(hw, d);
}
/* Move all VSIS associated with this VSIG to the default VSIG */
vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
/* If the VSIG has at least 1 VSI then iterate through the list
* and remove the VSIs before deleting the group.
*/
if (vsi_cur) {
do {
struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
struct ice_chs_chg *p;
p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
if (!p)
return ICE_ERR_NO_MEMORY;
p->type = ICE_VSIG_REM;
p->orig_vsig = vsig;
p->vsig = ICE_DEFAULT_VSIG;
p->vsi = (uint16_t)(vsi_cur - hw->blk[blk].xlt2.vsis);
TAILQ_INSERT_HEAD(chg, p, list_entry);
vsi_cur = tmp;
} while (vsi_cur);
}
return ice_vsig_free(hw, blk, vsig);
}
/**
* ice_rem_prof_id_vsig - remove a specific profile from a VSIG
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsig: VSIG to remove the profile from
* @hdl: profile handle indicating which profile to remove
* @chg: list to receive a record of changes
*/
enum ice_status
ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, uint16_t vsig,
uint64_t hdl, struct ice_chs_chg_head *chg)
{
uint16_t idx = vsig & ICE_VSIG_IDX_M;
struct ice_vsig_prof *p, *t;
TAILQ_FOREACH_SAFE(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
list, t) {
if (p->profile_cookie == hdl) {
enum ice_status status;
if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
/* this is the last profile, remove the VSIG */
return ice_rem_vsig(hw, blk, vsig, chg);
status = ice_rem_prof_id(hw, blk, p);
if (!status) {
TAILQ_REMOVE(
&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
p, list);
ice_free(hw, p);
}
return status;
}
}
return ICE_ERR_DOES_NOT_EXIST;
}
/**
* ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
* @hw: pointer to the HW struct
* @idx: the index of the TCAM entry to remove
* @chg: the list of change structures to search
*/
void
ice_rem_chg_tcam_ent(struct ice_hw *hw, uint16_t idx,
struct ice_chs_chg_head *chg)
{
struct ice_chs_chg *pos, *tmp;
TAILQ_FOREACH_SAFE(pos, chg, list_entry, tmp) {
if (pos->type == ICE_TCAM_ADD && pos->tcam_idx == idx) {
TAILQ_REMOVE(chg, pos, list_entry);
ice_free(hw, pos);
}
}
}
/**
* ice_alloc_tcam_ent - allocate hardware TCAM entry
* @hw: pointer to the HW struct
* @blk: the block to allocate the TCAM for
* @btm: true to allocate from bottom of table, false to allocate from top
* @tcam_idx: pointer to variable to receive the TCAM entry
*
* This function allocates a new entry in a Profile ID TCAM for a specific
* block.
*/
enum ice_status
ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
uint16_t *tcam_idx)
{
uint16_t res_type;
if (!ice_tcam_ent_rsrc_type(blk, &res_type))
return ICE_ERR_PARAM;
return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
}
/**
* ice_prof_tcam_ena_dis - add enable or disable TCAM change
* @hw: pointer to the HW struct
* @blk: hardware block
* @enable: true to enable, false to disable
* @vsig: the VSIG of the TCAM entry
* @tcam: pointer the TCAM info structure of the TCAM to disable
* @chg: the change list
*
* This function appends an enable or disable TCAM entry in the change log
*/
enum ice_status
ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
uint16_t vsig, struct ice_tcam_inf *tcam,
struct ice_chs_chg_head *chg)
{
enum ice_status status;
struct ice_chs_chg *p;
uint8_t vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
uint8_t dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
uint8_t nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
/* if disabling, free the TCAM */
if (!enable) {
status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
/* if we have already created a change for this TCAM entry, then
* we need to remove that entry, in order to prevent writing to
* a TCAM entry we no longer will have ownership of.
*/
ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
tcam->tcam_idx = 0;
tcam->in_use = 0;
return status;
}
/* for re-enabling, reallocate a TCAM */
status = ice_alloc_tcam_ent(hw, blk, true, &tcam->tcam_idx);
if (status)
return status;
/* add TCAM to change list */
p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
if (!p)
return ICE_ERR_NO_MEMORY;
status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
tcam->ptg, vsig, 0, 0, vl_msk, dc_msk,
nm_msk);
if (status)
goto err_ice_prof_tcam_ena_dis;
tcam->in_use = 1;
p->type = ICE_TCAM_ADD;
p->add_tcam_idx = true;
p->prof_id = tcam->prof_id;
p->ptg = tcam->ptg;
p->vsig = 0;
p->tcam_idx = tcam->tcam_idx;
/* log change */
TAILQ_INSERT_HEAD(chg, p, list_entry);
return ICE_SUCCESS;
err_ice_prof_tcam_ena_dis:
ice_free(hw, p);
return status;
}
/**
* ice_adj_prof_priorities - adjust profile based on priorities
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsig: the VSIG for which to adjust profile priorities
* @chg: the change list
*/
enum ice_status
ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, uint16_t vsig,
struct ice_chs_chg_head *chg)
{
ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
enum ice_status status = ICE_SUCCESS;
struct ice_vsig_prof *t;
uint16_t idx;
ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
idx = vsig & ICE_VSIG_IDX_M;
/* Priority is based on the order in which the profiles are added. The
* newest added profile has highest priority and the oldest added
* profile has the lowest priority. Since the profile property list for
* a VSIG is sorted from newest to oldest, this code traverses the list
* in order and enables the first of each PTG that it finds (that is not
* already enabled); it also disables any duplicate PTGs that it finds
* in the older profiles (that are currently enabled).
*/
TAILQ_FOREACH(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, list) {
uint16_t i;
for (i = 0; i < t->tcam_count; i++) {
bool used;
/* Scan the priorities from newest to oldest.
* Make sure that the newest profiles take priority.
*/
used = ice_is_bit_set(ptgs_used, t->tcam[i].ptg);
if (used && t->tcam[i].in_use) {
/* need to mark this PTG as never match, as it
* was already in use and therefore duplicate
* (and lower priority)
*/
status = ice_prof_tcam_ena_dis(hw, blk, false,
vsig,
&t->tcam[i],
chg);
if (status)
return status;
} else if (!used && !t->tcam[i].in_use) {
/* need to enable this PTG, as it in not in use
* and not enabled (highest priority)
*/
status = ice_prof_tcam_ena_dis(hw, blk, true,
vsig,
&t->tcam[i],
chg);
if (status)
return status;
}
/* keep track of used ptgs */
ice_set_bit(t->tcam[i].ptg, ptgs_used);
}
}
return status;
}
/**
* ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsig: VSIG from which to copy the list
* @lst: output list
*
* This routine makes a copy of the list of profiles in the specified VSIG.
*/
enum ice_status
ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, uint16_t vsig,
struct ice_vsig_prof_head *lst)
{
struct ice_vsig_prof *ent1, *ent2;
uint16_t idx = vsig & ICE_VSIG_IDX_M;
TAILQ_FOREACH(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, list) {
struct ice_vsig_prof *p;
/* copy to the input list */
p = (struct ice_vsig_prof *)ice_memdup(hw, ent1, sizeof(*p));
if (!p)
goto err_ice_get_profs_vsig;
TAILQ_INSERT_TAIL(lst, p, list);
}
return ICE_SUCCESS;
err_ice_get_profs_vsig:
TAILQ_FOREACH_SAFE(ent1, lst, list, ent2) {
TAILQ_REMOVE(lst, ent1, list);
ice_free(hw, ent1);
}
return ICE_ERR_NO_MEMORY;
}
/**
* ice_rem_prof_from_list - remove a profile from list
* @hw: pointer to the HW struct
* @lst: list to remove the profile from
* @hdl: the profile handle indicating the profile to remove
*/
enum ice_status
ice_rem_prof_from_list(struct ice_hw *hw, struct ice_vsig_prof_head *lst,
uint64_t hdl)
{
struct ice_vsig_prof *ent, *tmp;
TAILQ_FOREACH_SAFE(ent, lst, list, tmp) {
if (ent->profile_cookie == hdl) {
TAILQ_REMOVE(lst, ent, list);
ice_free(hw, ent);
return ICE_SUCCESS;
}
}
return ICE_ERR_DOES_NOT_EXIST;
}
/**
* ice_vsig_remove_vsi - remove VSI from VSIG
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsi: VSI to remove
* @vsig: VSI group to remove from
*
* The function will remove the input VSI from its VSI group and move it
* to the DEFAULT_VSIG.
*/
enum ice_status
ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, uint16_t vsi,
uint16_t vsig)
{
struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
uint16_t idx;
idx = vsig & ICE_VSIG_IDX_M;
if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
return ICE_ERR_PARAM;
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
return ICE_ERR_DOES_NOT_EXIST;
/* entry already in default VSIG, don't have to remove */
if (idx == ICE_DEFAULT_VSIG)
return ICE_SUCCESS;
vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
if (!(*vsi_head))
return ICE_ERR_CFG;
vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
vsi_cur = (*vsi_head);
/* iterate the VSI list, skip over the entry to be removed */
while (vsi_cur) {
if (vsi_tgt == vsi_cur) {
(*vsi_head) = vsi_cur->next_vsi;
break;
}
vsi_head = &vsi_cur->next_vsi;
vsi_cur = vsi_cur->next_vsi;
}
/* verify if VSI was removed from group list */
if (!vsi_cur)
return ICE_ERR_DOES_NOT_EXIST;
vsi_cur->vsig = ICE_DEFAULT_VSIG;
vsi_cur->changed = 1;
vsi_cur->next_vsi = NULL;
return ICE_SUCCESS;
}
/**
* ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsi: VSI to move
* @vsig: destination VSI group
*
* This function will move or add the input VSI to the target VSIG.
* The function will find the original VSIG the VSI belongs to and
* move the entry to the DEFAULT_VSIG, update the original VSIG and
* then move entry to the new VSIG.
*/
enum ice_status
ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, uint16_t vsi,
uint16_t vsig)
{
struct ice_vsig_vsi *tmp;
enum ice_status status;
uint16_t orig_vsig, idx;
idx = vsig & ICE_VSIG_IDX_M;
if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
return ICE_ERR_PARAM;
/* if VSIG not in use and VSIG is not default type this VSIG
* doesn't exist.
*/
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
vsig != ICE_DEFAULT_VSIG)
return ICE_ERR_DOES_NOT_EXIST;
status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
if (status)
return status;
/* no update required if vsigs match */
if (orig_vsig == vsig)
return ICE_SUCCESS;
if (orig_vsig != ICE_DEFAULT_VSIG) {
/* remove entry from orig_vsig and add to default VSIG */
status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
if (status)
return status;
}
if (idx == ICE_DEFAULT_VSIG)
return ICE_SUCCESS;
/* Create VSI entry and add VSIG and prop_mask values */
hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
hw->blk[blk].xlt2.vsis[vsi].changed = 1;
/* Add new entry to the head of the VSIG list */
tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
&hw->blk[blk].xlt2.vsis[vsi];
hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
hw->blk[blk].xlt2.t[vsi] = vsig;
return ICE_SUCCESS;
}
/**
* ice_move_vsi - move VSI to another VSIG
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsi: the VSI to move
* @vsig: the VSIG to move the VSI to
* @chg: the change list
*/
enum ice_status
ice_move_vsi(struct ice_hw *hw, enum ice_block blk, uint16_t vsi, uint16_t vsig,
struct ice_chs_chg_head *chg)
{
enum ice_status status;
struct ice_chs_chg *p;
uint16_t orig_vsig;
p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
if (!p)
return ICE_ERR_NO_MEMORY;
status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
if (!status)
status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
if (status) {
ice_free(hw, p);
return status;
}
p->type = ICE_VSI_MOVE;
p->vsi = vsi;
p->orig_vsig = orig_vsig;
p->vsig = vsig;
TAILQ_INSERT_HEAD(chg, p, list_entry);
return ICE_SUCCESS;
}
/**
* ice_vsig_alloc_val - allocate a new VSIG by value
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsig: the VSIG to allocate
*
* This function will allocate a given VSIG specified by the VSIG parameter.
*/
uint16_t
ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, uint16_t vsig)
{
uint16_t idx = vsig & ICE_VSIG_IDX_M;
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
TAILQ_INIT(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
}
return ICE_VSIG_VALUE(idx, hw->pf_id);
}
/**
* ice_vsig_alloc - Finds a free entry and allocates a new VSIG
* @hw: pointer to the hardware structure
* @blk: HW block
*
* This function will iterate through the VSIG list and mark the first
* unused entry for the new VSIG entry as used and return that value.
*/
uint16_t
ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
{
uint16_t i;
for (i = 1; i < ICE_MAX_VSIGS; i++)
if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
return ice_vsig_alloc_val(hw, blk, i);
return ICE_DEFAULT_VSIG;
}
/**
* ice_has_prof_vsig - check to see if VSIG has a specific profile
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsig: VSIG to check against
* @hdl: profile handle
*/
bool
ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, uint16_t vsig,
uint64_t hdl)
{
uint16_t idx = vsig & ICE_VSIG_IDX_M;
struct ice_vsig_prof *ent;
TAILQ_FOREACH(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, list) {
if (ent->profile_cookie == hdl)
return true;
}
DNPRINTF(ICE_DBG_INIT,
"%s: Characteristic list for VSI group %d not found\n",
__func__, vsig);
return false;
}
/**
* ice_search_prof_id - Search for a profile tracking ID
* @hw: pointer to the HW struct
* @blk: hardware block
* @id: profile tracking ID
*
* This will search for a profile tracking ID which was previously added.
* The profile map lock should be held before calling this function.
*/
struct ice_prof_map *
ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, uint64_t id)
{
struct ice_prof_map *entry = NULL;
struct ice_prof_map *map;
TAILQ_FOREACH(map, &hw->blk[blk].es.prof_map, list) {
if (map->profile_cookie == id) {
entry = map;
break;
}
}
return entry;
}
/**
* ice_add_prof_id_vsig - add profile to VSIG
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsig: the VSIG to which this profile is to be added
* @hdl: the profile handle indicating the profile to add
* @rev: true to add entries to the end of the list
* @chg: the change list
*/
enum ice_status
ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, uint16_t vsig,
uint64_t hdl, bool rev, struct ice_chs_chg_head *chg)
{
/* Masks that ignore flags */
uint8_t vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
uint8_t dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
uint8_t nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
enum ice_status status = ICE_SUCCESS;
struct ice_prof_map *map;
struct ice_vsig_prof *t;
struct ice_chs_chg *p;
uint16_t vsig_idx, i;
/* Error, if this VSIG already has this profile */
if (ice_has_prof_vsig(hw, blk, vsig, hdl))
return ICE_ERR_ALREADY_EXISTS;
/* new VSIG profile structure */
t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
if (!t)
return ICE_ERR_NO_MEMORY;
#if 0
ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
#endif
/* Get the details on the profile specified by the handle ID */
map = ice_search_prof_id(hw, blk, hdl);
if (!map) {
status = ICE_ERR_DOES_NOT_EXIST;
goto err_ice_add_prof_id_vsig;
}
t->profile_cookie = map->profile_cookie;
t->prof_id = map->prof_id;
t->tcam_count = map->ptg_cnt;
/* create TCAM entries */
for (i = 0; i < map->ptg_cnt; i++) {
uint16_t tcam_idx;
/* add TCAM to change list */
p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
if (!p) {
status = ICE_ERR_NO_MEMORY;
goto err_ice_add_prof_id_vsig;
}
/* allocate the TCAM entry index */
status = ice_alloc_tcam_ent(hw, blk, true, &tcam_idx);
if (status) {
ice_free(hw, p);
goto err_ice_add_prof_id_vsig;
}
t->tcam[i].ptg = map->ptg[i];
t->tcam[i].prof_id = map->prof_id;
t->tcam[i].tcam_idx = tcam_idx;
t->tcam[i].in_use = true;
p->type = ICE_TCAM_ADD;
p->add_tcam_idx = true;
p->prof_id = t->tcam[i].prof_id;
p->ptg = t->tcam[i].ptg;
p->vsig = vsig;
p->tcam_idx = t->tcam[i].tcam_idx;
/* write the TCAM entry */
status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
t->tcam[i].prof_id,
t->tcam[i].ptg, vsig, 0, 0,
vl_msk, dc_msk, nm_msk);
if (status) {
ice_free(hw, p);
goto err_ice_add_prof_id_vsig;
}
/* log change */
TAILQ_INSERT_HEAD(chg, p, list_entry);
}
/* add profile to VSIG */
vsig_idx = vsig & ICE_VSIG_IDX_M;
if (rev)
TAILQ_INSERT_TAIL(
&hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst, t, list);
else
TAILQ_INSERT_HEAD(
&hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst, t, list);
#if 0
ice_release_lock(&hw->blk[blk].es.prof_map_lock);
#endif
return status;
err_ice_add_prof_id_vsig:
#if 0
ice_release_lock(&hw->blk[blk].es.prof_map_lock);
#endif
/* let caller clean up the change list */
ice_free(hw, t);
return status;
}
/**
* ice_create_vsig_from_lst - create a new VSIG with a list of profiles
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsi: the initial VSI that will be in VSIG
* @lst: the list of profile that will be added to the VSIG
* @new_vsig: return of new VSIG
* @chg: the change list
*/
enum ice_status
ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, uint16_t vsi,
struct ice_vsig_prof_head *lst, uint16_t *new_vsig,
struct ice_chs_chg_head *chg)
{
struct ice_vsig_prof *t;
enum ice_status status;
uint16_t vsig;
vsig = ice_vsig_alloc(hw, blk);
if (!vsig)
return ICE_ERR_HW_TABLE;
status = ice_move_vsi(hw, blk, vsi, vsig, chg);
if (status)
return status;
TAILQ_FOREACH(t, lst, list) {
/* Reverse the order here since we are copying the list */
status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
true, chg);
if (status)
return status;
}
*new_vsig = vsig;
return ICE_SUCCESS;
}
/**
* ice_upd_prof_hw - update hardware using the change list
* @hw: pointer to the HW struct
* @blk: hardware block
* @chgs: the list of changes to make in hardware
*/
enum ice_status
ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
struct ice_chs_chg_head *chgs)
{
#if 0
struct ice_buf_build *b;
struct ice_chs_chg *tmp;
enum ice_status status;
uint16_t pkg_sects;
uint16_t xlt1 = 0;
uint16_t xlt2 = 0;
uint16_t tcam = 0;
uint16_t es = 0;
uint16_t sects;
/* count number of sections we need */
TAILQ_FOREACH(p, chgs, list_entry) {
switch (tmp->type) {
case ICE_PTG_ES_ADD:
if (tmp->add_ptg)
xlt1++;
if (tmp->add_prof)
es++;
break;
case ICE_TCAM_ADD:
tcam++;
break;
case ICE_VSIG_ADD:
case ICE_VSI_MOVE:
case ICE_VSIG_REM:
xlt2++;
break;
default:
break;
}
}
sects = xlt1 + xlt2 + tcam + es;
if (!sects)
return ICE_SUCCESS;
/* Build update package buffer */
b = ice_pkg_buf_alloc(hw);
if (!b)
return ICE_ERR_NO_MEMORY;
status = ice_pkg_buf_reserve_section(b, sects);
if (status)
goto error_tmp;
/* Preserve order of table update: ES, TCAM, PTG, VSIG */
if (es) {
status = ice_prof_bld_es(hw, blk, b, chgs);
if (status)
goto error_tmp;
}
if (tcam) {
status = ice_prof_bld_tcam(hw, blk, b, chgs);
if (status)
goto error_tmp;
}
if (xlt1) {
status = ice_prof_bld_xlt1(blk, b, chgs);
if (status)
goto error_tmp;
}
if (xlt2) {
status = ice_prof_bld_xlt2(blk, b, chgs);
if (status)
goto error_tmp;
}
/* After package buffer build check if the section count in buffer is
* non-zero and matches the number of sections detected for package
* update.
*/
pkg_sects = ice_pkg_buf_get_active_sections(b);
if (!pkg_sects || pkg_sects != sects) {
status = ICE_ERR_INVAL_SIZE;
goto error_tmp;
}
/* update package */
status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
if (status == ICE_ERR_AQ_ERROR)
ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
error_tmp:
ice_pkg_buf_free(hw, b);
return status;
#else
printf("%s: not implemented\n", __func__);
return ICE_ERR_NOT_IMPL;
#endif
}
/**
* ice_match_prop_lst - determine if properties of two lists match
* @list1: first properties list
* @list2: second properties list
*
* Count, cookies and the order must match in order to be considered equivalent.
*/
bool
ice_match_prop_lst(struct ice_vsig_prof_head *list1,
struct ice_vsig_prof_head *list2)
{
struct ice_vsig_prof *tmp1, *tmp2;
uint16_t chk_count = 0;
uint16_t count = 0;
/* compare counts */
TAILQ_FOREACH(tmp1, list1, list)
count++;
TAILQ_FOREACH(tmp2, list2, list)
chk_count++;
if (!count || count != chk_count)
return false;
tmp1 = TAILQ_FIRST(list1);
tmp2 = TAILQ_FIRST(list2);
/* profile cookies must compare, and in the exact same order to take
* into account priority
*/
while (count--) {
if (tmp2->profile_cookie != tmp1->profile_cookie)
return false;
tmp1 = TAILQ_NEXT(tmp1, list);
tmp2 = TAILQ_NEXT(tmp2, list);
}
return true;
}
/**
* ice_find_dup_props_vsig - find VSI group with a specified set of properties
* @hw: pointer to the hardware structure
* @blk: HW block
* @chs: characteristic list
* @vsig: returns the VSIG with the matching profiles, if found
*
* Each VSIG is associated with a characteristic set; i.e. all VSIs under
* a group have the same characteristic set. To check if there exists a VSIG
* which has the same characteristics as the input characteristics; this
* function will iterate through the XLT2 list and return the VSIG that has a
* matching configuration. In order to make sure that priorities are accounted
* for, the list must match exactly, including the order in which the
* characteristics are listed.
*/
enum ice_status
ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
struct ice_vsig_prof_head *lst, uint16_t *vsig)
{
struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
uint16_t i;
for (i = 0; i < xlt2->count; i++) {
if (xlt2->vsig_tbl[i].in_use &&
ice_match_prop_lst(lst, &xlt2->vsig_tbl[i].prop_lst)) {
*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
return ICE_SUCCESS;
}
}
return ICE_ERR_DOES_NOT_EXIST;
}
/**
* ice_rem_prof_id_flow - remove flow
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsi: the VSI from which to remove the profile specified by ID
* @hdl: profile tracking handle
*
* Calling this function will update the hardware tables to remove the
* profile indicated by the ID parameter for the VSIs specified in the VSI
* array. Once successfully called, the flow will be disabled.
*/
enum ice_status
ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, uint16_t vsi,
uint64_t hdl)
{
struct ice_vsig_prof *tmp1, *del1;
struct ice_chs_chg *tmp, *del;
struct ice_chs_chg_head chg;
struct ice_vsig_prof_head copy;
enum ice_status status;
uint16_t vsig;
TAILQ_INIT(©);
TAILQ_INIT(&chg);
/* determine if VSI is already part of a VSIG */
status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
if (!status && vsig) {
bool last_profile;
bool only_vsi;
uint16_t ref;
/* found in VSIG */
last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
status = ice_vsig_get_ref(hw, blk, vsig, &ref);
if (status)
goto err_ice_rem_prof_id_flow;
only_vsi = (ref == 1);
if (only_vsi) {
/* If the original VSIG only contains one reference,
* which will be the requesting VSI, then the VSI is not
* sharing entries and we can simply remove the specific
* characteristics from the VSIG.
*/
if (last_profile) {
/* If there are no profiles left for this VSIG,
* then simply remove the VSIG.
*/
status = ice_rem_vsig(hw, blk, vsig, &chg);
if (status)
goto err_ice_rem_prof_id_flow;
} else {
status = ice_rem_prof_id_vsig(hw, blk, vsig,
hdl, &chg);
if (status)
goto err_ice_rem_prof_id_flow;
/* Adjust priorities */
status = ice_adj_prof_priorities(hw, blk, vsig,
&chg);
if (status)
goto err_ice_rem_prof_id_flow;
}
} else {
/* Make a copy of the VSIG's list of Profiles */
status = ice_get_profs_vsig(hw, blk, vsig, ©);
if (status)
goto err_ice_rem_prof_id_flow;
/* Remove specified profile entry from the list */
status = ice_rem_prof_from_list(hw, ©, hdl);
if (status)
goto err_ice_rem_prof_id_flow;
if (TAILQ_EMPTY(©)) {
status = ice_move_vsi(hw, blk, vsi,
ICE_DEFAULT_VSIG, &chg);
if (status)
goto err_ice_rem_prof_id_flow;
} else if (!ice_find_dup_props_vsig(hw, blk, ©,
&vsig)) {
/* found an exact match */
/* add or move VSI to the VSIG that matches */
/* Search for a VSIG with a matching profile
* list
*/
/* Found match, move VSI to the matching VSIG */
status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
if (status)
goto err_ice_rem_prof_id_flow;
} else {
/* since no existing VSIG supports this
* characteristic pattern, we need to create a
* new VSIG and TCAM entries
*/
status = ice_create_vsig_from_lst(hw, blk, vsi,
©, &vsig,
&chg);
if (status)
goto err_ice_rem_prof_id_flow;
/* Adjust priorities */
status = ice_adj_prof_priorities(hw, blk, vsig,
&chg);
if (status)
goto err_ice_rem_prof_id_flow;
}
}
} else {
status = ICE_ERR_DOES_NOT_EXIST;
}
/* update hardware tables */
if (!status)
status = ice_upd_prof_hw(hw, blk, &chg);
err_ice_rem_prof_id_flow:
TAILQ_FOREACH_SAFE(del, &chg, list_entry, tmp) {
TAILQ_REMOVE(&chg, del, list_entry);
ice_free(hw, del);
}
TAILQ_FOREACH_SAFE(del1, ©, list, tmp1) {
TAILQ_REMOVE(©, del1, list);
ice_free(hw, del1);
}
return status;
}
/**
* ice_flow_disassoc_prof - disassociate a VSI from a flow profile
* @hw: pointer to the hardware structure
* @blk: classification stage
* @prof: pointer to flow profile
* @vsi_handle: software VSI handle
*
* Assumption: the caller has acquired the lock to the profile list
* and the software VSI handle has been validated
*/
enum ice_status
ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
struct ice_flow_prof *prof, uint16_t vsi_handle)
{
enum ice_status status = ICE_SUCCESS;
if (ice_is_bit_set(prof->vsis, vsi_handle)) {
status = ice_rem_prof_id_flow(hw, blk,
hw->vsi_ctx[vsi_handle]->vsi_num, prof->id);
if (!status)
ice_clear_bit(vsi_handle, prof->vsis);
else
DNPRINTF(ICE_DBG_FLOW,
"%s: HW profile remove failed, %d\n",
__func__, status);
}
return status;
}
/**
* ice_flow_rem_prof - Remove a flow profile and all entries associated with it
* @hw: pointer to the HW struct
* @blk: the block for which the flow profile is to be removed
* @prof_id: unique ID of the flow profile to be removed
*/
enum ice_status
ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, uint64_t prof_id)
{
#if 0
struct ice_flow_prof *prof;
enum ice_status status;
ice_acquire_lock(&hw->fl_profs_locks[blk]);
prof = ice_flow_find_prof_id(hw, blk, prof_id);
if (!prof) {
status = ICE_ERR_DOES_NOT_EXIST;
goto out;
}
/* prof becomes invalid after the call */
status = ice_flow_rem_prof_sync(hw, blk, prof);
out:
ice_release_lock(&hw->fl_profs_locks[blk]);
return status;
#else
printf("%s: not implemented", __func__);
return ICE_ERR_NOT_IMPL;
#endif
}
/**
* ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
*
* This function will iterate through all flow profiles and disassociate
* the VSI from that profile. If the flow profile has no VSIs it will
* be removed.
*/
enum ice_status
ice_rem_vsi_rss_cfg(struct ice_hw *hw, uint16_t vsi_handle)
{
const enum ice_block blk = ICE_BLK_RSS;
struct ice_flow_prof *p, *t;
enum ice_status status = ICE_SUCCESS;
uint16_t vsig;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
if (TAILQ_EMPTY(&hw->fl_profs[blk]))
return ICE_SUCCESS;
#if 0
ice_acquire_lock(&hw->rss_locks);
#endif
TAILQ_FOREACH_SAFE(p, &hw->fl_profs[blk], l_entry, t) {
int ret;
/* check if vsig is already removed */
ret = ice_vsig_find_vsi(hw, blk,
hw->vsi_ctx[vsi_handle]->vsi_num, &vsig);
if (!ret && !vsig)
break;
if (ice_is_bit_set(p->vsis, vsi_handle)) {
status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
if (status)
break;
if (!ice_is_any_bit_set(p->vsis, ICE_MAX_VSI)) {
status = ice_flow_rem_prof(hw, blk, p->id);
if (status)
break;
}
}
}
#if 0
ice_release_lock(&hw->rss_locks);
#endif
return status;
}
/**
* ice_rem_vsi_rss_list - remove VSI from RSS list
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
*
* Remove the VSI from all RSS configurations in the list.
*/
void
ice_rem_vsi_rss_list(struct ice_hw *hw, uint16_t vsi_handle)
{
#if 0
struct ice_rss_cfg *r, *tmp;
if (LIST_EMPTY(&hw->rss_list_head))
return;
ice_acquire_lock(&hw->rss_locks);
LIST_FOR_EACH_ENTRY_SAFE(r, tmp, &hw->rss_list_head,
ice_rss_cfg, l_entry)
if (ice_test_and_clear_bit(vsi_handle, r->vsis))
if (!ice_is_any_bit_set(r->vsis, ICE_MAX_VSI)) {
LIST_DEL(&r->l_entry);
ice_free(hw, r);
}
ice_release_lock(&hw->rss_locks);
#else
printf("%s: not implemented\n", __func__);
#endif
}
/**
* ice_clean_vsi_rss_cfg - Cleanup RSS configuration for a given VSI
* @vsi: pointer to the VSI structure
*
* Cleanup the advanced RSS configuration for a given VSI. This is necessary
* during driver removal to ensure that all RSS resources are properly
* released.
*
* @remark this function doesn't report an error as it is expected to be
* called during driver reset and unload, and there isn't much the driver can
* do if freeing RSS resources fails.
*/
void
ice_clean_vsi_rss_cfg(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
status = ice_rem_vsi_rss_cfg(hw, vsi->idx);
if (status)
printf("%s: Failed to remove RSS configuration for VSI %d, "
"err %s\n", sc->sc_dev.dv_xname, vsi->idx,
ice_status_str(status));
/* Remove this VSI from the RSS list */
ice_rem_vsi_rss_list(hw, vsi->idx);
}
/**
* ice_remove_vsi_mirroring -- Teardown any VSI mirroring rules
* @vsi: VSI to remove mirror rules from
*/
void
ice_remove_vsi_mirroring(struct ice_vsi *vsi)
{
#if 0
struct ice_hw *hw = &vsi->sc->hw;
enum ice_status status = ICE_SUCCESS;
bool keep_alloc = false;
if (vsi->rule_mir_ingress != ICE_INVAL_MIRROR_RULE_ID)
status = ice_aq_delete_mir_rule(hw, vsi->rule_mir_ingress, keep_alloc, NULL);
if (status)
device_printf(vsi->sc->dev, "Could not remove mirror VSI ingress rule, err %s aq_err %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
status = ICE_SUCCESS;
if (vsi->rule_mir_egress != ICE_INVAL_MIRROR_RULE_ID)
status = ice_aq_delete_mir_rule(hw, vsi->rule_mir_egress, keep_alloc, NULL);
if (status)
device_printf(vsi->sc->dev, "Could not remove mirror VSI egress rule, err %s aq_err %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
#else
printf("%s: not implemented\n", __func__);
#endif
}
/**
* ice_sched_get_vsi_node - Get a VSI node based on VSI ID
* @pi: pointer to the port information structure
* @tc_node: pointer to the TC node
* @vsi_handle: software VSI handle
*
* This function retrieves a VSI node for a given VSI ID from a given
* TC branch
*/
struct ice_sched_node *
ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
uint16_t vsi_handle)
{
struct ice_sched_node *node;
uint8_t vsi_layer;
vsi_layer = ice_sched_get_vsi_layer(pi->hw);
node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
/* Check whether it already exists */
while (node) {
if (node->vsi_handle == vsi_handle)
return node;
node = node->sibling;
}
return node;
}
/**
* ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
* @node: pointer to the sub-tree node
*
* This function checks for a leaf node presence in a given sub-tree node.
*/
bool
ice_sched_is_leaf_node_present(struct ice_sched_node *node)
{
uint8_t i;
for (i = 0; i < node->num_children; i++)
if (ice_sched_is_leaf_node_present(node->children[i]))
return true;
/* check for a leaf node */
return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
}
/**
* ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
* @pi: port information structure
* @vsi_handle: software VSI handle
*
* This function removes single aggregator VSI info entry from
* aggregator list.
*/
void
ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, uint16_t vsi_handle)
{
#if 0
struct ice_sched_agg_info *agg_info;
struct ice_sched_agg_info *atmp;
LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &pi->hw->agg_list,
ice_sched_agg_info,
list_entry) {
struct ice_sched_agg_vsi_info *agg_vsi_info;
struct ice_sched_agg_vsi_info *vtmp;
LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
&agg_info->agg_vsi_list,
ice_sched_agg_vsi_info, list_entry)
if (agg_vsi_info->vsi_handle == vsi_handle) {
LIST_DEL(&agg_vsi_info->list_entry);
ice_free(pi->hw, agg_vsi_info);
return;
}
}
#else
printf("%s: not implemented\n", __func__);
#endif
}
/**
* ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
* @pi: port information structure
* @vsi_handle: software VSI handle
* @owner: LAN or RDMA
*
* This function removes the VSI and its LAN or RDMA children nodes from the
* scheduler tree.
*/
enum ice_status
ice_sched_rm_vsi_cfg(struct ice_port_info *pi, uint16_t vsi_handle,
uint8_t owner)
{
enum ice_status status = ICE_ERR_PARAM;
struct ice_vsi_ctx *vsi_ctx;
uint8_t i;
DNPRINTF(ICE_DBG_SCHED, "%s: removing VSI %d\n", __func__, vsi_handle);
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return status;
#if 0
ice_acquire_lock(&pi->sched_lock);
#endif
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
if (!vsi_ctx)
goto exit_sched_rm_vsi_cfg;
ice_for_each_traffic_class(i) {
struct ice_sched_node *vsi_node, *tc_node;
uint8_t j = 0;
tc_node = ice_sched_get_tc_node(pi, i);
if (!tc_node)
continue;
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
if (!vsi_node)
continue;
if (ice_sched_is_leaf_node_present(vsi_node)) {
DNPRINTF(ICE_DBG_SCHED,
"%s: VSI has leaf nodes in TC %d\n", __func__, i);
status = ICE_ERR_IN_USE;
goto exit_sched_rm_vsi_cfg;
}
while (j < vsi_node->num_children) {
if (vsi_node->children[j]->owner == owner) {
ice_free_sched_node(pi, vsi_node->children[j]);
/* reset the counter again since the num
* children will be updated after node removal
*/
j = 0;
} else {
j++;
}
}
/* remove the VSI if it has no children */
if (!vsi_node->num_children) {
ice_free_sched_node(pi, vsi_node);
vsi_ctx->sched.vsi_node[i] = NULL;
/* clean up aggregator related VSI info if any */
ice_sched_rm_agg_vsi_info(pi, vsi_handle);
}
if (owner == ICE_SCHED_NODE_OWNER_LAN)
vsi_ctx->sched.max_lanq[i] = 0;
else
vsi_ctx->sched.max_rdmaq[i] = 0;
}
status = ICE_SUCCESS;
exit_sched_rm_vsi_cfg:
#if 0
ice_release_lock(&pi->sched_lock);
#endif
return status;
}
/**
* ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
* @pi: port information structure
* @vsi_handle: software VSI handle
*
* This function clears the VSI and its LAN children nodes from scheduler tree
* for all TCs.
*/
enum ice_status
ice_rm_vsi_lan_cfg(struct ice_port_info *pi, uint16_t vsi_handle)
{
return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
}
/**
* ice_aq_free_vsi
* @hw: pointer to the HW struct
* @vsi_ctx: pointer to a VSI context struct
* @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
* @cd: pointer to command details structure or NULL
*
* Free VSI context info from hardware (0x0213)
*/
enum ice_status
ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
bool keep_vsi_alloc, struct ice_sq_cd *cd)
{
struct ice_aqc_add_update_free_vsi_resp *resp;
struct ice_aqc_add_get_update_free_vsi *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.vsi_cmd;
resp = &desc.params.add_update_free_vsi_res;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
cmd->vsi_num = htole16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
if (keep_vsi_alloc)
cmd->cmd_flags = htole16(ICE_AQ_VSI_KEEP_ALLOC);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
if (!status) {
vsi_ctx->vsis_allocd = le16toh(resp->vsi_used);
vsi_ctx->vsis_unallocated = le16toh(resp->vsi_free);
}
return status;
}
/**
* ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
* @hw: pointer to the HW struct
* @vsi_handle: VSI handle
*/
void
ice_clear_vsi_q_ctx(struct ice_hw *hw, uint16_t vsi_handle)
{
struct ice_vsi_ctx *vsi;
uint8_t i;
vsi = ice_get_vsi_ctx(hw, vsi_handle);
if (!vsi)
return;
ice_for_each_traffic_class(i) {
if (vsi->lan_q_ctx[i]) {
ice_free(hw, vsi->lan_q_ctx[i]);
vsi->lan_q_ctx[i] = NULL;
}
if (vsi->rdma_q_ctx[i]) {
ice_free(hw, vsi->rdma_q_ctx[i]);
vsi->rdma_q_ctx[i] = NULL;
}
}
}
/**
* ice_clear_vsi_ctx - clear the VSI context entry
* @hw: pointer to the HW struct
* @vsi_handle: VSI handle
*
* clear the VSI context entry
*/
void
ice_clear_vsi_ctx(struct ice_hw *hw, uint16_t vsi_handle)
{
struct ice_vsi_ctx *vsi;
vsi = ice_get_vsi_ctx(hw, vsi_handle);
if (vsi) {
ice_clear_vsi_q_ctx(hw, vsi_handle);
ice_free(hw, vsi);
hw->vsi_ctx[vsi_handle] = NULL;
}
}
/**
* ice_free_vsi- free VSI context from hardware and VSI handle list
* @hw: pointer to the HW struct
* @vsi_handle: unique VSI handle
* @vsi_ctx: pointer to a VSI context struct
* @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
* @cd: pointer to command details structure or NULL
*
* Free VSI context info from hardware as well as from VSI handle list
*/
enum ice_status
ice_free_vsi(struct ice_hw *hw, uint16_t vsi_handle,
struct ice_vsi_ctx *vsi_ctx, bool keep_vsi_alloc, struct ice_sq_cd *cd)
{
enum ice_status status;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
vsi_ctx->vsi_num = hw->vsi_ctx[vsi_handle]->vsi_num;
status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
if (!status)
ice_clear_vsi_ctx(hw, vsi_handle);
return status;
}
/**
* ice_deinit_vsi - Tell firmware to release resources for a VSI
* @vsi: the VSI to release
*
* Helper function which requests the firmware to release the hardware
* resources associated with a given VSI.
*/
void
ice_deinit_vsi(struct ice_vsi *vsi)
{
struct ice_vsi_ctx ctx = { 0 };
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
/* Assert that the VSI pointer matches in the list */
KASSERT(vsi == sc->all_vsi[vsi->idx]);
ctx.info = vsi->info;
status = ice_rm_vsi_lan_cfg(hw->port_info, vsi->idx);
if (status) {
/*
* This should only fail if the VSI handle is invalid, or if
* any of the nodes have leaf nodes which are still in use.
*/
printf("%s: Unable to remove scheduler nodes for VSI %d, "
"err %s\n", sc->sc_dev.dv_xname, vsi->idx,
ice_status_str(status));
}
/* Tell firmware to release the VSI resources */
status = ice_free_vsi(hw, vsi->idx, &ctx, false, NULL);
if (status != 0) {
printf("%s: Free VSI %u AQ call failed, err %s aq_err %s\n",
sc->sc_dev.dv_xname, vsi->idx, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
}
/**
* ice_free_vsi_qmaps - Free the PF qmaps associated with a VSI
* @vsi: the VSI private structure
*
* Frees the PF qmaps associated with the given VSI. Generally this will be
* called by ice_release_vsi, but may need to be called during attach cleanup,
* depending on when the qmaps were allocated.
*/
void
ice_free_vsi_qmaps(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
if (vsi->tx_qmap) {
ice_resmgr_release_map(&sc->tx_qmgr, vsi->tx_qmap,
vsi->num_tx_queues);
free(vsi->tx_qmap, M_DEVBUF,
vsi->num_tx_queues * sizeof(uint16_t));
vsi->tx_qmap = NULL;
}
if (vsi->rx_qmap) {
ice_resmgr_release_map(&sc->rx_qmgr, vsi->rx_qmap,
vsi->num_rx_queues);
free(vsi->rx_qmap, M_DEVBUF,
vsi->num_rx_queues * sizeof(uint16_t));
vsi->rx_qmap = NULL;
}
}
/**
* ice_release_vsi - Release resources associated with a VSI
* @vsi: the VSI to release
*
* Release software and firmware resources associated with a VSI. Release the
* queue managers associated with this VSI. Also free the VSI structure memory
* if the VSI was allocated dynamically using ice_alloc_vsi().
*/
void
ice_release_vsi(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
int idx = vsi->idx;
/* Assert that the VSI pointer matches in the list */
KASSERT(vsi == sc->all_vsi[idx]);
/* Cleanup RSS configuration */
if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_RSS))
ice_clean_vsi_rss_cfg(vsi);
#if 0
ice_del_vsi_sysctl_ctx(vsi);
#endif
/* Remove the configured mirror rule, if it exists */
ice_remove_vsi_mirroring(vsi);
/*
* If we unload the driver after a reset fails, we do not need to do
* this step.
*/
if (!ice_test_state(&sc->state, ICE_STATE_RESET_FAILED))
ice_deinit_vsi(vsi);
ice_free_vsi_qmaps(vsi);
if (vsi->dynamic)
free(sc->all_vsi[idx], M_DEVBUF, sizeof(struct ice_vsi));
sc->all_vsi[idx] = NULL;
}
/**
* ice_transition_recovery_mode - Transition to recovery mode
* @sc: the device private softc
*
* Called when the driver detects that the firmware has entered recovery mode
* at run time.
*/
void
ice_transition_recovery_mode(struct ice_softc *sc)
{
#if 0
struct ice_vsi *vsi = &sc->pf_vsi;
#endif
struct ifnet *ifp = &sc->sc_ac.ac_if;
int i;
printf("%s: firmware has switched into recovery mode",
sc->sc_dev.dv_xname);
/* Tell the stack that the link has gone down */
ifp->if_link_state = LINK_STATE_DOWN;
if_link_state_change(ifp);
#if 0
ice_rdma_pf_detach(sc);
#endif
ice_clear_bit(ICE_FEATURE_RDMA, sc->feat_cap);
ice_clear_bit(ICE_FEATURE_SRIOV, sc->feat_en);
ice_clear_bit(ICE_FEATURE_SRIOV, sc->feat_cap);
#if 0
ice_vsi_del_txqs_ctx(vsi);
ice_vsi_del_rxqs_ctx(vsi);
#endif
for (i = 0; i < sc->num_available_vsi; i++) {
if (sc->all_vsi[i])
ice_release_vsi(sc->all_vsi[i]);
}
if (sc->all_vsi) {
free(sc->all_vsi, M_DEVBUF,
sc->num_available_vsi * sizeof(struct ice_vsi *));
sc->all_vsi = NULL;
}
sc->num_available_vsi = 0;
/* Destroy the interrupt manager */
ice_resmgr_destroy(&sc->dev_imgr);
/* Destroy the queue managers */
ice_resmgr_destroy(&sc->tx_qmgr);
ice_resmgr_destroy(&sc->rx_qmgr);
ice_deinit_hw(&sc->hw);
}
/**
* ice_clear_hw_tbls - clear HW tables and flow profiles
* @hw: pointer to the hardware structure
*/
void
ice_clear_hw_tbls(struct ice_hw *hw)
{
uint8_t i;
for (i = 0; i < ICE_BLK_COUNT; i++) {
struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
struct ice_prof_tcam *prof = &hw->blk[i].prof;
struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
struct ice_es *es = &hw->blk[i].es;
if (hw->blk[i].is_list_init) {
ice_free_prof_map(hw, i);
ice_free_flow_profs(hw, i);
}
ice_free_vsig_tbl(hw, (enum ice_block)i);
if (xlt1->ptypes)
memset(xlt1->ptypes, 0,
xlt1->count * sizeof(*xlt1->ptypes));
if (xlt1->ptg_tbl)
memset(xlt1->ptg_tbl, 0,
ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
if (xlt1->t)
memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
if (xlt2->vsis)
memset(xlt2->vsis, 0,
xlt2->count * sizeof(*xlt2->vsis));
if (xlt2->vsig_tbl)
memset(xlt2->vsig_tbl, 0,
xlt2->count * sizeof(*xlt2->vsig_tbl));
if (xlt2->t)
memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
if (prof->t)
memset(prof->t, 0, prof->count * sizeof(*prof->t));
if (prof_redir->t)
memset(prof_redir->t, 0,
prof_redir->count * sizeof(*prof_redir->t));
if (es->t)
memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
if (es->ref_count)
memset(es->ref_count, 0,
es->count * sizeof(*es->ref_count));
if (es->written)
memset(es->written, 0,
es->count * sizeof(*es->written));
}
}
/**
* ice_prepare_for_reset - Prepare device for an impending reset
* @sc: The device private softc
*
* Prepare the driver for an impending reset, shutting down VSIs, clearing the
* scheduler setup, and shutting down controlqs. Uses the
* ICE_STATE_PREPARED_FOR_RESET to indicate whether we've already prepared the
* driver for reset or not.
*/
void
ice_prepare_for_reset(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
/* If we're already prepared, there's nothing to do */
if (ice_testandset_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET))
return;
DPRINTF("%s: preparing to reset device\n", sc->sc_dev.dv_xname);
/* In recovery mode, hardware is not initialized */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return;
#if 0
/* inform the RDMA client */
ice_rdma_notify_reset(sc);
/* stop the RDMA client */
ice_rdma_pf_stop(sc);
#endif
/* Release the main PF VSI queue mappings */
ice_resmgr_release_map(&sc->tx_qmgr, sc->pf_vsi.tx_qmap,
sc->pf_vsi.num_tx_queues);
ice_resmgr_release_map(&sc->rx_qmgr, sc->pf_vsi.rx_qmap,
sc->pf_vsi.num_rx_queues);
#if 0
if (sc->mirr_if) {
ice_resmgr_release_map(&sc->tx_qmgr, sc->mirr_if->vsi->tx_qmap,
sc->mirr_if->num_irq_vectors);
ice_resmgr_release_map(&sc->rx_qmgr, sc->mirr_if->vsi->rx_qmap,
sc->mirr_if->num_irq_vectors);
}
#endif
ice_clear_hw_tbls(hw);
if (hw->port_info)
ice_sched_cleanup_all(hw);
ice_shutdown_all_ctrlq(hw, false);
}
/**
* ice_configure_misc_interrupts - enable 'other' interrupt causes
* @sc: pointer to device private softc
*
* Enable various "other" interrupt causes, and associate them to interrupt 0,
* which is our administrative interrupt.
*/
void
ice_configure_misc_interrupts(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
uint32_t val;
/* Read the OICR register to clear it */
ICE_READ(hw, PFINT_OICR);
/* Enable useful "other" interrupt causes */
val = (PFINT_OICR_ECC_ERR_M |
PFINT_OICR_MAL_DETECT_M |
PFINT_OICR_GRST_M |
PFINT_OICR_PCI_EXCEPTION_M |
PFINT_OICR_VFLR_M |
PFINT_OICR_HMC_ERR_M |
PFINT_OICR_PE_CRITERR_M);
ICE_WRITE(hw, PFINT_OICR_ENA, val);
/* Note that since we're using MSI-X index 0, and ITR index 0, we do
* not explicitly program them when writing to the PFINT_*_CTL
* registers. Nevertheless, these writes are associating the
* interrupts with the ITR 0 vector
*/
/* Associate the OICR interrupt with ITR 0, and enable it */
ICE_WRITE(hw, PFINT_OICR_CTL, PFINT_OICR_CTL_CAUSE_ENA_M);
/* Associate the Mailbox interrupt with ITR 0, and enable it */
ICE_WRITE(hw, PFINT_MBX_CTL, PFINT_MBX_CTL_CAUSE_ENA_M);
/* Associate the AdminQ interrupt with ITR 0, and enable it */
ICE_WRITE(hw, PFINT_FW_CTL, PFINT_FW_CTL_CAUSE_ENA_M);
}
void
ice_request_stack_reinit(struct ice_softc *sc)
{
printf("%s: not implemented\n", __func__);
}
/**
* ice_rebuild_recovery_mode - Rebuild driver state while in recovery mode
* @sc: The device private softc
*
* Handle a driver rebuild while in recovery mode. This will only rebuild the
* limited functionality supported while in recovery mode.
*/
void
ice_rebuild_recovery_mode(struct ice_softc *sc)
{
#if 0
/* enable PCIe bus master */
pci_enable_busmaster(dev);
#endif
/* Configure interrupt causes for the administrative interrupt */
ice_configure_misc_interrupts(sc);
/* Enable ITR 0 right away, so that we can handle admin interrupts */
ice_enable_intr(&sc->hw, 0);
/* Rebuild is finished. We're no longer prepared to reset */
ice_clear_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET);
printf("%s: device rebuild successful\n", sc->sc_dev.dv_xname);
/* In order to completely restore device functionality, the iflib core
* needs to be reset. We need to request an iflib reset. Additionally,
* because the state of IFC_DO_RESET is cached within task_fn_admin in
* the iflib core, we also want re-run the admin task so that iflib
* resets immediately instead of waiting for the next interrupt.
*/
ice_request_stack_reinit(sc);
}
/**
* ice_clean_all_vsi_rss_cfg - Cleanup RSS configuration for all VSIs
* @sc: the device softc pointer
*
* Cleanup the advanced RSS configuration for all VSIs on a given PF
* interface.
*
* @remark This should be called while preparing for a reset, to cleanup stale
* RSS configuration for all VSIs.
*/
void
ice_clean_all_vsi_rss_cfg(struct ice_softc *sc)
{
int i;
/* No need to cleanup if RSS is not enabled */
if (!ice_is_bit_set(sc->feat_en, ICE_FEATURE_RSS))
return;
for (i = 0; i < sc->num_available_vsi; i++) {
struct ice_vsi *vsi = sc->all_vsi[i];
if (vsi)
ice_clean_vsi_rss_cfg(vsi);
}
}
/**
* ice_reset_pf_stats - Reset port stats counters
* @sc: Device private softc structure
*
* Reset software tracking values for statistics to zero, and indicate that
* offsets haven't been loaded. Intended to be called after a device reset so
* that statistics count from zero again.
*/
void
ice_reset_pf_stats(struct ice_softc *sc)
{
#if 0
memset(&sc->stats.prev, 0, sizeof(sc->stats.prev));
memset(&sc->stats.cur, 0, sizeof(sc->stats.cur));
sc->stats.offsets_loaded = false;
#endif
}
/**
* ice_rebuild_pf_vsi_qmap - Rebuild the main PF VSI queue mapping
* @sc: the device softc pointer
*
* Loops over the Tx and Rx queues for the main PF VSI and reassigns the queue
* mapping after a reset occurred.
*/
int
ice_rebuild_pf_vsi_qmap(struct ice_softc *sc)
{
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_tx_queue *txq;
struct ice_rx_queue *rxq;
int err, i;
/* Re-assign Tx queues from PF space to the main VSI */
err = ice_resmgr_assign_contiguous(&sc->tx_qmgr, vsi->tx_qmap,
vsi->num_tx_queues);
if (err) {
printf("%s: Unable to re-assign PF Tx queues: %d\n",
sc->sc_dev.dv_xname, err);
return (err);
}
/* Re-assign Rx queues from PF space to this VSI */
err = ice_resmgr_assign_contiguous(&sc->rx_qmgr, vsi->rx_qmap,
vsi->num_rx_queues);
if (err) {
printf("%s: Unable to re-assign PF Rx queues: %d\n",
sc->sc_dev.dv_xname, err);
goto err_release_tx_queues;
}
vsi->qmap_type = ICE_RESMGR_ALLOC_CONTIGUOUS;
/* Re-assign Tx queue tail pointers */
for (i = 0, txq = vsi->tx_queues; i < vsi->num_tx_queues; i++, txq++)
txq->tail = QTX_COMM_DBELL(vsi->tx_qmap[i]);
/* Re-assign Rx queue tail pointers */
for (i = 0, rxq = vsi->rx_queues; i < vsi->num_rx_queues; i++, rxq++)
rxq->tail = QRX_TAIL(vsi->rx_qmap[i]);
return (0);
err_release_tx_queues:
ice_resmgr_release_map(&sc->tx_qmgr, sc->pf_vsi.tx_qmap,
sc->pf_vsi.num_tx_queues);
return (err);
}
#define ICE_UP_TABLE_TRANSLATE(val, i) \
(((val) << ICE_AQ_VSI_UP_TABLE_UP##i##_S) & \
ICE_AQ_VSI_UP_TABLE_UP##i##_M)
/**
* ice_set_default_vsi_ctx - Setup default VSI context parameters
* @ctx: the VSI context to initialize
*
* Initialize and prepare a default VSI context for configuring a new VSI.
*/
void
ice_set_default_vsi_ctx(struct ice_vsi_ctx *ctx)
{
uint32_t table = 0;
memset(&ctx->info, 0, sizeof(ctx->info));
/* VSI will be allocated from shared pool */
ctx->alloc_from_pool = true;
/* Enable source pruning by default */
ctx->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
/* Traffic from VSI can be sent to LAN */
ctx->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
/* Allow all packets untagged/tagged */
ctx->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
/* Show VLAN/UP from packets in Rx descriptors */
ctx->info.inner_vlan_flags |= ((ICE_AQ_VSI_INNER_VLAN_EMODE_STR_BOTH &
ICE_AQ_VSI_INNER_VLAN_EMODE_M) >>
ICE_AQ_VSI_INNER_VLAN_EMODE_S);
/* Have 1:1 UP mapping for both ingress/egress tables */
table |= ICE_UP_TABLE_TRANSLATE(0, 0);
table |= ICE_UP_TABLE_TRANSLATE(1, 1);
table |= ICE_UP_TABLE_TRANSLATE(2, 2);
table |= ICE_UP_TABLE_TRANSLATE(3, 3);
table |= ICE_UP_TABLE_TRANSLATE(4, 4);
table |= ICE_UP_TABLE_TRANSLATE(5, 5);
table |= ICE_UP_TABLE_TRANSLATE(6, 6);
table |= ICE_UP_TABLE_TRANSLATE(7, 7);
ctx->info.ingress_table = htole32(table);
ctx->info.egress_table = htole32(table);
/* Have 1:1 UP mapping for outer to inner UP table */
ctx->info.outer_up_table = htole32(table);
/* No Outer tag support, so outer_vlan_flags remains zero */
}
/**
* ice_set_rss_vsi_ctx - Setup VSI context parameters for RSS
* @ctx: the VSI context to configure
* @type: the VSI type
*
* Configures the VSI context for RSS, based on the VSI type.
*/
void
ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctx, enum ice_vsi_type type)
{
uint8_t lut_type, hash_type;
switch (type) {
case ICE_VSI_PF:
lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
break;
case ICE_VSI_VF:
case ICE_VSI_VMDQ2:
lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
break;
default:
/* Other VSI types do not support RSS */
return;
}
ctx->info.q_opt_rss = (((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
ICE_AQ_VSI_Q_OPT_RSS_HASH_M));
}
/**
* ice_vsi_set_rss_params - Set the RSS parameters for the VSI
* @vsi: the VSI to configure
*
* Sets the RSS table size and lookup table type for the VSI based on its
* VSI type.
*/
void
ice_vsi_set_rss_params(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
struct ice_hw_common_caps *cap;
cap = &sc->hw.func_caps.common_cap;
switch (vsi->type) {
case ICE_VSI_PF:
/* The PF VSI inherits RSS instance of the PF */
vsi->rss_table_size = cap->rss_table_size;
vsi->rss_lut_type = ICE_LUT_PF;
break;
case ICE_VSI_VF:
case ICE_VSI_VMDQ2:
vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
vsi->rss_lut_type = ICE_LUT_VSI;
break;
default:
DPRINTF("%s: VSI %d: RSS not supported for VSI type %d\n",
__func__, vsi->idx, vsi->type);
break;
}
}
/**
* ice_setup_vsi_qmap - Setup the queue mapping for a VSI
* @vsi: the VSI to configure
* @ctx: the VSI context to configure
*
* Configures the context for the given VSI, setting up how the firmware
* should map the queues for this VSI.
*
* @pre vsi->qmap_type is set to a valid type
*/
int
ice_setup_vsi_qmap(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
{
int pow = 0;
uint16_t qmap;
KASSERT(vsi->rx_qmap != NULL);
switch (vsi->qmap_type) {
case ICE_RESMGR_ALLOC_CONTIGUOUS:
ctx->info.mapping_flags |= htole16(ICE_AQ_VSI_Q_MAP_CONTIG);
ctx->info.q_mapping[0] = htole16(vsi->rx_qmap[0]);
ctx->info.q_mapping[1] = htole16(vsi->num_rx_queues);
break;
case ICE_RESMGR_ALLOC_SCATTERED:
ctx->info.mapping_flags |= htole16(ICE_AQ_VSI_Q_MAP_NONCONTIG);
for (int i = 0; i < vsi->num_rx_queues; i++)
ctx->info.q_mapping[i] = htole16(vsi->rx_qmap[i]);
break;
default:
return (EOPNOTSUPP);
}
/* Calculate the next power-of-2 of number of queues */
if (vsi->num_rx_queues)
pow = flsl(vsi->num_rx_queues - 1);
/* Assign all the queues to traffic class zero */
qmap = (pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M;
ctx->info.tc_mapping[0] = htole16(qmap);
/* Fill out default driver TC queue info for VSI */
vsi->tc_info[0].qoffset = 0;
vsi->tc_info[0].qcount_rx = vsi->num_rx_queues;
vsi->tc_info[0].qcount_tx = vsi->num_tx_queues;
for (int i = 1; i < ICE_MAX_TRAFFIC_CLASS; i++) {
vsi->tc_info[i].qoffset = 0;
vsi->tc_info[i].qcount_rx = 1;
vsi->tc_info[i].qcount_tx = 1;
}
vsi->tc_map = 0x1;
return 0;
}
/**
* ice_aq_add_vsi
* @hw: pointer to the HW struct
* @vsi_ctx: pointer to a VSI context struct
* @cd: pointer to command details structure or NULL
*
* Add a VSI context to the hardware (0x0210)
*/
enum ice_status
ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
struct ice_sq_cd *cd)
{
struct ice_aqc_add_update_free_vsi_resp *res;
struct ice_aqc_add_get_update_free_vsi *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.vsi_cmd;
res = &desc.params.add_update_free_vsi_res;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
if (!vsi_ctx->alloc_from_pool)
cmd->vsi_num = htole16(vsi_ctx->vsi_num |
ICE_AQ_VSI_IS_VALID);
cmd->vf_id = vsi_ctx->vf_num;
cmd->vsi_flags = htole16(vsi_ctx->flags);
desc.flags |= htole16(ICE_AQ_FLAG_RD);
status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
sizeof(vsi_ctx->info), cd);
if (!status) {
vsi_ctx->vsi_num = le16toh(res->vsi_num) & ICE_AQ_VSI_NUM_M;
vsi_ctx->vsis_allocd = le16toh(res->vsi_used);
vsi_ctx->vsis_unallocated = le16toh(res->vsi_free);
}
return status;
}
/**
* ice_add_vsi - add VSI context to the hardware and VSI handle list
* @hw: pointer to the HW struct
* @vsi_handle: unique VSI handle provided by drivers
* @vsi_ctx: pointer to a VSI context struct
* @cd: pointer to command details structure or NULL
*
* Add a VSI context to the hardware also add it into the VSI handle list.
* If this function gets called after reset for existing VSIs then update
* with the new HW VSI number in the corresponding VSI handle list entry.
*/
enum ice_status
ice_add_vsi(struct ice_hw *hw, uint16_t vsi_handle, struct ice_vsi_ctx *vsi_ctx,
struct ice_sq_cd *cd)
{
struct ice_vsi_ctx *tmp_vsi_ctx;
enum ice_status status;
if (vsi_handle >= ICE_MAX_VSI)
return ICE_ERR_PARAM;
status = ice_aq_add_vsi(hw, vsi_ctx, cd);
if (status)
return status;
tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
if (!tmp_vsi_ctx) {
/* Create a new VSI context */
tmp_vsi_ctx = (struct ice_vsi_ctx *)
ice_malloc(hw, sizeof(*tmp_vsi_ctx));
if (!tmp_vsi_ctx) {
ice_aq_free_vsi(hw, vsi_ctx, false, cd);
return ICE_ERR_NO_MEMORY;
}
*tmp_vsi_ctx = *vsi_ctx;
hw->vsi_ctx[vsi_handle] = tmp_vsi_ctx;
} else {
/* update with new HW VSI num */
tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
}
return ICE_SUCCESS;
}
/**
* ice_aq_suspend_sched_elems - suspend scheduler elements
* @hw: pointer to the HW struct
* @elems_req: number of elements to suspend
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @elems_ret: returns total number of elements suspended
* @cd: pointer to command details structure or NULL
*
* Suspend scheduling elements (0x0409)
*/
enum ice_status
ice_aq_suspend_sched_elems(struct ice_hw *hw, uint16_t elems_req, uint32_t *buf,
uint16_t buf_size, uint16_t *elems_ret, struct ice_sq_cd *cd)
{
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
elems_req, (void *)buf, buf_size,
elems_ret, cd);
}
/**
* ice_aq_resume_sched_elems - resume scheduler elements
* @hw: pointer to the HW struct
* @elems_req: number of elements to resume
* @buf: pointer to buffer
* @buf_size: buffer size in bytes
* @elems_ret: returns total number of elements resumed
* @cd: pointer to command details structure or NULL
*
* resume scheduling elements (0x040A)
*/
enum ice_status
ice_aq_resume_sched_elems(struct ice_hw *hw, uint16_t elems_req, uint32_t *buf,
uint16_t buf_size, uint16_t *elems_ret, struct ice_sq_cd *cd)
{
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
elems_req, (void *)buf, buf_size,
elems_ret, cd);
}
/**
* ice_sched_suspend_resume_elems - suspend or resume HW nodes
* @hw: pointer to the HW struct
* @num_nodes: number of nodes
* @node_teids: array of node teids to be suspended or resumed
* @suspend: true means suspend / false means resume
*
* This function suspends or resumes HW nodes
*/
enum ice_status
ice_sched_suspend_resume_elems(struct ice_hw *hw, uint8_t num_nodes,
uint32_t *node_teids, bool suspend)
{
uint16_t i, buf_size, num_elem_ret = 0;
enum ice_status status;
uint32_t *buf;
buf_size = sizeof(*buf) * num_nodes;
buf = (uint32_t *)ice_malloc(hw, buf_size);
if (!buf)
return ICE_ERR_NO_MEMORY;
for (i = 0; i < num_nodes; i++)
buf[i] = htole32(node_teids[i]);
if (suspend)
status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
buf_size, &num_elem_ret,
NULL);
else
status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
buf_size, &num_elem_ret,
NULL);
if (status != ICE_SUCCESS || num_elem_ret != num_nodes)
DNPRINTF(ICE_DBG_SCHED, "%s: suspend/resume failed\n",
__func__);
ice_free(hw, buf);
return status;
}
/**
* ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
* @pi: pointer to the port info structure
* @tc_node: pointer to TC node
* @num_nodes: pointer to num nodes array
*
* This function calculates the number of supported nodes needed to add this
* VSI into Tx tree including the VSI, parent and intermediate nodes in below
* layers
*/
void
ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
struct ice_sched_node *tc_node, uint16_t *num_nodes)
{
struct ice_sched_node *node;
uint8_t vsil;
int i;
vsil = ice_sched_get_vsi_layer(pi->hw);
for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--) {
/* Add intermediate nodes if TC has no children and
* need at least one node for VSI
*/
if (!tc_node->num_children || i == vsil) {
num_nodes[i]++;
} else {
/* If intermediate nodes are reached max children
* then add a new one.
*/
node = ice_sched_get_first_node(pi, tc_node, (uint8_t)i);
/* scan all the siblings */
while (node) {
if (node->num_children <
pi->hw->max_children[i])
break;
node = node->sibling;
}
/* tree has one intermediate node to add this new VSI.
* So no need to calculate supported nodes for below
* layers.
*/
if (node)
break;
/* all the nodes are full, allocate a new one */
num_nodes[i]++;
}
}
}
/**
* ice_sched_add_elems - add nodes to HW and SW DB
* @pi: port information structure
* @tc_node: pointer to the branch node
* @parent: pointer to the parent node
* @layer: layer number to add nodes
* @num_nodes: number of nodes
* @num_nodes_added: pointer to num nodes added
* @first_node_teid: if new nodes are added then return the TEID of first node
* @prealloc_nodes: preallocated nodes struct for software DB
*
* This function add nodes to HW as well as to SW DB for a given layer
*/
enum ice_status
ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
struct ice_sched_node *parent, uint8_t layer, uint16_t num_nodes,
uint16_t *num_nodes_added, uint32_t *first_node_teid,
struct ice_sched_node **prealloc_nodes)
{
struct ice_sched_node *prev, *new_node;
struct ice_aqc_add_elem *buf;
uint16_t i, num_groups_added = 0;
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw = pi->hw;
uint16_t buf_size;
uint32_t teid;
buf_size = ice_struct_size(buf, generic, num_nodes);
buf = (struct ice_aqc_add_elem *)ice_malloc(hw, buf_size);
if (!buf)
return ICE_ERR_NO_MEMORY;
buf->hdr.parent_teid = parent->info.node_teid;
buf->hdr.num_elems = htole16(num_nodes);
for (i = 0; i < num_nodes; i++) {
buf->generic[i].parent_teid = parent->info.node_teid;
buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
buf->generic[i].data.valid_sections =
ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
ICE_AQC_ELEM_VALID_EIR;
buf->generic[i].data.generic = 0;
buf->generic[i].data.cir_bw.bw_profile_idx =
htole16(ICE_SCHED_DFLT_RL_PROF_ID);
buf->generic[i].data.cir_bw.bw_alloc =
htole16(ICE_SCHED_DFLT_BW_WT);
buf->generic[i].data.eir_bw.bw_profile_idx =
htole16(ICE_SCHED_DFLT_RL_PROF_ID);
buf->generic[i].data.eir_bw.bw_alloc =
htole16(ICE_SCHED_DFLT_BW_WT);
}
status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
&num_groups_added, NULL);
if (status != ICE_SUCCESS || num_groups_added != 1) {
DNPRINTF(ICE_DBG_SCHED, "%s: add node failed FW Error %d\n",
__func__, hw->adminq.sq_last_status);
ice_free(hw, buf);
return ICE_ERR_CFG;
}
*num_nodes_added = num_nodes;
/* add nodes to the SW DB */
for (i = 0; i < num_nodes; i++) {
if (prealloc_nodes) {
status = ice_sched_add_node(pi, layer,
&buf->generic[i], prealloc_nodes[i]);
} else {
status = ice_sched_add_node(pi, layer,
&buf->generic[i], NULL);
}
if (status != ICE_SUCCESS) {
DNPRINTF(ICE_DBG_SCHED,
"%s: add nodes in SW DB failed status =%d\n",
__func__, status);
break;
}
teid = le32toh(buf->generic[i].node_teid);
new_node = ice_sched_find_node_by_teid(parent, teid);
if (!new_node) {
DNPRINTF(ICE_DBG_SCHED,
"%s: Node is missing for teid =%d\n",
__func__, teid);
break;
}
new_node->sibling = NULL;
new_node->tc_num = tc_node->tc_num;
/* add it to previous node sibling pointer */
/* Note: siblings are not linked across branches */
prev = ice_sched_get_first_node(pi, tc_node, layer);
if (prev && prev != new_node) {
while (prev->sibling)
prev = prev->sibling;
prev->sibling = new_node;
}
/* initialize the sibling head */
if (!pi->sib_head[tc_node->tc_num][layer])
pi->sib_head[tc_node->tc_num][layer] = new_node;
if (i == 0)
*first_node_teid = teid;
}
ice_free(hw, buf);
return status;
}
/**
* ice_sched_add_nodes_to_hw_layer - Add nodes to hw layer
* @pi: port information structure
* @tc_node: pointer to TC node
* @parent: pointer to parent node
* @layer: layer number to add nodes
* @num_nodes: number of nodes to be added
* @first_node_teid: pointer to the first node TEID
* @num_nodes_added: pointer to number of nodes added
*
* Add nodes into specific hw layer.
*/
enum ice_status
ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
struct ice_sched_node *tc_node,
struct ice_sched_node *parent, uint8_t layer,
uint16_t num_nodes, uint32_t *first_node_teid,
uint16_t *num_nodes_added)
{
uint16_t max_child_nodes;
*num_nodes_added = 0;
if (!num_nodes)
return ICE_SUCCESS;
if (!parent || layer < pi->hw->sw_entry_point_layer)
return ICE_ERR_PARAM;
/* max children per node per layer */
max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
/* current number of children + required nodes exceed max children */
if ((parent->num_children + num_nodes) > max_child_nodes) {
/* Fail if the parent is a TC node */
if (parent == tc_node)
return ICE_ERR_CFG;
return ICE_ERR_MAX_LIMIT;
}
return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
num_nodes_added, first_node_teid, NULL);
}
/**
* ice_sched_add_nodes_to_layer - Add nodes to a given layer
* @pi: port information structure
* @tc_node: pointer to TC node
* @parent: pointer to parent node
* @layer: layer number to add nodes
* @num_nodes: number of nodes to be added
* @first_node_teid: pointer to the first node TEID
* @num_nodes_added: pointer to number of nodes added
*
* This function add nodes to a given layer.
*/
enum ice_status
ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
struct ice_sched_node *tc_node,
struct ice_sched_node *parent, uint8_t layer,
uint16_t num_nodes, uint32_t *first_node_teid,
uint16_t *num_nodes_added)
{
uint32_t *first_teid_ptr = first_node_teid;
uint16_t new_num_nodes = num_nodes;
enum ice_status status = ICE_SUCCESS;
uint32_t temp;
*num_nodes_added = 0;
while (*num_nodes_added < num_nodes) {
uint16_t max_child_nodes, num_added = 0;
status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
layer, new_num_nodes,
first_teid_ptr,
&num_added);
if (status == ICE_SUCCESS)
*num_nodes_added += num_added;
/* added more nodes than requested ? */
if (*num_nodes_added > num_nodes) {
DNPRINTF(ICE_DBG_SCHED, "%s: added extra nodes %d %d\n",
__func__, num_nodes, *num_nodes_added);
status = ICE_ERR_CFG;
break;
}
/* break if all the nodes are added successfully */
if (status == ICE_SUCCESS && (*num_nodes_added == num_nodes))
break;
/* break if the error is not max limit */
if (status != ICE_SUCCESS && status != ICE_ERR_MAX_LIMIT)
break;
/* Exceeded the max children */
max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
/* utilize all the spaces if the parent is not full */
if (parent->num_children < max_child_nodes) {
new_num_nodes = max_child_nodes - parent->num_children;
} else {
/* This parent is full, try the next sibling */
parent = parent->sibling;
/* Don't modify the first node TEID memory if the
* first node was added already in the above call.
* Instead send some temp memory for all other
* recursive calls.
*/
if (num_added)
first_teid_ptr = &temp;
new_num_nodes = num_nodes - *num_nodes_added;
}
}
return status;
}
/**
* ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_node: pointer to TC node
* @num_nodes: pointer to num nodes array
*
* This function adds the VSI supported nodes into Tx tree including the
* VSI, its parent and intermediate nodes in below layers
*/
enum ice_status
ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, uint16_t vsi_handle,
struct ice_sched_node *tc_node, uint16_t *num_nodes)
{
struct ice_sched_node *parent = tc_node;
uint32_t first_node_teid;
uint16_t num_added = 0;
uint8_t i, vsil;
if (!pi)
return ICE_ERR_PARAM;
vsil = ice_sched_get_vsi_layer(pi->hw);
for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
enum ice_status status;
status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
i, num_nodes[i],
&first_node_teid,
&num_added);
if (status != ICE_SUCCESS || num_nodes[i] != num_added)
return ICE_ERR_CFG;
/* The newly added node can be a new parent for the next
* layer nodes
*/
if (num_added)
parent = ice_sched_find_node_by_teid(tc_node,
first_node_teid);
else
parent = parent->children[0];
if (!parent)
return ICE_ERR_CFG;
if (i == vsil)
parent->vsi_handle = vsi_handle;
}
return ICE_SUCCESS;
}
/**
* ice_sched_add_vsi_to_topo - add a new VSI into tree
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
*
* This function adds a new VSI into scheduler tree
*/
enum ice_status
ice_sched_add_vsi_to_topo(struct ice_port_info *pi, uint16_t vsi_handle,
uint8_t tc)
{
uint16_t num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
struct ice_sched_node *tc_node;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
return ICE_ERR_PARAM;
/* calculate number of supported nodes needed for this VSI */
ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
/* add VSI supported nodes to TC subtree */
return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
num_nodes);
}
/**
* ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
* @hw: pointer to the HW struct
* @vsi_handle: VSI handle
* @tc: TC number
* @new_numqs: number of queues
*/
enum ice_status
ice_alloc_lan_q_ctx(struct ice_hw *hw, uint16_t vsi_handle, uint8_t tc,
uint16_t new_numqs)
{
struct ice_vsi_ctx *vsi_ctx;
struct ice_q_ctx *q_ctx;
vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
if (!vsi_ctx)
return ICE_ERR_PARAM;
/* allocate LAN queue contexts */
if (!vsi_ctx->lan_q_ctx[tc]) {
vsi_ctx->lan_q_ctx[tc] = (struct ice_q_ctx *)
ice_calloc(hw, new_numqs, sizeof(*q_ctx));
if (!vsi_ctx->lan_q_ctx[tc])
return ICE_ERR_NO_MEMORY;
vsi_ctx->num_lan_q_entries[tc] = new_numqs;
return ICE_SUCCESS;
}
/* num queues are increased, update the queue contexts */
if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
uint16_t prev_num = vsi_ctx->num_lan_q_entries[tc];
q_ctx = (struct ice_q_ctx *)
ice_calloc(hw, new_numqs, sizeof(*q_ctx));
if (!q_ctx)
return ICE_ERR_NO_MEMORY;
memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
prev_num * sizeof(*q_ctx));
ice_free(hw, vsi_ctx->lan_q_ctx[tc]);
vsi_ctx->lan_q_ctx[tc] = q_ctx;
vsi_ctx->num_lan_q_entries[tc] = new_numqs;
}
return ICE_SUCCESS;
}
/**
* ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
* @hw: pointer to the HW struct
* @num_qs: number of queues
* @num_nodes: num nodes array
*
* This function calculates the number of VSI child nodes based on the
* number of queues.
*/
void
ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, uint16_t num_qs, uint16_t *num_nodes)
{
uint16_t num = num_qs;
uint8_t i, qgl, vsil;
qgl = ice_sched_get_qgrp_layer(hw);
vsil = ice_sched_get_vsi_layer(hw);
/* calculate num nodes from queue group to VSI layer */
for (i = qgl; i > vsil; i--) {
/* round to the next integer if there is a remainder */
num = howmany(num, hw->max_children[i]);
/* need at least one node */
num_nodes[i] = num ? num : 1;
}
}
/**
* ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_node: pointer to the TC node
* @num_nodes: pointer to the num nodes that needs to be added per layer
* @owner: node owner (LAN or RDMA)
*
* This function adds the VSI child nodes to tree. It gets called for
* LAN and RDMA separately.
*/
enum ice_status
ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, uint16_t vsi_handle,
struct ice_sched_node *tc_node, uint16_t *num_nodes, uint8_t owner)
{
struct ice_sched_node *parent, *node;
struct ice_hw *hw = pi->hw;
uint32_t first_node_teid;
uint16_t num_added = 0;
uint8_t i, qgl, vsil;
qgl = ice_sched_get_qgrp_layer(hw);
vsil = ice_sched_get_vsi_layer(hw);
parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
for (i = vsil + 1; i <= qgl; i++) {
enum ice_status status;
if (!parent)
return ICE_ERR_CFG;
status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
num_nodes[i],
&first_node_teid,
&num_added);
if (status != ICE_SUCCESS || num_nodes[i] != num_added)
return ICE_ERR_CFG;
/* The newly added node can be a new parent for the next
* layer nodes
*/
if (num_added) {
parent = ice_sched_find_node_by_teid(tc_node,
first_node_teid);
node = parent;
while (node) {
node->owner = owner;
node = node->sibling;
}
} else {
parent = parent->children[0];
}
}
return ICE_SUCCESS;
}
/**
* ice_sched_update_vsi_child_nodes - update VSI child nodes
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
* @new_numqs: new number of max queues
* @owner: owner of this subtree
*
* This function updates the VSI child nodes based on the number of queues
*/
enum ice_status
ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, uint16_t vsi_handle,
uint8_t tc, uint16_t new_numqs, uint8_t owner)
{
uint16_t new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
struct ice_sched_node *vsi_node;
struct ice_sched_node *tc_node;
struct ice_vsi_ctx *vsi_ctx;
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw = pi->hw;
uint16_t prev_numqs;
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
return ICE_ERR_CFG;
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
if (!vsi_node)
return ICE_ERR_CFG;
vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
if (!vsi_ctx)
return ICE_ERR_PARAM;
if (owner == ICE_SCHED_NODE_OWNER_LAN)
prev_numqs = vsi_ctx->sched.max_lanq[tc];
else
prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
/* num queues are not changed or less than the previous number */
if (new_numqs <= prev_numqs)
return status;
if (owner == ICE_SCHED_NODE_OWNER_LAN) {
status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
if (status)
return status;
} else {
#if 0
status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
if (status)
return status;
#else
return ICE_ERR_NOT_IMPL;
#endif
}
if (new_numqs)
ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
/* Keep the max number of queue configuration all the time. Update the
* tree only if number of queues > previous number of queues. This may
* leave some extra nodes in the tree if number of queues < previous
* number but that wouldn't harm anything. Removing those extra nodes
* may complicate the code if those nodes are part of SRL or
* individually rate limited.
*/
status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
new_num_nodes, owner);
if (status)
return status;
if (owner == ICE_SCHED_NODE_OWNER_LAN)
vsi_ctx->sched.max_lanq[tc] = new_numqs;
else
vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
return ICE_SUCCESS;
}
/**
* ice_sched_cfg_vsi - configure the new/existing VSI
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
* @maxqs: max number of queues
* @owner: LAN or RDMA
* @enable: TC enabled or disabled
*
* This function adds/updates VSI nodes based on the number of queues. If TC is
* enabled and VSI is in suspended state then resume the VSI back. If TC is
* disabled then suspend the VSI if it is not already.
*/
enum ice_status
ice_sched_cfg_vsi(struct ice_port_info *pi, uint16_t vsi_handle, uint8_t tc,
uint16_t maxqs, uint8_t owner, bool enable)
{
struct ice_sched_node *vsi_node, *tc_node;
struct ice_vsi_ctx *vsi_ctx;
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw = pi->hw;
DNPRINTF(ICE_DBG_SCHED, "%s: add/config VSI %d\n",
__func__, vsi_handle);
tc_node = ice_sched_get_tc_node(pi, tc);
if (!tc_node)
return ICE_ERR_PARAM;
vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
if (!vsi_ctx)
return ICE_ERR_PARAM;
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
/* suspend the VSI if TC is not enabled */
if (!enable) {
if (vsi_node && vsi_node->in_use) {
uint32_t teid = le32toh(vsi_node->info.node_teid);
status = ice_sched_suspend_resume_elems(hw, 1, &teid,
true);
if (!status)
vsi_node->in_use = false;
}
return status;
}
/* TC is enabled, if it is a new VSI then add it to the tree */
if (!vsi_node) {
status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
if (status)
return status;
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
if (!vsi_node)
return ICE_ERR_CFG;
vsi_ctx->sched.vsi_node[tc] = vsi_node;
vsi_node->in_use = true;
/* invalidate the max queues whenever VSI gets added first time
* into the scheduler tree (boot or after reset). We need to
* recreate the child nodes all the time in these cases.
*/
vsi_ctx->sched.max_lanq[tc] = 0;
vsi_ctx->sched.max_rdmaq[tc] = 0;
}
/* update the VSI child nodes */
status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
owner);
if (status)
return status;
/* TC is enabled, resume the VSI if it is in the suspend state */
if (!vsi_node->in_use) {
uint32_t teid = le32toh(vsi_node->info.node_teid);
status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
if (!status)
vsi_node->in_use = true;
}
return status;
}
static inline bool ice_is_tc_ena(ice_bitmap_t bitmap, uint8_t tc)
{
return !!(bitmap & BIT(tc));
}
/**
* ice_cfg_vsi_qs - configure the new/existing VSI queues
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_bitmap: TC bitmap
* @maxqs: max queues array per TC
* @owner: LAN or RDMA
*
* This function adds/updates the VSI queues per TC.
*/
enum ice_status
ice_cfg_vsi_qs(struct ice_port_info *pi, uint16_t vsi_handle,
uint16_t tc_bitmap, uint16_t *maxqs, uint8_t owner)
{
enum ice_status status = ICE_SUCCESS;
uint8_t i;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return ICE_ERR_CFG;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return ICE_ERR_PARAM;
#if 0
ice_acquire_lock(&pi->sched_lock);
#endif
ice_for_each_traffic_class(i) {
/* configuration is possible only if TC node is present */
if (!ice_sched_get_tc_node(pi, i))
continue;
status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
ice_is_tc_ena(tc_bitmap, i));
if (status)
break;
}
#if 0
ice_release_lock(&pi->sched_lock);
#endif
return status;
}
/**
* ice_cfg_vsi_lan - configure VSI LAN queues
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_bitmap: TC bitmap
* @max_lanqs: max LAN queues array per TC
*
* This function adds/updates the VSI LAN queues per TC.
*/
enum ice_status
ice_cfg_vsi_lan(struct ice_port_info *pi, uint16_t vsi_handle,
uint16_t tc_bitmap, uint16_t *max_lanqs)
{
return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
ICE_SCHED_NODE_OWNER_LAN);
}
/**
* ice_reset_vsi_stats - Reset VSI statistics counters
* @vsi: VSI structure
*
* Resets the software tracking counters for the VSI statistics, and indicate
* that the offsets haven't been loaded. This is intended to be called
* post-reset so that VSI statistics count from zero again.
*/
void
ice_reset_vsi_stats(struct ice_vsi *vsi)
{
/* Reset HW stats */
memset(&vsi->hw_stats.prev, 0, sizeof(vsi->hw_stats.prev));
memset(&vsi->hw_stats.cur, 0, sizeof(vsi->hw_stats.cur));
vsi->hw_stats.offsets_loaded = false;
}
/**
* ice_initialize_vsi - Initialize a VSI for use
* @vsi: the vsi to initialize
*
* Initialize a VSI over the adminq and prepare it for operation.
*
* @pre vsi->num_tx_queues is set
* @pre vsi->num_rx_queues is set
*/
int
ice_initialize_vsi(struct ice_vsi *vsi)
{
struct ice_vsi_ctx ctx = { 0 };
struct ice_hw *hw = &vsi->sc->hw;
uint16_t max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
enum ice_status status;
int err;
/* For now, we only have code supporting PF VSIs */
switch (vsi->type) {
case ICE_VSI_PF:
ctx.flags = ICE_AQ_VSI_TYPE_PF;
break;
case ICE_VSI_VMDQ2:
ctx.flags = ICE_AQ_VSI_TYPE_VMDQ2;
break;
default:
return (ENODEV);
}
ice_set_default_vsi_ctx(&ctx);
ice_set_rss_vsi_ctx(&ctx, vsi->type);
/* XXX: VSIs of other types may need different port info? */
ctx.info.sw_id = hw->port_info->sw_id;
/* Set some RSS parameters based on the VSI type */
ice_vsi_set_rss_params(vsi);
/* Initialize the Rx queue mapping for this VSI */
err = ice_setup_vsi_qmap(vsi, &ctx);
if (err)
return err;
/* (Re-)add VSI to HW VSI handle list */
status = ice_add_vsi(hw, vsi->idx, &ctx, NULL);
if (status != 0) {
DPRINTF("%s: Add VSI AQ call failed, err %s aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
vsi->info = ctx.info;
/* Initialize VSI with just 1 TC to start */
max_txqs[0] = vsi->num_tx_queues;
status = ice_cfg_vsi_lan(hw->port_info, vsi->idx,
ICE_DFLT_TRAFFIC_CLASS, max_txqs);
if (status) {
DPRINTF("%s: Failed VSI lan queue config, err %s aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
ice_deinit_vsi(vsi);
return (ENODEV);
}
/* Reset VSI stats */
ice_reset_vsi_stats(vsi);
return 0;
}
/**
* ice_sched_replay_agg - recreate aggregator node(s)
* @hw: pointer to the HW struct
*
* This function recreate aggregator type nodes which are not replayed earlier.
* It also replay aggregator BW information. These aggregator nodes are not
* associated with VSI type node yet.
*/
void
ice_sched_replay_agg(struct ice_hw *hw)
{
#if 0
struct ice_port_info *pi = hw->port_info;
struct ice_sched_agg_info *agg_info;
ice_acquire_lock(&pi->sched_lock);
LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
list_entry)
/* replay aggregator (re-create aggregator node) */
if (!ice_cmp_bitmap(agg_info->tc_bitmap,
agg_info->replay_tc_bitmap,
ICE_MAX_TRAFFIC_CLASS)) {
ice_declare_bitmap(replay_bitmap,
ICE_MAX_TRAFFIC_CLASS);
enum ice_status status;
ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
ice_sched_get_ena_tc_bitmap(pi,
agg_info->replay_tc_bitmap,
replay_bitmap);
status = ice_sched_cfg_agg(hw->port_info,
agg_info->agg_id,
ICE_AGG_TYPE_AGG,
replay_bitmap);
if (status) {
ice_info(hw, "Replay agg id[%d] failed\n",
agg_info->agg_id);
/* Move on to next one */
continue;
}
/* Replay aggregator node BW (restore aggregator BW) */
status = ice_sched_replay_agg_bw(hw, agg_info);
if (status)
ice_info(hw, "Replay agg bw [id=%d] failed\n",
agg_info->agg_id);
}
ice_release_lock(&pi->sched_lock);
#endif
}
/**
* ice_replay_post - post replay configuration cleanup
* @hw: pointer to the HW struct
*
* Post replay cleanup.
*/
void ice_replay_post(struct ice_hw *hw)
{
/* Delete old entries from replay filter list head */
ice_rm_sw_replay_rule_info(hw, hw->switch_info);
ice_sched_replay_agg(hw);
}
/**
* ice_is_main_vsi - checks whether the VSI is main VSI
* @hw: pointer to the HW struct
* @vsi_handle: VSI handle
*
* Checks whether the VSI is the main VSI (the first PF VSI created on
* given PF).
*/
bool
ice_is_main_vsi(struct ice_hw *hw, uint16_t vsi_handle)
{
return vsi_handle == ICE_MAIN_VSI_HANDLE && hw->vsi_ctx[vsi_handle];
}
/**
* ice_replay_pre_init - replay pre initialization
* @hw: pointer to the HW struct
* @sw: pointer to switch info struct for which function initializes filters
*
* Initializes required config data for VSI, FD, ACL, and RSS before replay.
*/
enum ice_status
ice_replay_pre_init(struct ice_hw *hw, struct ice_switch_info *sw)
{
#if 0
enum ice_status status;
uint8_t i;
/* Delete old entries from replay filter list head if there is any */
ice_rm_sw_replay_rule_info(hw, sw);
/* In start of replay, move entries into replay_rules list, it
* will allow adding rules entries back to filt_rules list,
* which is operational list.
*/
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
LIST_REPLACE_INIT(&sw->recp_list[i].filt_rules,
&sw->recp_list[i].filt_replay_rules);
ice_sched_replay_agg_vsi_preinit(hw);
status = ice_sched_replay_root_node_bw(hw->port_info);
if (status)
return status;
return ice_sched_replay_tc_node_bw(hw->port_info);
#else
return ICE_ERR_NOT_IMPL;
#endif
}
/**
* ice_replay_rss_cfg - replay RSS configurations associated with VSI
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
*/
enum ice_status
ice_replay_rss_cfg(struct ice_hw *hw, uint16_t vsi_handle)
{
#if 0
enum ice_status status = ICE_SUCCESS;
struct ice_rss_cfg *r;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
ice_acquire_lock(&hw->rss_locks);
LIST_FOR_EACH_ENTRY(r, &hw->rss_list_head,
ice_rss_cfg, l_entry) {
if (ice_is_bit_set(r->vsis, vsi_handle)) {
status = ice_add_rss_cfg_sync(hw, vsi_handle, &r->hash);
if (status)
break;
}
}
ice_release_lock(&hw->rss_locks);
return status;
#else
return ICE_ERR_NOT_IMPL;
#endif
}
/**
* ice_find_vsi_list_entry - Search VSI list map with VSI count 1
* @recp_list: VSI lists needs to be searched
* @vsi_handle: VSI handle to be found in VSI list
* @vsi_list_id: VSI list ID found containing vsi_handle
*
* Helper function to search a VSI list with single entry containing given VSI
* handle element. This can be extended further to search VSI list with more
* than 1 vsi_count. Returns pointer to VSI list entry if found.
*/
struct ice_vsi_list_map_info *
ice_find_vsi_list_entry(struct ice_sw_recipe *recp_list, uint16_t vsi_handle,
uint16_t *vsi_list_id)
{
struct ice_vsi_list_map_info *map_info = NULL;
if (recp_list->adv_rule) {
struct ice_adv_fltr_mgmt_list_head *adv_list_head;
struct ice_adv_fltr_mgmt_list_entry *list_itr;
adv_list_head = &recp_list->adv_filt_rules;
TAILQ_FOREACH(list_itr, adv_list_head, list_entry) {
if (list_itr->vsi_list_info) {
map_info = list_itr->vsi_list_info;
if (ice_is_bit_set(map_info->vsi_map,
vsi_handle)) {
*vsi_list_id = map_info->vsi_list_id;
return map_info;
}
}
}
} else {
struct ice_fltr_mgmt_list_head *list_head;
struct ice_fltr_mgmt_list_entry *list_itr;
list_head = &recp_list->filt_rules;
TAILQ_FOREACH(list_itr, list_head, list_entry) {
if (list_itr->vsi_count == 1 &&
list_itr->vsi_list_info) {
map_info = list_itr->vsi_list_info;
if (ice_is_bit_set(map_info->vsi_map,
vsi_handle)) {
*vsi_list_id = map_info->vsi_list_id;
return map_info;
}
}
}
}
return NULL;
}
/**
* ice_add_vlan_internal - Add one VLAN based filter rule
* @hw: pointer to the hardware structure
* @recp_list: recipe list for which rule has to be added
* @f_entry: filter entry containing one VLAN information
*/
enum ice_status
ice_add_vlan_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
struct ice_fltr_list_entry *f_entry)
{
struct ice_fltr_mgmt_list_entry *v_list_itr;
struct ice_fltr_info *new_fltr, *cur_fltr;
enum ice_sw_lkup_type lkup_type;
uint16_t vsi_list_id = 0, vsi_handle;
#if 0
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
#endif
enum ice_status status = ICE_SUCCESS;
if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
return ICE_ERR_PARAM;
f_entry->fltr_info.fwd_id.hw_vsi_id =
hw->vsi_ctx[f_entry->fltr_info.vsi_handle]->vsi_num;
new_fltr = &f_entry->fltr_info;
/* VLAN ID should only be 12 bits */
if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
return ICE_ERR_PARAM;
if (new_fltr->src_id != ICE_SRC_ID_VSI)
return ICE_ERR_PARAM;
new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
lkup_type = new_fltr->lkup_type;
vsi_handle = new_fltr->vsi_handle;
#if 0
rule_lock = &recp_list->filt_rule_lock;
ice_acquire_lock(rule_lock);
#endif
v_list_itr = ice_find_rule_entry(&recp_list->filt_rules, new_fltr);
if (!v_list_itr) {
struct ice_vsi_list_map_info *map_info = NULL;
if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
/* All VLAN pruning rules use a VSI list. Check if
* there is already a VSI list containing VSI that we
* want to add. If found, use the same vsi_list_id for
* this new VLAN rule or else create a new list.
*/
map_info = ice_find_vsi_list_entry(recp_list,
vsi_handle,
&vsi_list_id);
if (!map_info) {
status = ice_create_vsi_list_rule(hw,
&vsi_handle,
1,
&vsi_list_id,
lkup_type);
if (status)
goto exit;
}
/* Convert the action to forwarding to a VSI list. */
new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
new_fltr->fwd_id.vsi_list_id = vsi_list_id;
}
status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry);
if (!status) {
v_list_itr = ice_find_rule_entry(&recp_list->filt_rules,
new_fltr);
if (!v_list_itr) {
status = ICE_ERR_DOES_NOT_EXIST;
goto exit;
}
/* reuse VSI list for new rule and increment ref_cnt */
if (map_info) {
v_list_itr->vsi_list_info = map_info;
map_info->ref_cnt++;
} else {
v_list_itr->vsi_list_info =
ice_create_vsi_list_map(hw, &vsi_handle,
1, vsi_list_id);
}
}
} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
/* Update existing VSI list to add new VSI ID only if it used
* by one VLAN rule.
*/
cur_fltr = &v_list_itr->fltr_info;
status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
new_fltr);
} else {
/* If VLAN rule exists and VSI list being used by this rule is
* referenced by more than 1 VLAN rule. Then create a new VSI
* list appending previous VSI with new VSI and update existing
* VLAN rule to point to new VSI list ID
*/
struct ice_fltr_info tmp_fltr;
uint16_t vsi_handle_arr[2];
uint16_t cur_handle;
/* Current implementation only supports reusing VSI list with
* one VSI count. We should never hit below condition
*/
if (v_list_itr->vsi_count > 1 &&
v_list_itr->vsi_list_info->ref_cnt > 1) {
DNPRINTF(ICE_DBG_SW, "%s: Invalid configuration: "
"Optimization to reuse VSI list with more than "
"one VSI is not being done yet\n", __func__);
status = ICE_ERR_CFG;
goto exit;
}
cur_handle =
ice_find_first_bit(v_list_itr->vsi_list_info->vsi_map,
ICE_MAX_VSI);
/* A rule already exists with the new VSI being added */
if (cur_handle == vsi_handle) {
status = ICE_ERR_ALREADY_EXISTS;
goto exit;
}
vsi_handle_arr[0] = cur_handle;
vsi_handle_arr[1] = vsi_handle;
status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
&vsi_list_id, lkup_type);
if (status)
goto exit;
tmp_fltr = v_list_itr->fltr_info;
tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
/* Update the previous switch rule to a new VSI list which
* includes current VSI that is requested
*/
status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
if (status)
goto exit;
/* before overriding VSI list map info. decrement ref_cnt of
* previous VSI list
*/
v_list_itr->vsi_list_info->ref_cnt--;
/* now update to newly created list */
v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
v_list_itr->vsi_list_info =
ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
vsi_list_id);
v_list_itr->vsi_count++;
}
exit:
#if 0
ice_release_lock(rule_lock);
#endif
return status;
}
/**
* ice_replay_vsi_fltr - Replay filters for requested VSI
* @hw: pointer to the hardware structure
* @pi: pointer to port information structure
* @sw: pointer to switch info struct for which function replays filters
* @vsi_handle: driver VSI handle
* @recp_id: Recipe ID for which rules need to be replayed
* @list_head: list for which filters need to be replayed
*
* Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
* It is required to pass valid VSI handle.
*/
enum ice_status
ice_replay_vsi_fltr(struct ice_hw *hw, struct ice_port_info *pi,
struct ice_switch_info *sw, uint16_t vsi_handle,
uint8_t recp_id,
struct ice_fltr_mgmt_list_head *list_head)
{
struct ice_fltr_mgmt_list_entry *itr;
enum ice_status status = ICE_SUCCESS;
struct ice_sw_recipe *recp_list;
uint16_t hw_vsi_id;
if (TAILQ_EMPTY(list_head))
return status;
recp_list = &sw->recp_list[recp_id];
hw_vsi_id = hw->vsi_ctx[vsi_handle]->vsi_num;
TAILQ_FOREACH(itr, list_head, list_entry) {
struct ice_fltr_list_entry f_entry;
f_entry.fltr_info = itr->fltr_info;
if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
itr->fltr_info.vsi_handle == vsi_handle) {
/* update the src in case it is VSI num */
if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
f_entry.fltr_info.src = hw_vsi_id;
status = ice_add_rule_internal(hw, recp_list,
pi->lport,
&f_entry);
if (status != ICE_SUCCESS)
goto end;
continue;
}
if (!itr->vsi_list_info ||
!ice_is_bit_set(itr->vsi_list_info->vsi_map, vsi_handle))
continue;
/* Clearing it so that the logic can add it back */
ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
f_entry.fltr_info.vsi_handle = vsi_handle;
f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
/* update the src in case it is VSI num */
if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
f_entry.fltr_info.src = hw_vsi_id;
if (recp_id == ICE_SW_LKUP_VLAN)
status = ice_add_vlan_internal(hw, recp_list, &f_entry);
else
status = ice_add_rule_internal(hw, recp_list,
pi->lport,
&f_entry);
if (status != ICE_SUCCESS)
goto end;
}
end:
return status;
}
/**
* ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
* @hw: pointer to the hardware structure
* @pi: pointer to port information structure
* @vsi_handle: driver VSI handle
*
* Replays filters for requested VSI via vsi_handle.
*/
enum ice_status
ice_replay_vsi_all_fltr(struct ice_hw *hw, struct ice_port_info *pi,
uint16_t vsi_handle)
{
struct ice_switch_info *sw = NULL;
enum ice_status status = ICE_SUCCESS;
uint8_t i;
sw = hw->switch_info;
/* Update the recipes that were created */
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
struct ice_fltr_mgmt_list_head *head;
head = &sw->recp_list[i].filt_replay_rules;
if (!sw->recp_list[i].adv_rule)
status = ice_replay_vsi_fltr(hw, pi, sw, vsi_handle, i,
head);
if (status != ICE_SUCCESS)
return status;
}
return ICE_SUCCESS;
}
/**
* ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
*
* This function replays aggregator node, VSI to aggregator type nodes, and
* their node bandwidth information. This function needs to be called with
* scheduler lock held.
*/
enum ice_status
ice_sched_replay_vsi_agg(struct ice_hw *hw, uint16_t vsi_handle)
{
#if 0
ice_declare_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
struct ice_sched_agg_vsi_info *agg_vsi_info;
struct ice_port_info *pi = hw->port_info;
struct ice_sched_agg_info *agg_info;
enum ice_status status;
ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
if (!agg_info)
return ICE_SUCCESS; /* Not present in list - default Agg case */
agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
if (!agg_vsi_info)
return ICE_SUCCESS; /* Not present in list - default Agg case */
ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
replay_bitmap);
/* Replay aggregator node associated to vsi_handle */
status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
ICE_AGG_TYPE_AGG, replay_bitmap);
if (status)
return status;
/* Replay aggregator node BW (restore aggregator BW) */
status = ice_sched_replay_agg_bw(hw, agg_info);
if (status)
return status;
ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
replay_bitmap);
/* Move this VSI (vsi_handle) to above aggregator */
status = ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
replay_bitmap);
if (status)
return status;
/* Replay VSI BW (restore VSI BW) */
return ice_sched_replay_vsi_bw(hw, vsi_handle,
agg_vsi_info->tc_bitmap);
#else
return ICE_ERR_NOT_IMPL;
#endif
}
/**
* ice_replay_vsi_agg - replay VSI to aggregator node
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
*
* This function replays association of VSI to aggregator type nodes, and
* node bandwidth information.
*/
enum ice_status
ice_replay_vsi_agg(struct ice_hw *hw, uint16_t vsi_handle)
{
#if 0
struct ice_port_info *pi = hw->port_info;
#endif
enum ice_status status;
#if 0
ice_acquire_lock(&pi->sched_lock);
#endif
status = ice_sched_replay_vsi_agg(hw, vsi_handle);
#if 0
ice_release_lock(&pi->sched_lock);
#endif
return status;
}
/**
* ice_replay_vsi - replay VSI configuration
* @hw: pointer to the HW struct
* @vsi_handle: driver VSI handle
*
* Restore all VSI configuration after reset. It is required to call this
* function with main VSI first.
*/
enum ice_status
ice_replay_vsi(struct ice_hw *hw, uint16_t vsi_handle)
{
struct ice_switch_info *sw = hw->switch_info;
struct ice_port_info *pi = hw->port_info;
enum ice_status status;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
/* Replay pre-initialization if there is any */
if (ice_is_main_vsi(hw, vsi_handle)) {
status = ice_replay_pre_init(hw, sw);
if (status)
return status;
}
/* Replay per VSI all RSS configurations */
status = ice_replay_rss_cfg(hw, vsi_handle);
if (status)
return status;
/* Replay per VSI all filters */
status = ice_replay_vsi_all_fltr(hw, pi, vsi_handle);
if (!status)
status = ice_replay_vsi_agg(hw, vsi_handle);
return status;
}
/**
* ice_replay_all_vsi_cfg - Replace configuration for all VSIs after reset
* @sc: the device softc
*
* Replace the configuration for each VSI, and then cleanup replay
* information. Called after a hardware reset in order to reconfigure the
* active VSIs.
*/
int
ice_replay_all_vsi_cfg(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
enum ice_status status;
int i;
for (i = 0 ; i < sc->num_available_vsi; i++) {
struct ice_vsi *vsi = sc->all_vsi[i];
if (!vsi)
continue;
status = ice_replay_vsi(hw, vsi->idx);
if (status) {
printf("%s: Failed to replay VSI %d, err %s "
"aq_err %s\n", sc->sc_dev.dv_xname,
vsi->idx, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
}
/* Cleanup replay filters after successful reconfiguration */
ice_replay_post(hw);
return (0);
}
/**
* ice_aq_set_health_status_config - Configure FW health events
* @hw: pointer to the HW struct
* @event_source: type of diagnostic events to enable
* @cd: pointer to command details structure or NULL
*
* Configure the health status event types that the firmware will send to this
* PF. The supported event types are: PF-specific, all PFs, and global
*/
enum ice_status
ice_aq_set_health_status_config(struct ice_hw *hw, uint8_t event_source,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_health_status_config *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.set_health_status_config;
ice_fill_dflt_direct_cmd_desc(&desc,
ice_aqc_opc_set_health_status_config);
cmd->event_source = event_source;
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_init_health_events - Enable FW health event reporting
* @sc: device softc
*
* Will try to enable firmware health event reporting, but shouldn't
* cause any grief (to the caller) if this fails.
*/
void
ice_init_health_events(struct ice_softc *sc)
{
enum ice_status status;
uint8_t health_mask;
if (!ice_is_bit_set(sc->feat_cap, ICE_FEATURE_HEALTH_STATUS))
return;
health_mask = ICE_AQC_HEALTH_STATUS_SET_PF_SPECIFIC_MASK |
ICE_AQC_HEALTH_STATUS_SET_GLOBAL_MASK;
status = ice_aq_set_health_status_config(&sc->hw, health_mask, NULL);
if (status) {
printf("%s: Failed to enable firmware health events, "
"err %s aq_err %s\n", sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(sc->hw.adminq.sq_last_status));
} else
ice_set_bit(ICE_FEATURE_HEALTH_STATUS, sc->feat_en);
}
/**
* ice_add_rx_lldp_filter - add ethertype filter for Rx LLDP frames
* @sc: the device private structure
*
* Add a switch ethertype filter which forwards the LLDP frames to the main PF
* VSI. Called when the fw_lldp_agent is disabled, to allow the LLDP frames to
* be forwarded to the stack.
*/
void
ice_add_rx_lldp_filter(struct ice_softc *sc)
{
#if 0
struct ice_list_head ethertype_list;
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
int err;
u16 vsi_num;
/*
* If FW is new enough, use a direct AQ command to perform the filter
* addition.
*/
if (ice_fw_supports_lldp_fltr_ctrl(hw)) {
vsi_num = ice_get_hw_vsi_num(hw, vsi->idx);
status = ice_lldp_fltr_add_remove(hw, vsi_num, true);
if (status) {
device_printf(dev,
"Failed to add Rx LLDP filter, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
} else
ice_set_state(&sc->state,
ICE_STATE_LLDP_RX_FLTR_FROM_DRIVER);
return;
}
INIT_LIST_HEAD(ðertype_list);
/* Forward Rx LLDP frames to the stack */
err = ice_add_ethertype_to_list(vsi, ðertype_list,
ETHERTYPE_LLDP_FRAMES,
ICE_FLTR_RX, ICE_FWD_TO_VSI);
if (err) {
device_printf(dev,
"Failed to add Rx LLDP filter, err %s\n",
ice_err_str(err));
goto free_ethertype_list;
}
status = ice_add_eth_mac(hw, ðertype_list);
if (status && status != ICE_ERR_ALREADY_EXISTS) {
device_printf(dev,
"Failed to add Rx LLDP filter, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
} else {
/*
* If status == ICE_ERR_ALREADY_EXISTS, we won't treat an
* already existing filter as an error case.
*/
ice_set_state(&sc->state, ICE_STATE_LLDP_RX_FLTR_FROM_DRIVER);
}
free_ethertype_list:
ice_free_fltr_list(ðertype_list);
#else
printf("%s: not implemented\n", __func__);
#endif
}
/**
* ice_update_link_info - update status of the HW network link
* @pi: port info structure of the interested logical port
*/
enum ice_status
ice_update_link_info(struct ice_port_info *pi)
{
struct ice_link_status *li;
enum ice_status status;
if (!pi)
return ICE_ERR_PARAM;
li = &pi->phy.link_info;
status = ice_aq_get_link_info(pi, true, NULL, NULL);
if (status)
return status;
if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
struct ice_aqc_get_phy_caps_data *pcaps;
struct ice_hw *hw;
hw = pi->hw;
pcaps = (struct ice_aqc_get_phy_caps_data *)
ice_malloc(hw, sizeof(*pcaps));
if (!pcaps)
return ICE_ERR_NO_MEMORY;
status = ice_aq_get_phy_caps(pi, false,
ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, NULL);
if (status == ICE_SUCCESS)
memcpy(li->module_type, &pcaps->module_type,
sizeof(li->module_type));
ice_free(hw, pcaps);
}
return status;
}
/**
* ice_get_link_status - get status of the HW network link
* @pi: port information structure
* @link_up: pointer to bool (true/false = linkup/linkdown)
*
* Variable link_up is true if link is up, false if link is down.
* The variable link_up is invalid if status is non zero. As a
* result of this call, link status reporting becomes enabled
*/
enum ice_status
ice_get_link_status(struct ice_port_info *pi, bool *link_up)
{
struct ice_phy_info *phy_info;
enum ice_status status = ICE_SUCCESS;
if (!pi || !link_up)
return ICE_ERR_PARAM;
phy_info = &pi->phy;
if (phy_info->get_link_info) {
status = ice_update_link_info(pi);
if (status) {
DNPRINTF(ICE_DBG_LINK,
"%s: get link status error, status = %d\n",
__func__, status);
}
}
*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
return status;
}
/**
* ice_set_default_local_mib_settings - Set Local LLDP MIB to default settings
* @sc: device softc structure
*
* Overwrites the driver's SW local LLDP MIB with default settings. This
* ensures the driver has a valid MIB when it next uses the Set Local LLDP MIB
* admin queue command.
*/
void
ice_set_default_local_mib_settings(struct ice_softc *sc)
{
struct ice_dcbx_cfg *dcbcfg;
struct ice_hw *hw = &sc->hw;
struct ice_port_info *pi;
uint8_t maxtcs, maxtcs_ets, old_pfc_mode;
pi = hw->port_info;
dcbcfg = &pi->qos_cfg.local_dcbx_cfg;
maxtcs = hw->func_caps.common_cap.maxtc;
/* This value is only 3 bits; 8 TCs maps to 0 */
maxtcs_ets = maxtcs & ICE_IEEE_ETS_MAXTC_M;
/* VLAN vs DSCP mode needs to be preserved */
old_pfc_mode = dcbcfg->pfc_mode;
/**
* Setup the default settings used by the driver for the Set Local
* LLDP MIB Admin Queue command (0x0A08). (1TC w/ 100% BW, ETS, no
* PFC, TSA=2).
*/
memset(dcbcfg, 0, sizeof(*dcbcfg));
dcbcfg->etscfg.willing = 1;
dcbcfg->etscfg.tcbwtable[0] = 100;
dcbcfg->etscfg.maxtcs = maxtcs_ets;
dcbcfg->etscfg.tsatable[0] = 2;
dcbcfg->etsrec = dcbcfg->etscfg;
dcbcfg->etsrec.willing = 0;
dcbcfg->pfc.willing = 1;
dcbcfg->pfc.pfccap = maxtcs;
dcbcfg->pfc_mode = old_pfc_mode;
}
/**
* ice_add_ieee_ets_common_tlv
* @buf: Data buffer to be populated with ice_dcb_ets_cfg data
* @ets_cfg: Container for ice_dcb_ets_cfg data
*
* Populate the TLV buffer with ice_dcb_ets_cfg data
*/
void
ice_add_ieee_ets_common_tlv(uint8_t *buf, struct ice_dcb_ets_cfg *ets_cfg)
{
uint8_t priority0, priority1;
uint8_t offset = 0;
int i;
/* Priority Assignment Table (4 octets)
* Octets:| 1 | 2 | 3 | 4 |
* -----------------------------------------
* |pri0|pri1|pri2|pri3|pri4|pri5|pri6|pri7|
* -----------------------------------------
* Bits:|7 4|3 0|7 4|3 0|7 4|3 0|7 4|3 0|
* -----------------------------------------
*/
for (i = 0; i < ICE_MAX_TRAFFIC_CLASS / 2; i++) {
priority0 = ets_cfg->prio_table[i * 2] & 0xF;
priority1 = ets_cfg->prio_table[i * 2 + 1] & 0xF;
buf[offset] = (priority0 << ICE_IEEE_ETS_PRIO_1_S) | priority1;
offset++;
}
/* TC Bandwidth Table (8 octets)
* Octets:| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
* ---------------------------------
* |tc0|tc1|tc2|tc3|tc4|tc5|tc6|tc7|
* ---------------------------------
*
* TSA Assignment Table (8 octets)
* Octets:| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
* ---------------------------------
* |tc0|tc1|tc2|tc3|tc4|tc5|tc6|tc7|
* ---------------------------------
*/
ice_for_each_traffic_class(i) {
buf[offset] = ets_cfg->tcbwtable[i];
buf[ICE_MAX_TRAFFIC_CLASS + offset] = ets_cfg->tsatable[i];
offset++;
}
}
/**
* ice_add_ieee_ets_tlv - Prepare ETS TLV in IEEE format
* @tlv: Fill the ETS config data in IEEE format
* @dcbcfg: Local store which holds the DCB Config
*
* Prepare IEEE 802.1Qaz ETS CFG TLV
*/
void
ice_add_ieee_ets_tlv(struct ice_lldp_org_tlv *tlv, struct ice_dcbx_cfg *dcbcfg)
{
struct ice_dcb_ets_cfg *etscfg;
uint8_t *buf = tlv->tlvinfo;
uint8_t maxtcwilling = 0;
uint32_t ouisubtype;
uint16_t typelen;
typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
ICE_IEEE_ETS_TLV_LEN);
tlv->typelen = HTONS(typelen);
ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
ICE_IEEE_SUBTYPE_ETS_CFG);
tlv->ouisubtype = htonl(ouisubtype);
/* First Octet post subtype
* --------------------------
* |will-|CBS | Re- | Max |
* |ing | |served| TCs |
* --------------------------
* |1bit | 1bit|3 bits|3bits|
*/
etscfg = &dcbcfg->etscfg;
if (etscfg->willing)
maxtcwilling = BIT(ICE_IEEE_ETS_WILLING_S);
maxtcwilling |= etscfg->maxtcs & ICE_IEEE_ETS_MAXTC_M;
buf[0] = maxtcwilling;
/* Begin adding at Priority Assignment Table (offset 1 in buf) */
ice_add_ieee_ets_common_tlv(&buf[1], etscfg);
}
/**
* ice_add_ieee_etsrec_tlv - Prepare ETS Recommended TLV in IEEE format
* @tlv: Fill ETS Recommended TLV in IEEE format
* @dcbcfg: Local store which holds the DCB Config
*
* Prepare IEEE 802.1Qaz ETS REC TLV
*/
void
ice_add_ieee_etsrec_tlv(struct ice_lldp_org_tlv *tlv,
struct ice_dcbx_cfg *dcbcfg)
{
struct ice_dcb_ets_cfg *etsrec;
uint8_t *buf = tlv->tlvinfo;
uint32_t ouisubtype;
uint16_t typelen;
typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
ICE_IEEE_ETS_TLV_LEN);
tlv->typelen = htons(typelen);
ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
ICE_IEEE_SUBTYPE_ETS_REC);
tlv->ouisubtype = HTONL(ouisubtype);
etsrec = &dcbcfg->etsrec;
/* First Octet is reserved */
/* Begin adding at Priority Assignment Table (offset 1 in buf) */
ice_add_ieee_ets_common_tlv(&buf[1], etsrec);
}
/**
* ice_add_ieee_pfc_tlv - Prepare PFC TLV in IEEE format
* @tlv: Fill PFC TLV in IEEE format
* @dcbcfg: Local store which holds the PFC CFG data
*
* Prepare IEEE 802.1Qaz PFC CFG TLV
*/
void
ice_add_ieee_pfc_tlv(struct ice_lldp_org_tlv *tlv, struct ice_dcbx_cfg *dcbcfg)
{
uint8_t *buf = tlv->tlvinfo;
uint32_t ouisubtype;
uint16_t typelen;
typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
ICE_IEEE_PFC_TLV_LEN);
tlv->typelen = htons(typelen);
ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
ICE_IEEE_SUBTYPE_PFC_CFG);
tlv->ouisubtype = htonl(ouisubtype);
/* ----------------------------------------
* |will-|MBC | Re- | PFC | PFC Enable |
* |ing | |served| cap | |
* -----------------------------------------
* |1bit | 1bit|2 bits|4bits| 1 octet |
*/
if (dcbcfg->pfc.willing)
buf[0] = BIT(ICE_IEEE_PFC_WILLING_S);
if (dcbcfg->pfc.mbc)
buf[0] |= BIT(ICE_IEEE_PFC_MBC_S);
buf[0] |= dcbcfg->pfc.pfccap & 0xF;
buf[1] = dcbcfg->pfc.pfcena;
}
/**
* ice_add_ieee_app_pri_tlv - Prepare APP TLV in IEEE format
* @tlv: Fill APP TLV in IEEE format
* @dcbcfg: Local store which holds the APP CFG data
*
* Prepare IEEE 802.1Qaz APP CFG TLV
*/
void
ice_add_ieee_app_pri_tlv(struct ice_lldp_org_tlv *tlv,
struct ice_dcbx_cfg *dcbcfg)
{
uint16_t typelen, len, offset = 0;
uint8_t priority, selector, i = 0;
uint8_t *buf = tlv->tlvinfo;
uint32_t ouisubtype;
/* No APP TLVs then just return */
if (dcbcfg->numapps == 0)
return;
ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
ICE_IEEE_SUBTYPE_APP_PRI);
tlv->ouisubtype = HTONL(ouisubtype);
/* Move offset to App Priority Table */
offset++;
/* Application Priority Table (3 octets)
* Octets:| 1 | 2 | 3 |
* -----------------------------------------
* |Priority|Rsrvd| Sel | Protocol ID |
* -----------------------------------------
* Bits:|23 21|20 19|18 16|15 0|
* -----------------------------------------
*/
while (i < dcbcfg->numapps) {
priority = dcbcfg->app[i].priority & 0x7;
selector = dcbcfg->app[i].selector & 0x7;
buf[offset] = (priority << ICE_IEEE_APP_PRIO_S) | selector;
buf[offset + 1] = (dcbcfg->app[i].prot_id >> 0x8) & 0xFF;
buf[offset + 2] = dcbcfg->app[i].prot_id & 0xFF;
/* Move to next app */
offset += 3;
i++;
if (i >= ICE_DCBX_MAX_APPS)
break;
}
/* len includes size of ouisubtype + 1 reserved + 3*numapps */
len = sizeof(tlv->ouisubtype) + 1 + (i * 3);
typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | (len & 0x1FF));
tlv->typelen = HTONS(typelen);
}
/**
* ice_add_dscp_up_tlv - Prepare DSCP to UP TLV
* @tlv: location to build the TLV data
* @dcbcfg: location of data to convert to TLV
*/
void
ice_add_dscp_up_tlv(struct ice_lldp_org_tlv *tlv, struct ice_dcbx_cfg *dcbcfg)
{
uint8_t *buf = tlv->tlvinfo;
uint32_t ouisubtype;
uint16_t typelen;
int i;
typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
ICE_DSCP_UP_TLV_LEN);
tlv->typelen = htons(typelen);
ouisubtype = (uint32_t)((ICE_DSCP_OUI << ICE_LLDP_TLV_OUI_S) |
ICE_DSCP_SUBTYPE_DSCP2UP);
tlv->ouisubtype = htonl(ouisubtype);
/* bytes 0 - 63 - IPv4 DSCP2UP LUT */
for (i = 0; i < ICE_DSCP_NUM_VAL; i++) {
/* IPv4 mapping */
buf[i] = dcbcfg->dscp_map[i];
/* IPv6 mapping */
buf[i + ICE_DSCP_IPV6_OFFSET] = dcbcfg->dscp_map[i];
}
/* byte 64 - IPv4 untagged traffic */
buf[i] = 0;
/* byte 144 - IPv6 untagged traffic */
buf[i + ICE_DSCP_IPV6_OFFSET] = 0;
}
#define ICE_BYTES_PER_TC 8
/**
* ice_add_dscp_enf_tlv - Prepare DSCP Enforcement TLV
* @tlv: location to build the TLV data
*/
void
ice_add_dscp_enf_tlv(struct ice_lldp_org_tlv *tlv)
{
uint8_t *buf = tlv->tlvinfo;
uint32_t ouisubtype;
uint16_t typelen;
typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
ICE_DSCP_ENF_TLV_LEN);
tlv->typelen = htons(typelen);
ouisubtype = (uint32_t)((ICE_DSCP_OUI << ICE_LLDP_TLV_OUI_S) |
ICE_DSCP_SUBTYPE_ENFORCE);
tlv->ouisubtype = htonl(ouisubtype);
/* Allow all DSCP values to be valid for all TC's (IPv4 and IPv6) */
memset(buf, 0, 2 * (ICE_MAX_TRAFFIC_CLASS * ICE_BYTES_PER_TC));
}
/**
* ice_add_dscp_tc_bw_tlv - Prepare DSCP BW for TC TLV
* @tlv: location to build the TLV data
* @dcbcfg: location of the data to convert to TLV
*/
void
ice_add_dscp_tc_bw_tlv(struct ice_lldp_org_tlv *tlv,
struct ice_dcbx_cfg *dcbcfg)
{
struct ice_dcb_ets_cfg *etscfg;
uint8_t *buf = tlv->tlvinfo;
uint32_t ouisubtype;
uint8_t offset = 0;
uint16_t typelen;
int i;
typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
ICE_DSCP_TC_BW_TLV_LEN);
tlv->typelen = htons(typelen);
ouisubtype = (uint32_t)((ICE_DSCP_OUI << ICE_LLDP_TLV_OUI_S) |
ICE_DSCP_SUBTYPE_TCBW);
tlv->ouisubtype = htonl(ouisubtype);
/* First Octect after subtype
* ----------------------------
* | RSV | CBS | RSV | Max TCs |
* | 1b | 1b | 3b | 3b |
* ----------------------------
*/
etscfg = &dcbcfg->etscfg;
buf[0] = etscfg->maxtcs & ICE_IEEE_ETS_MAXTC_M;
/* bytes 1 - 4 reserved */
offset = 5;
/* TC BW table
* bytes 0 - 7 for TC 0 - 7
*
* TSA Assignment table
* bytes 8 - 15 for TC 0 - 7
*/
for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
buf[offset] = etscfg->tcbwtable[i];
buf[offset + ICE_MAX_TRAFFIC_CLASS] = etscfg->tsatable[i];
offset++;
}
}
/**
* ice_add_dscp_pfc_tlv - Prepare DSCP PFC TLV
* @tlv: Fill PFC TLV in IEEE format
* @dcbcfg: Local store which holds the PFC CFG data
*/
void
ice_add_dscp_pfc_tlv(struct ice_lldp_org_tlv *tlv, struct ice_dcbx_cfg *dcbcfg)
{
uint8_t *buf = tlv->tlvinfo;
uint32_t ouisubtype;
uint16_t typelen;
typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
ICE_DSCP_PFC_TLV_LEN);
tlv->typelen = htons(typelen);
ouisubtype = (uint32_t)((ICE_DSCP_OUI << ICE_LLDP_TLV_OUI_S) |
ICE_DSCP_SUBTYPE_PFC);
tlv->ouisubtype = HTONL(ouisubtype);
buf[0] = dcbcfg->pfc.pfccap & 0xF;
buf[1] = dcbcfg->pfc.pfcena;
}
/**
* ice_add_dcb_tlv - Add all IEEE or DSCP TLVs
* @tlv: Fill TLV data in IEEE format
* @dcbcfg: Local store which holds the DCB Config
* @tlvid: Type of IEEE TLV
*
* Add tlv information
*/
void
ice_add_dcb_tlv(struct ice_lldp_org_tlv *tlv, struct ice_dcbx_cfg *dcbcfg,
uint16_t tlvid)
{
if (dcbcfg->pfc_mode == ICE_QOS_MODE_VLAN) {
switch (tlvid) {
case ICE_IEEE_TLV_ID_ETS_CFG:
ice_add_ieee_ets_tlv(tlv, dcbcfg);
break;
case ICE_IEEE_TLV_ID_ETS_REC:
ice_add_ieee_etsrec_tlv(tlv, dcbcfg);
break;
case ICE_IEEE_TLV_ID_PFC_CFG:
ice_add_ieee_pfc_tlv(tlv, dcbcfg);
break;
case ICE_IEEE_TLV_ID_APP_PRI:
ice_add_ieee_app_pri_tlv(tlv, dcbcfg);
break;
default:
break;
}
} else {
/* pfc_mode == ICE_QOS_MODE_DSCP */
switch (tlvid) {
case ICE_TLV_ID_DSCP_UP:
ice_add_dscp_up_tlv(tlv, dcbcfg);
break;
case ICE_TLV_ID_DSCP_ENF:
ice_add_dscp_enf_tlv(tlv);
break;
case ICE_TLV_ID_DSCP_TC_BW:
ice_add_dscp_tc_bw_tlv(tlv, dcbcfg);
break;
case ICE_TLV_ID_DSCP_TO_PFC:
ice_add_dscp_pfc_tlv(tlv, dcbcfg);
break;
default:
break;
}
}
}
/**
* ice_dcb_cfg_to_lldp - Convert DCB configuration to MIB format
* @lldpmib: pointer to the HW struct
* @miblen: length of LLDP MIB
* @dcbcfg: Local store which holds the DCB Config
*
* Convert the DCB configuration to MIB format
*/
void
ice_dcb_cfg_to_lldp(uint8_t *lldpmib, uint16_t *miblen,
struct ice_dcbx_cfg *dcbcfg)
{
uint16_t len, offset = 0, tlvid = ICE_TLV_ID_START;
struct ice_lldp_org_tlv *tlv;
uint16_t typelen;
tlv = (struct ice_lldp_org_tlv *)lldpmib;
while (1) {
ice_add_dcb_tlv(tlv, dcbcfg, tlvid++);
typelen = ntohs(tlv->typelen);
len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
if (len)
offset += len + 2;
/* END TLV or beyond LLDPDU size */
if (tlvid >= ICE_TLV_ID_END_OF_LLDPPDU ||
offset > ICE_LLDPDU_SIZE)
break;
/* Move to next TLV */
if (len)
tlv = (struct ice_lldp_org_tlv *)
((char *)tlv + sizeof(tlv->typelen) + len);
}
*miblen = offset;
}
/**
* ice_aq_set_lldp_mib - Set the LLDP MIB
* @hw: pointer to the HW struct
* @mib_type: Local, Remote or both Local and Remote MIBs
* @buf: pointer to the caller-supplied buffer to store the MIB block
* @buf_size: size of the buffer (in bytes)
* @cd: pointer to command details structure or NULL
*
* Set the LLDP MIB. (0x0A08)
*/
enum ice_status
ice_aq_set_lldp_mib(struct ice_hw *hw, uint8_t mib_type, void *buf,
uint16_t buf_size, struct ice_sq_cd *cd)
{
struct ice_aqc_lldp_set_local_mib *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.lldp_set_mib;
if (buf_size == 0 || !buf)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
desc.flags |= htole16((uint16_t)ICE_AQ_FLAG_RD);
desc.datalen = htole16(buf_size);
cmd->type = mib_type;
cmd->length = htole16(buf_size);
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
}
/**
* ice_set_dcb_cfg - Set the local LLDP MIB to FW
* @pi: port information structure
*
* Set DCB configuration to the Firmware
*/
enum ice_status
ice_set_dcb_cfg(struct ice_port_info *pi)
{
uint8_t mib_type, *lldpmib = NULL;
struct ice_dcbx_cfg *dcbcfg;
enum ice_status ret;
struct ice_hw *hw;
uint16_t miblen;
if (!pi)
return ICE_ERR_PARAM;
hw = pi->hw;
/* update the HW local config */
dcbcfg = &pi->qos_cfg.local_dcbx_cfg;
/* Allocate the LLDPDU */
lldpmib = (uint8_t *)ice_malloc(hw, ICE_LLDPDU_SIZE);
if (!lldpmib)
return ICE_ERR_NO_MEMORY;
mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
if (dcbcfg->app_mode == ICE_DCBX_APPS_NON_WILLING)
mib_type |= SET_LOCAL_MIB_TYPE_CEE_NON_WILLING;
ice_dcb_cfg_to_lldp(lldpmib, &miblen, dcbcfg);
ret = ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, miblen,
NULL);
ice_free(hw, lldpmib);
return ret;
}
/**
* ice_set_default_local_lldp_mib - Possibly apply local LLDP MIB to FW
* @sc: device softc structure
*
* This function needs to be called after link up; it makes sure the FW has
* certain PFC/DCB settings. In certain configurations this will re-apply a
* default local LLDP MIB configuration; this is intended to workaround a FW
* behavior where these settings seem to be cleared on link up.
*/
void
ice_set_default_local_lldp_mib(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
struct ice_port_info *pi;
enum ice_status status;
/* Set Local MIB can disrupt flow control settings for
* non-DCB-supported devices.
*/
if (!ice_is_bit_set(sc->feat_en, ICE_FEATURE_DCB))
return;
pi = hw->port_info;
/* Don't overwrite a custom SW configuration */
if (!pi->qos_cfg.is_sw_lldp &&
!ice_test_state(&sc->state, ICE_STATE_MULTIPLE_TCS))
ice_set_default_local_mib_settings(sc);
status = ice_set_dcb_cfg(pi);
if (status) {
printf("%s: Error setting Local LLDP MIB: %s aq_err %s\n",
sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
}
/**
* ice_aq_speed_to_rate - Convert AdminQ speed enum to baudrate
* @pi: port info data
*
* Returns the baudrate value for the current link speed of a given port.
*/
uint64_t
ice_aq_speed_to_rate(struct ice_port_info *pi)
{
switch (pi->phy.link_info.link_speed) {
case ICE_AQ_LINK_SPEED_100GB:
return IF_Gbps(100);
case ICE_AQ_LINK_SPEED_50GB:
return IF_Gbps(50);
case ICE_AQ_LINK_SPEED_40GB:
return IF_Gbps(40);
case ICE_AQ_LINK_SPEED_25GB:
return IF_Gbps(25);
case ICE_AQ_LINK_SPEED_10GB:
return IF_Gbps(10);
case ICE_AQ_LINK_SPEED_5GB:
return IF_Gbps(5);
case ICE_AQ_LINK_SPEED_2500MB:
return IF_Mbps(2500);
case ICE_AQ_LINK_SPEED_1000MB:
return IF_Mbps(1000);
case ICE_AQ_LINK_SPEED_100MB:
return IF_Mbps(100);
case ICE_AQ_LINK_SPEED_10MB:
return IF_Mbps(10);
case ICE_AQ_LINK_SPEED_UNKNOWN:
default:
/* return 0 if we don't know the link speed */
return 0;
}
}
/**
* ice_update_link_status - notify OS of link state change
* @sc: device private softc structure
* @update_media: true if we should update media even if link didn't change
*
* Called to notify iflib core of link status changes. Should be called once
* during attach_post, and whenever link status changes during runtime.
*
* This call only updates the currently supported media types if the link
* status changed, or if update_media is set to true.
*/
void
ice_update_link_status(struct ice_softc *sc, bool update_media)
{
struct ifnet *ifp = &sc->sc_ac.ac_if;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
/* Never report link up when in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return;
/* Report link status to iflib only once each time it changes */
if (!ice_testandset_state(&sc->state, ICE_STATE_LINK_STATUS_REPORTED)) {
if (sc->link_up) { /* link is up */
uint64_t baudrate;
baudrate = ice_aq_speed_to_rate(sc->hw.port_info);
if (!(hw->port_info->phy.link_info_old.link_info &
ICE_AQ_LINK_UP))
ice_set_default_local_lldp_mib(sc);
ifp->if_baudrate = baudrate;
ifp->if_link_state = LINK_STATE_UP;
if_link_state_change(ifp);
#if 0
ice_rdma_link_change(sc, LINK_STATE_UP, baudrate);
ice_link_up_msg(sc);
#endif
} else { /* link is down */
ifp->if_baudrate = 0;
ifp->if_link_state = LINK_STATE_DOWN;
if_link_state_change(ifp);
#if 0
ice_rdma_link_change(sc, LINK_STATE_DOWN, 0);
#endif
}
update_media = true;
}
/* Update the supported media types */
if (update_media &&
!ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) {
status = ice_add_media_types(sc, &sc->media);
if (status)
printf("%s: Error adding device media types: "
"%s aq_err %s\n", sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
}
/**
* ice_rebuild - Rebuild driver state post reset
* @sc: The device private softc
*
* Restore driver state after a reset occurred. Restart the controlqs, setup
* the hardware port, and re-enable the VSIs.
*/
void
ice_rebuild(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
enum ice_status status;
int err;
sc->rebuild_ticks = ticks;
/* If we're rebuilding, then a reset has succeeded. */
ice_clear_state(&sc->state, ICE_STATE_RESET_FAILED);
/*
* If the firmware is in recovery mode, only restore the limited
* functionality supported by recovery mode.
*/
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) {
ice_rebuild_recovery_mode(sc);
return;
}
#if 0
/* enable PCIe bus master */
pci_enable_busmaster(dev);
#endif
status = ice_init_all_ctrlq(hw);
if (status) {
printf("%s: failed to re-init control queues, err %s\n",
sc->sc_dev.dv_xname, ice_status_str(status));
goto err_shutdown_ctrlq;
}
/* Query the allocated resources for Tx scheduler */
status = ice_sched_query_res_alloc(hw);
if (status) {
printf("%s: Failed to query scheduler resources, "
"err %s aq_err %s\n", sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
goto err_shutdown_ctrlq;
}
/* Re-enable FW logging. Keep going even if this fails */
status = ice_fwlog_set(hw, &hw->fwlog_cfg);
if (!status) {
/*
* We should have the most updated cached copy of the
* configuration, regardless of whether we're rebuilding
* or not. So we'll simply check to see if logging was
* enabled pre-rebuild.
*/
if (hw->fwlog_cfg.options & ICE_FWLOG_OPTION_IS_REGISTERED) {
status = ice_fwlog_register(hw);
if (status)
printf("%s: failed to re-register fw logging, "
"err %s aq_err %s\n",
sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
} else {
printf("%s: failed to rebuild fw logging configuration, "
"err %s aq_err %s\n", sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
err = ice_send_version(sc);
if (err)
goto err_shutdown_ctrlq;
err = ice_init_link_events(sc);
if (err) {
printf("%s: ice_init_link_events failed: %d\n",
sc->sc_dev.dv_xname, err);
goto err_shutdown_ctrlq;
}
status = ice_clear_pf_cfg(hw);
if (status) {
printf("%s: failed to clear PF configuration, err %s\n",
sc->sc_dev.dv_xname, ice_status_str(status));
goto err_shutdown_ctrlq;
}
ice_clean_all_vsi_rss_cfg(sc);
ice_clear_pxe_mode(hw);
status = ice_get_caps(hw);
if (status) {
printf("%s: failed to get capabilities, err %s\n",
sc->sc_dev.dv_xname, ice_status_str(status));
goto err_shutdown_ctrlq;
}
status = ice_sched_init_port(hw->port_info);
if (status) {
printf("%s: failed to initialize port, err %s\n",
sc->sc_dev.dv_xname, ice_status_str(status));
goto err_sched_cleanup;
}
/* If we previously loaded the package, it needs to be reloaded now */
if (!ice_is_bit_set(sc->feat_en, ICE_FEATURE_SAFE_MODE)) {
#if 0
enum ice_ddp_state pkg_state;
pkg_state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
if (!ice_is_init_pkg_successful(pkg_state)) {
ice_log_pkg_init(sc, pkg_state);
ice_transition_safe_mode(sc);
}
#endif
}
ice_reset_pf_stats(sc);
err = ice_rebuild_pf_vsi_qmap(sc);
if (err) {
printf("%s: Unable to re-assign main VSI queues, err %d\n",
sc->sc_dev.dv_xname, err);
goto err_sched_cleanup;
}
err = ice_initialize_vsi(&sc->pf_vsi);
if (err) {
printf("%s: Unable to re-initialize Main VSI, err %d\n",
sc->sc_dev.dv_xname, err);
goto err_release_queue_allocations;
}
/* Replay all VSI configuration */
err = ice_replay_all_vsi_cfg(sc);
if (err)
goto err_deinit_pf_vsi;
/* Re-enable FW health event reporting */
ice_init_health_events(sc);
#if 0
/* Reconfigure the main PF VSI for RSS */
err = ice_config_rss(&sc->pf_vsi);
if (err) {
device_printf(sc->dev,
"Unable to reconfigure RSS for the main VSI, err %s\n",
ice_err_str(err));
goto err_deinit_pf_vsi;
}
#endif
if (hw->port_info->qos_cfg.is_sw_lldp)
ice_add_rx_lldp_filter(sc);
/* Refresh link status */
ice_clear_state(&sc->state, ICE_STATE_LINK_STATUS_REPORTED);
sc->hw.port_info->phy.get_link_info = true;
ice_get_link_status(sc->hw.port_info, &sc->link_up);
ice_update_link_status(sc, true);
/* RDMA interface will be restarted by the stack re-init */
/* Configure interrupt causes for the administrative interrupt */
ice_configure_misc_interrupts(sc);
/* Enable ITR 0 right away, so that we can handle admin interrupts */
ice_enable_intr(&sc->hw, 0);
/* Rebuild is finished. We're no longer prepared to reset */
ice_clear_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET);
#if 0
/* Reconfigure the subinterface */
if (sc->mirr_if) {
err = ice_subif_rebuild(sc);
if (err)
goto err_deinit_pf_vsi;
}
#endif
printf("%s: device rebuild successful\n", sc->sc_dev.dv_xname);
/* In order to completely restore device functionality, the iflib core
* needs to be reset. We need to request an iflib reset. Additionally,
* because the state of IFC_DO_RESET is cached within task_fn_admin in
* the iflib core, we also want re-run the admin task so that iflib
* resets immediately instead of waiting for the next interrupt.
* If LLDP is enabled we need to reconfig DCB to properly reinit all TC
* queues, not only 0. It contains ice_request_stack_reinit as well.
*/
#if 0
if (hw->port_info->qos_cfg.is_sw_lldp)
ice_request_stack_reinit(sc);
else
ice_do_dcb_reconfig(sc, false);
#endif
return;
err_deinit_pf_vsi:
ice_deinit_vsi(&sc->pf_vsi);
err_release_queue_allocations:
ice_resmgr_release_map(&sc->tx_qmgr, sc->pf_vsi.tx_qmap,
sc->pf_vsi.num_tx_queues);
ice_resmgr_release_map(&sc->rx_qmgr, sc->pf_vsi.rx_qmap,
sc->pf_vsi.num_rx_queues);
err_sched_cleanup:
ice_sched_cleanup_all(hw);
err_shutdown_ctrlq:
ice_shutdown_all_ctrlq(hw, false);
ice_clear_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET);
ice_set_state(&sc->state, ICE_STATE_RESET_FAILED);
printf("%s: driver reset failed\n", sc->sc_dev.dv_xname);
}
/**
* ice_handle_reset_event - Handle reset events triggered by OICR
* @sc: The device private softc
*
* Handle reset events triggered by an OICR notification. This includes CORER,
* GLOBR, and EMPR resets triggered by software on this or any other PF or by
* firmware.
*
* @pre assumes the iflib context lock is held, and will unlock it while
* waiting for the hardware to finish reset.
*/
void
ice_handle_reset_event(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
enum ice_status status;
/* When a CORER, GLOBR, or EMPR is about to happen, the hardware will
* trigger an OICR interrupt. Our OICR handler will determine when
* this occurs and set the ICE_STATE_RESET_OICR_RECV bit as
* appropriate.
*/
if (!ice_testandclear_state(&sc->state, ICE_STATE_RESET_OICR_RECV))
return;
ice_prepare_for_reset(sc);
/*
* Release the iflib context lock and wait for the device to finish
* resetting.
*/
#if 0
IFLIB_CTX_UNLOCK(sc);
#endif
status = ice_check_reset(hw);
#if 0
IFLIB_CTX_LOCK(sc);
#endif
if (status) {
printf("%s: Device never came out of reset, err %s\n",
sc->sc_dev.dv_xname, ice_status_str(status));
ice_set_state(&sc->state, ICE_STATE_RESET_FAILED);
return;
}
/* We're done with the reset, so we can rebuild driver state */
sc->hw.reset_ongoing = false;
ice_rebuild(sc);
/* In the unlikely event that a PF reset request occurs at the same
* time as a global reset, clear the request now. This avoids
* resetting a second time right after we reset due to a global event.
*/
if (ice_testandclear_state(&sc->state, ICE_STATE_RESET_PFR_REQ))
printf("%s: Ignoring PFR request that occurred while a "
"reset was ongoing\n", sc->sc_dev.dv_xname);
}
/**
* ice_handle_pf_reset_request - Initiate PF reset requested by software
* @sc: The device private softc
*
* Initiate a PF reset requested by software. We handle this in the admin task
* so that only one thread actually handles driver preparation and cleanup,
* rather than having multiple threads possibly attempt to run this code
* simultaneously.
*
* @pre assumes the iflib context lock is held and will unlock it while
* waiting for the PF reset to complete.
*/
void
ice_handle_pf_reset_request(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
enum ice_status status;
/* Check for PF reset requests */
if (!ice_testandclear_state(&sc->state, ICE_STATE_RESET_PFR_REQ))
return;
/* Make sure we're prepared for reset */
ice_prepare_for_reset(sc);
/*
* Release the iflib context lock and wait for the device to finish
* resetting.
*/
#if 0
IFLIB_CTX_UNLOCK(sc);
#endif
status = ice_reset(hw, ICE_RESET_PFR);
#if 0
IFLIB_CTX_LOCK(sc);
#endif
if (status) {
printf("%s: device PF reset failed, err %s\n",
sc->sc_dev.dv_xname, ice_status_str(status));
ice_set_state(&sc->state, ICE_STATE_RESET_FAILED);
return;
}
#if 0
sc->soft_stats.pfr_count++;
#endif
ice_rebuild(sc);
}
/**
* ice_handle_mdd_event - Handle possibly malicious events
* @sc: the device softc
*
* Called by the admin task if an MDD detection interrupt is triggered.
* Identifies possibly malicious events coming from VFs. Also triggers for
* similar incorrect behavior from the PF as well.
*/
void
ice_handle_mdd_event(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
bool mdd_detected = false, request_reinit = false;
uint32_t reg;
if (!ice_testandclear_state(&sc->state, ICE_STATE_MDD_PENDING))
return;
reg = ICE_READ(hw, GL_MDET_TX_TCLAN);
if (reg & GL_MDET_TX_TCLAN_VALID_M) {
uint8_t pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
GL_MDET_TX_TCLAN_PF_NUM_S;
uint16_t vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
GL_MDET_TX_TCLAN_VF_NUM_S;
uint8_t event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
GL_MDET_TX_TCLAN_MAL_TYPE_S;
uint16_t queue = (reg & GL_MDET_TX_TCLAN_QNUM_M) >>
GL_MDET_TX_TCLAN_QNUM_S;
printf("%s: Malicious Driver Detection Tx Descriptor "
"check event '%s' on Tx queue %u PF# %u VF# %u\n",
sc->sc_dev.dv_xname, ice_mdd_tx_tclan_str(event),
queue, pf_num, vf_num);
/* Only clear this event if it matches this PF, that way other
* PFs can read the event and determine VF and queue number.
*/
if (pf_num == hw->pf_id)
ICE_WRITE(hw, GL_MDET_TX_TCLAN, 0xffffffff);
mdd_detected = true;
}
/* Determine what triggered the MDD event */
reg = ICE_READ(hw, GL_MDET_TX_PQM);
if (reg & GL_MDET_TX_PQM_VALID_M) {
uint8_t pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
GL_MDET_TX_PQM_PF_NUM_S;
uint16_t vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
GL_MDET_TX_PQM_VF_NUM_S;
uint8_t event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
GL_MDET_TX_PQM_MAL_TYPE_S;
uint16_t queue = (reg & GL_MDET_TX_PQM_QNUM_M) >>
GL_MDET_TX_PQM_QNUM_S;
printf("%s: Malicious Driver Detection Tx Quanta check "
"event '%s' on Tx queue %u PF# %u VF# %u\n",
sc->sc_dev.dv_xname, ice_mdd_tx_pqm_str(event), queue,
pf_num, vf_num);
/* Only clear this event if it matches this PF, that way other
* PFs can read the event and determine VF and queue number.
*/
if (pf_num == hw->pf_id)
ICE_WRITE(hw, GL_MDET_TX_PQM, 0xffffffff);
mdd_detected = true;
}
reg = ICE_READ(hw, GL_MDET_RX);
if (reg & GL_MDET_RX_VALID_M) {
uint8_t pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
GL_MDET_RX_PF_NUM_S;
uint16_t vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
GL_MDET_RX_VF_NUM_S;
uint8_t event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
GL_MDET_RX_MAL_TYPE_S;
uint16_t queue = (reg & GL_MDET_RX_QNUM_M) >>
GL_MDET_RX_QNUM_S;
printf("%s: Malicious Driver Detection Rx event '%s' "
"on Rx queue %u PF# %u VF# %u\n", sc->sc_dev.dv_xname,
ice_mdd_rx_str(event), queue, pf_num, vf_num);
/* Only clear this event if it matches this PF, that way other
* PFs can read the event and determine VF and queue number.
*/
if (pf_num == hw->pf_id)
ICE_WRITE(hw, GL_MDET_RX, 0xffffffff);
mdd_detected = true;
}
/* Now, confirm that this event actually affects this PF, by checking
* the PF registers.
*/
if (mdd_detected) {
reg = ICE_READ(hw, PF_MDET_TX_TCLAN);
if (reg & PF_MDET_TX_TCLAN_VALID_M) {
ICE_WRITE(hw, PF_MDET_TX_TCLAN, 0xffff);
#if 0
sc->soft_stats.tx_mdd_count++;
#endif
request_reinit = true;
}
reg = ICE_READ(hw, PF_MDET_TX_PQM);
if (reg & PF_MDET_TX_PQM_VALID_M) {
ICE_WRITE(hw, PF_MDET_TX_PQM, 0xffff);
#if 0
sc->soft_stats.tx_mdd_count++;
#endif
request_reinit = true;
}
reg = ICE_READ(hw, PF_MDET_RX);
if (reg & PF_MDET_RX_VALID_M) {
ICE_WRITE(hw, PF_MDET_RX, 0xffff);
#if 0
sc->soft_stats.rx_mdd_count++;
#endif
request_reinit = true;
}
}
/* TODO: Implement logic to detect and handle events caused by VFs. */
/* request that the upper stack re-initialize the Tx/Rx queues */
if (request_reinit)
ice_request_stack_reinit(sc);
ice_flush(hw);
}
/**
* ice_check_ctrlq_errors - Check for and report controlq errors
* @sc: device private structure
* @qname: name of the controlq
* @cq: the controlq to check
*
* Check and report controlq errors. Currently all we do is report them to the
* kernel message log, but we might want to improve this in the future, such
* as to keep track of statistics.
*/
void
ice_check_ctrlq_errors(struct ice_softc *sc, const char *qname,
struct ice_ctl_q_info *cq)
{
struct ice_hw *hw = &sc->hw;
uint32_t val;
/* Check for error indications. Note that all the controlqs use the
* same register layout, so we use the PF_FW_AxQLEN defines only.
*/
val = ICE_READ(hw, cq->rq.len);
if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
PF_FW_ARQLEN_ARQCRIT_M)) {
if (val & PF_FW_ARQLEN_ARQVFE_M)
printf("%s: %s Receive Queue VF Error detected\n",
sc->sc_dev.dv_xname, qname);
if (val & PF_FW_ARQLEN_ARQOVFL_M)
printf("%s: %s Receive Queue Overflow Error detected\n",
sc->sc_dev.dv_xname, qname);
if (val & PF_FW_ARQLEN_ARQCRIT_M)
printf("%s: %s Receive Queue Critical Error detected\n",
sc->sc_dev.dv_xname, qname);
val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
PF_FW_ARQLEN_ARQCRIT_M);
ICE_WRITE(hw, cq->rq.len, val);
}
val = ICE_READ(hw, cq->sq.len);
if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
PF_FW_ATQLEN_ATQCRIT_M)) {
if (val & PF_FW_ATQLEN_ATQVFE_M)
printf("%s: %s Send Queue VF Error detected\n",
sc->sc_dev.dv_xname, qname);
if (val & PF_FW_ATQLEN_ATQOVFL_M)
printf("%s: %s Send Queue Overflow Error detected\n",
sc->sc_dev.dv_xname, qname);
if (val & PF_FW_ATQLEN_ATQCRIT_M)
printf("%s: %s Send Queue Critical Error detected\n",
sc->sc_dev.dv_xname, qname);
val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
PF_FW_ATQLEN_ATQCRIT_M);
ICE_WRITE(hw, cq->sq.len, val);
}
}
/**
* ice_process_link_event - Process a link event indication from firmware
* @sc: device softc structure
* @e: the received event data
*
* Gets the current link status from hardware, and may print a message if an
* unqualified is detected.
*/
void
ice_process_link_event(struct ice_softc *sc, struct ice_rq_event_info *e)
{
struct ice_port_info *pi = sc->hw.port_info;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
/* Sanity check that the data length isn't too small */
KASSERT(le16toh(e->desc.datalen) >= ICE_GET_LINK_STATUS_DATALEN_V1);
/*
* Even though the adapter gets link status information inside the
* event, it needs to send a Get Link Status AQ command in order
* to re-enable link events.
*/
pi->phy.get_link_info = true;
ice_get_link_status(pi, &sc->link_up);
if (pi->phy.link_info.topo_media_conflict &
(ICE_AQ_LINK_TOPO_CONFLICT | ICE_AQ_LINK_MEDIA_CONFLICT |
ICE_AQ_LINK_TOPO_CORRUPT))
printf("%s: Possible mis-configuration of the Ethernet port "
"detected: topology conflict, or link media conflict, "
"or link topology corrupt\n", sc->sc_dev.dv_xname);
if ((pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) &&
!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) {
if (!(pi->phy.link_info.an_info & ICE_AQ_QUALIFIED_MODULE))
printf("%s: Link is disabled on this device because "
"an unsupported module type was detected!",
sc->sc_dev.dv_xname);
if (pi->phy.link_info.link_cfg_err &
ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED)
printf("%s: The module's power requirements exceed "
"the device's power supply. Cannot start link.\n",
sc->sc_dev.dv_xname);
if (pi->phy.link_info.link_cfg_err &
ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT)
printf("%s: The installed module is incompatible with "
"the device's NVM image. Cannot start link.\n",
sc->sc_dev.dv_xname);
}
if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
if (!ice_testandset_state(&sc->state, ICE_STATE_NO_MEDIA)) {
status = ice_aq_set_link_restart_an(pi, false, NULL);
if (status != ICE_SUCCESS &&
hw->adminq.sq_last_status != ICE_AQ_RC_EMODE)
DPRINTF("%s: ice_aq_set_link_restart_an: "
"status %s, aq_err %s\n", __func__,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
}
/* ICE_STATE_NO_MEDIA is cleared when polling task detects media */
/* Indicate that link status must be reported again */
ice_clear_state(&sc->state, ICE_STATE_LINK_STATUS_REPORTED);
/* OS link info is updated elsewhere */
}
/**
* ice_info_fwlog - Format and print an array of values to the console
* @hw: private hardware structure
* @rowsize: preferred number of rows to use
* @groupsize: preferred size in bytes to print each chunk
* @buf: the array buffer to print
* @len: size of the array buffer
*
* Format the given array as a series of uint8_t values with hexadecimal
* notation and log the contents to the console log. This variation is
* specific to firmware logging.
*
* TODO: Currently only supports a group size of 1, due to the way hexdump is
* implemented.
*/
void
ice_info_fwlog(struct ice_hw *hw, uint32_t rowsize, uint32_t __unused groupsize,
uint8_t *buf, size_t len)
{
struct ice_softc *sc = hw->hw_sc;
if (!ice_fwlog_supported(hw))
return;
/* Format the device header to a string */
printf("%s: FWLOG: ", sc->sc_dev.dv_xname);
ice_hexdump(buf, len);
}
/**
* ice_fwlog_event_dump - Dump the event received over the Admin Receive Queue
* @hw: pointer to the HW structure
* @desc: Admin Receive Queue descriptor
* @buf: buffer that contains the FW log event data
*
* If the driver receives the ice_aqc_opc_fw_logs_event on the Admin Receive
* Queue, then it should call this function to dump the FW log data.
*/
void
ice_fwlog_event_dump(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
{
if (!ice_fwlog_supported(hw))
return;
ice_info_fwlog(hw, 32, 1, (uint8_t *)buf, le16toh(desc->datalen));
}
/**
* ice_handle_fw_log_event - Handle a firmware logging event from the AdminQ
* @sc: pointer to private softc structure
* @desc: the AdminQ descriptor for this firmware event
* @buf: pointer to the buffer accompanying the AQ message
*/
void
ice_handle_fw_log_event(struct ice_softc *sc, struct ice_aq_desc *desc,
void *buf)
{
#if 0
/* Trigger a DTrace probe event for this firmware message */
SDT_PROBE2(ice_fwlog, , , message, (const u8 *)buf, desc->datalen);
#endif
/* Possibly dump the firmware message to the console, if enabled */
ice_fwlog_event_dump(&sc->hw, desc, buf);
}
/**
* ice_debug_print_mib_change_event - helper function to log LLDP MIB change events
* @sc: the device private softc
* @event: event received on a control queue
*
* Prints out the type and contents of an LLDP MIB change event in a DCB debug message.
*/
void
ice_debug_print_mib_change_event(struct ice_softc *sc,
struct ice_rq_event_info *event)
{
#ifdef ICE_DEBUG
struct ice_aqc_lldp_get_mib *params =
(struct ice_aqc_lldp_get_mib *)&event->desc.params.lldp_get_mib;
uint8_t mib_type, bridge_type, tx_status;
static const char* mib_type_strings[] = {
"Local MIB",
"Remote MIB",
"Reserved",
"Reserved"
};
static const char* bridge_type_strings[] = {
"Nearest Bridge",
"Non-TPMR Bridge",
"Reserved",
"Reserved"
};
static const char* tx_status_strings[] = {
"Port's TX active",
"Port's TX suspended and drained",
"Reserved",
"Port's TX suspended and drained; blocked TC pipe flushed"
};
mib_type = (params->type & ICE_AQ_LLDP_MIB_TYPE_M) >>
ICE_AQ_LLDP_MIB_TYPE_S;
bridge_type = (params->type & ICE_AQ_LLDP_BRID_TYPE_M) >>
ICE_AQ_LLDP_BRID_TYPE_S;
tx_status = (params->type & ICE_AQ_LLDP_TX_M) >>
ICE_AQ_LLDP_TX_S;
DNPRINTF(ICE_DBG_DCB, "%s: LLDP MIB Change Event (%s, %s, %s)\n",
sc->sc_dev.dv_xname,
mib_type_strings[mib_type], bridge_type_strings[bridge_type],
tx_status_strings[tx_status]);
/* Nothing else to report */
if (!event->msg_buf)
return;
DNPRINTF(ICE_DBG_DCB, "- %s contents:\n", mib_type_strings[mib_type]);
ice_debug_array(&sc->hw, ICE_DBG_DCB, 16, 1, event->msg_buf,
event->msg_len);
#endif
}
/**
* ice_aq_get_lldp_mib
* @hw: pointer to the HW struct
* @bridge_type: type of bridge requested
* @mib_type: Local, Remote or both Local and Remote MIBs
* @buf: pointer to the caller-supplied buffer to store the MIB block
* @buf_size: size of the buffer (in bytes)
* @local_len: length of the returned Local LLDP MIB
* @remote_len: length of the returned Remote LLDP MIB
* @cd: pointer to command details structure or NULL
*
* Requests the complete LLDP MIB (entire packet). (0x0A00)
*/
enum ice_status
ice_aq_get_lldp_mib(struct ice_hw *hw, uint8_t bridge_type, uint8_t mib_type,
void *buf, uint16_t buf_size, uint16_t *local_len, uint16_t *remote_len,
struct ice_sq_cd *cd)
{
struct ice_aqc_lldp_get_mib *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.lldp_get_mib;
if (buf_size == 0 || !buf)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_get_mib);
cmd->type = mib_type & ICE_AQ_LLDP_MIB_TYPE_M;
cmd->type |= (bridge_type << ICE_AQ_LLDP_BRID_TYPE_S) &
ICE_AQ_LLDP_BRID_TYPE_M;
desc.datalen = htole16(buf_size);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status) {
if (local_len)
*local_len = le16toh(cmd->local_len);
if (remote_len)
*remote_len = le16toh(cmd->remote_len);
}
return status;
}
/**
* ice_parse_ieee_ets_common_tlv
* @buf: Data buffer to be parsed for ETS CFG/REC data
* @ets_cfg: Container to store parsed data
*
* Parses the common data of IEEE 802.1Qaz ETS CFG/REC TLV
*/
void
ice_parse_ieee_ets_common_tlv(uint8_t *buf, struct ice_dcb_ets_cfg *ets_cfg)
{
uint8_t offset = 0;
int i;
/* Priority Assignment Table (4 octets)
* Octets:| 1 | 2 | 3 | 4 |
* -----------------------------------------
* |pri0|pri1|pri2|pri3|pri4|pri5|pri6|pri7|
* -----------------------------------------
* Bits:|7 4|3 0|7 4|3 0|7 4|3 0|7 4|3 0|
* -----------------------------------------
*/
for (i = 0; i < 4; i++) {
ets_cfg->prio_table[i * 2] =
((buf[offset] & ICE_IEEE_ETS_PRIO_1_M) >>
ICE_IEEE_ETS_PRIO_1_S);
ets_cfg->prio_table[i * 2 + 1] =
((buf[offset] & ICE_IEEE_ETS_PRIO_0_M) >>
ICE_IEEE_ETS_PRIO_0_S);
offset++;
}
/* TC Bandwidth Table (8 octets)
* Octets:| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
* ---------------------------------
* |tc0|tc1|tc2|tc3|tc4|tc5|tc6|tc7|
* ---------------------------------
*
* TSA Assignment Table (8 octets)
* Octets:| 9 | 10| 11| 12| 13| 14| 15| 16|
* ---------------------------------
* |tc0|tc1|tc2|tc3|tc4|tc5|tc6|tc7|
* ---------------------------------
*/
ice_for_each_traffic_class(i) {
ets_cfg->tcbwtable[i] = buf[offset];
ets_cfg->tsatable[i] = buf[ICE_MAX_TRAFFIC_CLASS + offset++];
}
}
/**
* ice_parse_ieee_etscfg_tlv
* @tlv: IEEE 802.1Qaz ETS CFG TLV
* @dcbcfg: Local store to update ETS CFG data
*
* Parses IEEE 802.1Qaz ETS CFG TLV
*/
void
ice_parse_ieee_etscfg_tlv(struct ice_lldp_org_tlv *tlv,
struct ice_dcbx_cfg *dcbcfg)
{
struct ice_dcb_ets_cfg *etscfg;
uint8_t *buf = tlv->tlvinfo;
/* First Octet post subtype
* --------------------------
* |will-|CBS | Re- | Max |
* |ing | |served| TCs |
* --------------------------
* |1bit | 1bit|3 bits|3bits|
*/
etscfg = &dcbcfg->etscfg;
etscfg->willing = ((buf[0] & ICE_IEEE_ETS_WILLING_M) >>
ICE_IEEE_ETS_WILLING_S);
etscfg->cbs = ((buf[0] & ICE_IEEE_ETS_CBS_M) >> ICE_IEEE_ETS_CBS_S);
etscfg->maxtcs = ((buf[0] & ICE_IEEE_ETS_MAXTC_M) >>
ICE_IEEE_ETS_MAXTC_S);
/* Begin parsing at Priority Assignment Table (offset 1 in buf) */
ice_parse_ieee_ets_common_tlv(&buf[1], etscfg);
}
/**
* ice_parse_ieee_etsrec_tlv
* @tlv: IEEE 802.1Qaz ETS REC TLV
* @dcbcfg: Local store to update ETS REC data
*
* Parses IEEE 802.1Qaz ETS REC TLV
*/
void
ice_parse_ieee_etsrec_tlv(struct ice_lldp_org_tlv *tlv,
struct ice_dcbx_cfg *dcbcfg)
{
uint8_t *buf = tlv->tlvinfo;
/* Begin parsing at Priority Assignment Table (offset 1 in buf) */
ice_parse_ieee_ets_common_tlv(&buf[1], &dcbcfg->etsrec);
}
/**
* ice_parse_ieee_pfccfg_tlv
* @tlv: IEEE 802.1Qaz PFC CFG TLV
* @dcbcfg: Local store to update PFC CFG data
*
* Parses IEEE 802.1Qaz PFC CFG TLV
*/
void
ice_parse_ieee_pfccfg_tlv(struct ice_lldp_org_tlv *tlv,
struct ice_dcbx_cfg *dcbcfg)
{
uint8_t *buf = tlv->tlvinfo;
/* ----------------------------------------
* |will-|MBC | Re- | PFC | PFC Enable |
* |ing | |served| cap | |
* -----------------------------------------
* |1bit | 1bit|2 bits|4bits| 1 octet |
*/
dcbcfg->pfc.willing = ((buf[0] & ICE_IEEE_PFC_WILLING_M) >>
ICE_IEEE_PFC_WILLING_S);
dcbcfg->pfc.mbc = ((buf[0] & ICE_IEEE_PFC_MBC_M) >> ICE_IEEE_PFC_MBC_S);
dcbcfg->pfc.pfccap = ((buf[0] & ICE_IEEE_PFC_CAP_M) >>
ICE_IEEE_PFC_CAP_S);
dcbcfg->pfc.pfcena = buf[1];
}
/**
* ice_parse_ieee_app_tlv
* @tlv: IEEE 802.1Qaz APP TLV
* @dcbcfg: Local store to update APP PRIO data
*
* Parses IEEE 802.1Qaz APP PRIO TLV
*/
void
ice_parse_ieee_app_tlv(struct ice_lldp_org_tlv *tlv,
struct ice_dcbx_cfg *dcbcfg)
{
uint16_t offset = 0;
uint16_t typelen;
int i = 0;
uint16_t len;
uint8_t *buf;
typelen = ntohs(tlv->typelen);
len = ((typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S);
buf = tlv->tlvinfo;
/* Removing sizeof(ouisubtype) and reserved byte from len.
* Remaining len div 3 is number of APP TLVs.
*/
len -= (sizeof(tlv->ouisubtype) + 1);
/* Move offset to App Priority Table */
offset++;
/* Application Priority Table (3 octets)
* Octets:| 1 | 2 | 3 |
* -----------------------------------------
* |Priority|Rsrvd| Sel | Protocol ID |
* -----------------------------------------
* Bits:|23 21|20 19|18 16|15 0|
* -----------------------------------------
*/
while (offset < len) {
dcbcfg->app[i].priority = ((buf[offset] &
ICE_IEEE_APP_PRIO_M) >>
ICE_IEEE_APP_PRIO_S);
dcbcfg->app[i].selector = ((buf[offset] &
ICE_IEEE_APP_SEL_M) >>
ICE_IEEE_APP_SEL_S);
dcbcfg->app[i].prot_id = (buf[offset + 1] << 0x8) |
buf[offset + 2];
/* Move to next app */
offset += 3;
i++;
if (i >= ICE_DCBX_MAX_APPS)
break;
}
dcbcfg->numapps = i;
}
/**
* ice_parse_ieee_tlv
* @tlv: IEEE 802.1Qaz TLV
* @dcbcfg: Local store to update ETS REC data
*
* Get the TLV subtype and send it to parsing function
* based on the subtype value
*/
void
ice_parse_ieee_tlv(struct ice_lldp_org_tlv *tlv, struct ice_dcbx_cfg *dcbcfg)
{
uint32_t ouisubtype;
uint8_t subtype;
ouisubtype = ntohl(tlv->ouisubtype);
subtype = (uint8_t)((ouisubtype & ICE_LLDP_TLV_SUBTYPE_M) >>
ICE_LLDP_TLV_SUBTYPE_S);
switch (subtype) {
case ICE_IEEE_SUBTYPE_ETS_CFG:
ice_parse_ieee_etscfg_tlv(tlv, dcbcfg);
break;
case ICE_IEEE_SUBTYPE_ETS_REC:
ice_parse_ieee_etsrec_tlv(tlv, dcbcfg);
break;
case ICE_IEEE_SUBTYPE_PFC_CFG:
ice_parse_ieee_pfccfg_tlv(tlv, dcbcfg);
break;
case ICE_IEEE_SUBTYPE_APP_PRI:
ice_parse_ieee_app_tlv(tlv, dcbcfg);
break;
default:
break;
}
}
/**
* ice_parse_cee_pgcfg_tlv
* @tlv: CEE DCBX PG CFG TLV
* @dcbcfg: Local store to update ETS CFG data
*
* Parses CEE DCBX PG CFG TLV
*/
void
ice_parse_cee_pgcfg_tlv(struct ice_cee_feat_tlv *tlv,
struct ice_dcbx_cfg *dcbcfg)
{
struct ice_dcb_ets_cfg *etscfg;
uint8_t *buf = tlv->tlvinfo;
uint16_t offset = 0;
int i;
etscfg = &dcbcfg->etscfg;
if (tlv->en_will_err & ICE_CEE_FEAT_TLV_WILLING_M)
etscfg->willing = 1;
etscfg->cbs = 0;
/* Priority Group Table (4 octets)
* Octets:| 1 | 2 | 3 | 4 |
* -----------------------------------------
* |pri0|pri1|pri2|pri3|pri4|pri5|pri6|pri7|
* -----------------------------------------
* Bits:|7 4|3 0|7 4|3 0|7 4|3 0|7 4|3 0|
* -----------------------------------------
*/
for (i = 0; i < 4; i++) {
etscfg->prio_table[i * 2] =
((buf[offset] & ICE_CEE_PGID_PRIO_1_M) >>
ICE_CEE_PGID_PRIO_1_S);
etscfg->prio_table[i * 2 + 1] =
((buf[offset] & ICE_CEE_PGID_PRIO_0_M) >>
ICE_CEE_PGID_PRIO_0_S);
offset++;
}
/* PG Percentage Table (8 octets)
* Octets:| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
* ---------------------------------
* |pg0|pg1|pg2|pg3|pg4|pg5|pg6|pg7|
* ---------------------------------
*/
ice_for_each_traffic_class(i) {
etscfg->tcbwtable[i] = buf[offset++];
if (etscfg->prio_table[i] == ICE_CEE_PGID_STRICT)
dcbcfg->etscfg.tsatable[i] = ICE_IEEE_TSA_STRICT;
else
dcbcfg->etscfg.tsatable[i] = ICE_IEEE_TSA_ETS;
}
/* Number of TCs supported (1 octet) */
etscfg->maxtcs = buf[offset];
}
/**
* ice_parse_cee_pfccfg_tlv
* @tlv: CEE DCBX PFC CFG TLV
* @dcbcfg: Local store to update PFC CFG data
*
* Parses CEE DCBX PFC CFG TLV
*/
void
ice_parse_cee_pfccfg_tlv(struct ice_cee_feat_tlv *tlv,
struct ice_dcbx_cfg *dcbcfg)
{
uint8_t *buf = tlv->tlvinfo;
if (tlv->en_will_err & ICE_CEE_FEAT_TLV_WILLING_M)
dcbcfg->pfc.willing = 1;
/* ------------------------
* | PFC Enable | PFC TCs |
* ------------------------
* | 1 octet | 1 octet |
*/
dcbcfg->pfc.pfcena = buf[0];
dcbcfg->pfc.pfccap = buf[1];
}
/**
* ice_parse_cee_app_tlv
* @tlv: CEE DCBX APP TLV
* @dcbcfg: Local store to update APP PRIO data
*
* Parses CEE DCBX APP PRIO TLV
*/
void
ice_parse_cee_app_tlv(struct ice_cee_feat_tlv *tlv, struct ice_dcbx_cfg *dcbcfg)
{
uint16_t len, typelen, offset = 0;
struct ice_cee_app_prio *app;
uint8_t i;
typelen = NTOHS(tlv->hdr.typelen);
len = ((typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S);
dcbcfg->numapps = len / sizeof(*app);
if (!dcbcfg->numapps)
return;
if (dcbcfg->numapps > ICE_DCBX_MAX_APPS)
dcbcfg->numapps = ICE_DCBX_MAX_APPS;
for (i = 0; i < dcbcfg->numapps; i++) {
uint8_t up, selector;
app = (struct ice_cee_app_prio *)(tlv->tlvinfo + offset);
for (up = 0; up < ICE_MAX_USER_PRIORITY; up++)
if (app->prio_map & BIT(up))
break;
dcbcfg->app[i].priority = up;
/* Get Selector from lower 2 bits, and convert to IEEE */
selector = (app->upper_oui_sel & ICE_CEE_APP_SELECTOR_M);
switch (selector) {
case ICE_CEE_APP_SEL_ETHTYPE:
dcbcfg->app[i].selector = ICE_APP_SEL_ETHTYPE;
break;
case ICE_CEE_APP_SEL_TCPIP:
dcbcfg->app[i].selector = ICE_APP_SEL_TCPIP;
break;
default:
/* Keep selector as it is for unknown types */
dcbcfg->app[i].selector = selector;
}
dcbcfg->app[i].prot_id = NTOHS(app->protocol);
/* Move to next app */
offset += sizeof(*app);
}
}
/**
* ice_parse_cee_tlv
* @tlv: CEE DCBX TLV
* @dcbcfg: Local store to update DCBX config data
*
* Get the TLV subtype and send it to parsing function
* based on the subtype value
*/
void
ice_parse_cee_tlv(struct ice_lldp_org_tlv *tlv, struct ice_dcbx_cfg *dcbcfg)
{
struct ice_cee_feat_tlv *sub_tlv;
uint8_t subtype, feat_tlv_count = 0;
uint16_t len, tlvlen, typelen;
uint32_t ouisubtype;
ouisubtype = ntohl(tlv->ouisubtype);
subtype = (uint8_t)((ouisubtype & ICE_LLDP_TLV_SUBTYPE_M) >>
ICE_LLDP_TLV_SUBTYPE_S);
/* Return if not CEE DCBX */
if (subtype != ICE_CEE_DCBX_TYPE)
return;
typelen = ntohs(tlv->typelen);
tlvlen = ((typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S);
len = sizeof(tlv->typelen) + sizeof(ouisubtype) +
sizeof(struct ice_cee_ctrl_tlv);
/* Return if no CEE DCBX Feature TLVs */
if (tlvlen <= len)
return;
sub_tlv = (struct ice_cee_feat_tlv *)((char *)tlv + len);
while (feat_tlv_count < ICE_CEE_MAX_FEAT_TYPE) {
uint16_t sublen;
typelen = ntohs(sub_tlv->hdr.typelen);
sublen = ((typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S);
subtype = (uint8_t)((typelen & ICE_LLDP_TLV_TYPE_M) >>
ICE_LLDP_TLV_TYPE_S);
switch (subtype) {
case ICE_CEE_SUBTYPE_PG_CFG:
ice_parse_cee_pgcfg_tlv(sub_tlv, dcbcfg);
break;
case ICE_CEE_SUBTYPE_PFC_CFG:
ice_parse_cee_pfccfg_tlv(sub_tlv, dcbcfg);
break;
case ICE_CEE_SUBTYPE_APP_PRI:
ice_parse_cee_app_tlv(sub_tlv, dcbcfg);
break;
default:
return; /* Invalid Sub-type return */
}
feat_tlv_count++;
/* Move to next sub TLV */
sub_tlv = (struct ice_cee_feat_tlv *)
((char *)sub_tlv + sizeof(sub_tlv->hdr.typelen) +
sublen);
}
}
/**
* ice_parse_org_tlv
* @tlv: Organization specific TLV
* @dcbcfg: Local store to update ETS REC data
*
* Currently only IEEE 802.1Qaz TLV is supported, all others
* will be returned
*/
void
ice_parse_org_tlv(struct ice_lldp_org_tlv *tlv, struct ice_dcbx_cfg *dcbcfg)
{
uint32_t ouisubtype;
uint32_t oui;
ouisubtype = ntohl(tlv->ouisubtype);
oui = ((ouisubtype & ICE_LLDP_TLV_OUI_M) >> ICE_LLDP_TLV_OUI_S);
switch (oui) {
case ICE_IEEE_8021QAZ_OUI:
ice_parse_ieee_tlv(tlv, dcbcfg);
break;
case ICE_CEE_DCBX_OUI:
ice_parse_cee_tlv(tlv, dcbcfg);
break;
default:
break;
}
}
/**
* ice_lldp_to_dcb_cfg
* @lldpmib: LLDPDU to be parsed
* @dcbcfg: store for LLDPDU data
*
* Parse DCB configuration from the LLDPDU
*/
enum ice_status
ice_lldp_to_dcb_cfg(uint8_t *lldpmib, struct ice_dcbx_cfg *dcbcfg)
{
struct ice_lldp_org_tlv *tlv;
enum ice_status ret = ICE_SUCCESS;
uint16_t offset = 0;
uint16_t typelen;
uint16_t type;
uint16_t len;
if (!lldpmib || !dcbcfg)
return ICE_ERR_PARAM;
/* set to the start of LLDPDU */
lldpmib += ETHER_HDR_LEN;
tlv = (struct ice_lldp_org_tlv *)lldpmib;
while (1) {
typelen = ntohs(tlv->typelen);
type = ((typelen & ICE_LLDP_TLV_TYPE_M) >> ICE_LLDP_TLV_TYPE_S);
len = ((typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S);
offset += sizeof(typelen) + len;
/* END TLV or beyond LLDPDU size */
if (type == ICE_TLV_TYPE_END || offset > ICE_LLDPDU_SIZE)
break;
switch (type) {
case ICE_TLV_TYPE_ORG:
ice_parse_org_tlv(tlv, dcbcfg);
break;
default:
break;
}
/* Move to next TLV */
tlv = (struct ice_lldp_org_tlv *)
((char *)tlv + sizeof(tlv->typelen) + len);
}
return ret;
}
/**
* ice_aq_get_dcb_cfg
* @hw: pointer to the HW struct
* @mib_type: MIB type for the query
* @bridgetype: bridge type for the query (remote)
* @dcbcfg: store for LLDPDU data
*
* Query DCB configuration from the firmware
*/
enum ice_status
ice_aq_get_dcb_cfg(struct ice_hw *hw, uint8_t mib_type, uint8_t bridgetype,
struct ice_dcbx_cfg *dcbcfg)
{
enum ice_status ret;
uint8_t *lldpmib;
/* Allocate the LLDPDU */
lldpmib = (uint8_t *)ice_malloc(hw, ICE_LLDPDU_SIZE);
if (!lldpmib)
return ICE_ERR_NO_MEMORY;
ret = ice_aq_get_lldp_mib(hw, bridgetype, mib_type, (void *)lldpmib,
ICE_LLDPDU_SIZE, NULL, NULL, NULL);
if (ret == ICE_SUCCESS)
/* Parse LLDP MIB to get DCB configuration */
ret = ice_lldp_to_dcb_cfg(lldpmib, dcbcfg);
ice_free(hw, lldpmib);
return ret;
}
/**
* ice_cee_to_dcb_cfg
* @cee_cfg: pointer to CEE configuration struct
* @pi: port information structure
*
* Convert CEE configuration from firmware to DCB configuration
*/
void
ice_cee_to_dcb_cfg(struct ice_aqc_get_cee_dcb_cfg_resp *cee_cfg,
struct ice_port_info *pi)
{
uint32_t status, tlv_status = le32toh(cee_cfg->tlv_status);
uint32_t ice_aqc_cee_status_mask, ice_aqc_cee_status_shift;
uint8_t i, j, err, sync, oper, app_index, ice_app_sel_type;
uint16_t app_prio = le16toh(cee_cfg->oper_app_prio);
uint16_t ice_aqc_cee_app_mask, ice_aqc_cee_app_shift;
struct ice_dcbx_cfg *cmp_dcbcfg, *dcbcfg;
uint16_t ice_app_prot_id_type;
dcbcfg = &pi->qos_cfg.local_dcbx_cfg;
dcbcfg->dcbx_mode = ICE_DCBX_MODE_CEE;
dcbcfg->tlv_status = tlv_status;
/* CEE PG data */
dcbcfg->etscfg.maxtcs = cee_cfg->oper_num_tc;
/* Note that the FW creates the oper_prio_tc nibbles reversed
* from those in the CEE Priority Group sub-TLV.
*/
for (i = 0; i < ICE_MAX_TRAFFIC_CLASS / 2; i++) {
dcbcfg->etscfg.prio_table[i * 2] =
((cee_cfg->oper_prio_tc[i] & ICE_CEE_PGID_PRIO_0_M) >>
ICE_CEE_PGID_PRIO_0_S);
dcbcfg->etscfg.prio_table[i * 2 + 1] =
((cee_cfg->oper_prio_tc[i] & ICE_CEE_PGID_PRIO_1_M) >>
ICE_CEE_PGID_PRIO_1_S);
}
ice_for_each_traffic_class(i) {
dcbcfg->etscfg.tcbwtable[i] = cee_cfg->oper_tc_bw[i];
if (dcbcfg->etscfg.prio_table[i] == ICE_CEE_PGID_STRICT) {
/* Map it to next empty TC */
dcbcfg->etscfg.prio_table[i] = cee_cfg->oper_num_tc - 1;
dcbcfg->etscfg.tsatable[i] = ICE_IEEE_TSA_STRICT;
} else {
dcbcfg->etscfg.tsatable[i] = ICE_IEEE_TSA_ETS;
}
}
/* CEE PFC data */
dcbcfg->pfc.pfcena = cee_cfg->oper_pfc_en;
dcbcfg->pfc.pfccap = ICE_MAX_TRAFFIC_CLASS;
/* CEE APP TLV data */
if (dcbcfg->app_mode == ICE_DCBX_APPS_NON_WILLING)
cmp_dcbcfg = &pi->qos_cfg.desired_dcbx_cfg;
else
cmp_dcbcfg = &pi->qos_cfg.remote_dcbx_cfg;
app_index = 0;
for (i = 0; i < 3; i++) {
if (i == 0) {
/* FCoE APP */
ice_aqc_cee_status_mask = ICE_AQC_CEE_FCOE_STATUS_M;
ice_aqc_cee_status_shift = ICE_AQC_CEE_FCOE_STATUS_S;
ice_aqc_cee_app_mask = ICE_AQC_CEE_APP_FCOE_M;
ice_aqc_cee_app_shift = ICE_AQC_CEE_APP_FCOE_S;
ice_app_sel_type = ICE_APP_SEL_ETHTYPE;
ice_app_prot_id_type = ICE_APP_PROT_ID_FCOE;
} else if (i == 1) {
/* iSCSI APP */
ice_aqc_cee_status_mask = ICE_AQC_CEE_ISCSI_STATUS_M;
ice_aqc_cee_status_shift = ICE_AQC_CEE_ISCSI_STATUS_S;
ice_aqc_cee_app_mask = ICE_AQC_CEE_APP_ISCSI_M;
ice_aqc_cee_app_shift = ICE_AQC_CEE_APP_ISCSI_S;
ice_app_sel_type = ICE_APP_SEL_TCPIP;
ice_app_prot_id_type = ICE_APP_PROT_ID_ISCSI;
for (j = 0; j < cmp_dcbcfg->numapps; j++) {
uint16_t prot_id = cmp_dcbcfg->app[j].prot_id;
uint8_t sel = cmp_dcbcfg->app[j].selector;
if (sel == ICE_APP_SEL_TCPIP &&
(prot_id == ICE_APP_PROT_ID_ISCSI ||
prot_id == ICE_APP_PROT_ID_ISCSI_860)) {
ice_app_prot_id_type = prot_id;
break;
}
}
} else {
/* FIP APP */
ice_aqc_cee_status_mask = ICE_AQC_CEE_FIP_STATUS_M;
ice_aqc_cee_status_shift = ICE_AQC_CEE_FIP_STATUS_S;
ice_aqc_cee_app_mask = ICE_AQC_CEE_APP_FIP_M;
ice_aqc_cee_app_shift = ICE_AQC_CEE_APP_FIP_S;
ice_app_sel_type = ICE_APP_SEL_ETHTYPE;
ice_app_prot_id_type = ICE_APP_PROT_ID_FIP;
}
status = (tlv_status & ice_aqc_cee_status_mask) >>
ice_aqc_cee_status_shift;
err = (status & ICE_TLV_STATUS_ERR) ? 1 : 0;
sync = (status & ICE_TLV_STATUS_SYNC) ? 1 : 0;
oper = (status & ICE_TLV_STATUS_OPER) ? 1 : 0;
/* Add FCoE/iSCSI/FIP APP if Error is False and
* Oper/Sync is True
*/
if (!err && sync && oper) {
dcbcfg->app[app_index].priority =
(uint8_t)((app_prio & ice_aqc_cee_app_mask) >>
ice_aqc_cee_app_shift);
dcbcfg->app[app_index].selector = ice_app_sel_type;
dcbcfg->app[app_index].prot_id = ice_app_prot_id_type;
app_index++;
}
}
dcbcfg->numapps = app_index;
}
/**
* ice_get_dcb_cfg_from_mib_change
* @pi: port information structure
* @event: pointer to the admin queue receive event
*
* Set DCB configuration from received MIB Change event
*/
void
ice_get_dcb_cfg_from_mib_change(struct ice_port_info *pi,
struct ice_rq_event_info *event)
{
struct ice_dcbx_cfg *dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
struct ice_aqc_lldp_get_mib *mib;
uint8_t change_type, dcbx_mode;
mib = (struct ice_aqc_lldp_get_mib *)&event->desc.params.raw;
change_type = mib->type & ICE_AQ_LLDP_MIB_TYPE_M;
if (change_type == ICE_AQ_LLDP_MIB_REMOTE)
dcbx_cfg = &pi->qos_cfg.remote_dcbx_cfg;
dcbx_mode = ((mib->type & ICE_AQ_LLDP_DCBX_M) >>
ICE_AQ_LLDP_DCBX_S);
switch (dcbx_mode) {
case ICE_AQ_LLDP_DCBX_IEEE:
dcbx_cfg->dcbx_mode = ICE_DCBX_MODE_IEEE;
ice_lldp_to_dcb_cfg(event->msg_buf, dcbx_cfg);
break;
case ICE_AQ_LLDP_DCBX_CEE:
pi->qos_cfg.desired_dcbx_cfg = pi->qos_cfg.local_dcbx_cfg;
ice_cee_to_dcb_cfg((struct ice_aqc_get_cee_dcb_cfg_resp *)
event->msg_buf, pi);
break;
}
}
/**
* ice_aq_get_cee_dcb_cfg
* @hw: pointer to the HW struct
* @buff: response buffer that stores CEE operational configuration
* @cd: pointer to command details structure or NULL
*
* Get CEE DCBX mode operational configuration from firmware (0x0A07)
*/
enum ice_status
ice_aq_get_cee_dcb_cfg(struct ice_hw *hw,
struct ice_aqc_get_cee_dcb_cfg_resp *buff,
struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cee_dcb_cfg);
return ice_aq_send_cmd(hw, &desc, (void *)buff, sizeof(*buff), cd);
}
/**
* ice_get_ieee_or_cee_dcb_cfg
* @pi: port information structure
* @dcbx_mode: mode of DCBX (IEEE or CEE)
*
* Get IEEE or CEE mode DCB configuration from the Firmware
*/
enum ice_status
ice_get_ieee_or_cee_dcb_cfg(struct ice_port_info *pi, uint8_t dcbx_mode)
{
struct ice_dcbx_cfg *dcbx_cfg = NULL;
enum ice_status ret;
if (!pi)
return ICE_ERR_PARAM;
if (dcbx_mode == ICE_DCBX_MODE_IEEE)
dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
else if (dcbx_mode == ICE_DCBX_MODE_CEE)
dcbx_cfg = &pi->qos_cfg.desired_dcbx_cfg;
/* Get Local DCB Config in case of ICE_DCBX_MODE_IEEE
* or get CEE DCB Desired Config in case of ICE_DCBX_MODE_CEE
*/
ret = ice_aq_get_dcb_cfg(pi->hw, ICE_AQ_LLDP_MIB_LOCAL,
ICE_AQ_LLDP_BRID_TYPE_NEAREST_BRID, dcbx_cfg);
if (ret)
goto out;
/* Get Remote DCB Config */
dcbx_cfg = &pi->qos_cfg.remote_dcbx_cfg;
ret = ice_aq_get_dcb_cfg(pi->hw, ICE_AQ_LLDP_MIB_REMOTE,
ICE_AQ_LLDP_BRID_TYPE_NEAREST_BRID, dcbx_cfg);
/* Don't treat ENOENT as an error for Remote MIBs */
if (pi->hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
ret = ICE_SUCCESS;
out:
return ret;
}
/**
* ice_get_dcb_cfg
* @pi: port information structure
*
* Get DCB configuration from the Firmware
*/
enum ice_status
ice_get_dcb_cfg(struct ice_port_info *pi)
{
struct ice_aqc_get_cee_dcb_cfg_resp cee_cfg;
struct ice_dcbx_cfg *dcbx_cfg;
enum ice_status ret;
if (!pi)
return ICE_ERR_PARAM;
ret = ice_aq_get_cee_dcb_cfg(pi->hw, &cee_cfg, NULL);
if (ret == ICE_SUCCESS) {
/* CEE mode */
ret = ice_get_ieee_or_cee_dcb_cfg(pi, ICE_DCBX_MODE_CEE);
ice_cee_to_dcb_cfg(&cee_cfg, pi);
} else if (pi->hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT) {
/* CEE mode not enabled try querying IEEE data */
dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
dcbx_cfg->dcbx_mode = ICE_DCBX_MODE_IEEE;
ret = ice_get_ieee_or_cee_dcb_cfg(pi, ICE_DCBX_MODE_IEEE);
}
return ret;
}
/**
* ice_dcb_needs_reconfig - Returns true if driver needs to reconfigure
* @sc: the device private softc
* @old_cfg: Old DCBX configuration to compare against
* @new_cfg: New DCBX configuration to check
*
* @return true if something changed in new_cfg that requires the driver
* to do some reconfiguration.
*/
bool
ice_dcb_needs_reconfig(struct ice_softc *sc, struct ice_dcbx_cfg *old_cfg,
struct ice_dcbx_cfg *new_cfg)
{
bool needs_reconfig = false;
/* No change detected in DCBX config */
if (!memcmp(old_cfg, new_cfg, sizeof(*old_cfg))) {
DNPRINTF(ICE_DBG_DCB,
"%s: No change detected in local DCBX configuration\n",
sc->sc_dev.dv_xname);
return (false);
}
/* Check if ETS config has changed */
if (memcmp(&new_cfg->etscfg, &old_cfg->etscfg,
sizeof(new_cfg->etscfg))) {
/* If Priority Table has changed, driver reconfig is needed */
if (memcmp(&new_cfg->etscfg.prio_table,
&old_cfg->etscfg.prio_table,
sizeof(new_cfg->etscfg.prio_table))) {
DNPRINTF(ICE_DBG_DCB, "%s: ETS UP2TC changed\n",
__func__);
needs_reconfig = true;
}
/* These are just informational */
if (memcmp(&new_cfg->etscfg.tcbwtable,
&old_cfg->etscfg.tcbwtable,
sizeof(new_cfg->etscfg.tcbwtable))) {
DNPRINTF(ICE_DBG_DCB, "%s: ETS TCBW table changed\n",
__func__);
needs_reconfig = true;
}
if (memcmp(&new_cfg->etscfg.tsatable,
&old_cfg->etscfg.tsatable,
sizeof(new_cfg->etscfg.tsatable))) {
DNPRINTF(ICE_DBG_DCB, "%s: ETS TSA table changed\n",
__func__);
needs_reconfig = true;
}
}
/* Check if PFC config has changed */
if (memcmp(&new_cfg->pfc, &old_cfg->pfc, sizeof(new_cfg->pfc))) {
DNPRINTF(ICE_DBG_DCB, "%s: PFC config changed\n", __func__);
needs_reconfig = true;
}
/* Check if APP table has changed */
if (memcmp(&new_cfg->app, &old_cfg->app, sizeof(new_cfg->app)))
DNPRINTF(ICE_DBG_DCB, "%s: APP Table changed\n", __func__);
DNPRINTF(ICE_DBG_DCB, "%s result: %d\n", __func__, needs_reconfig);
return (needs_reconfig);
}
/**
* ice_do_dcb_reconfig - notify RDMA and reconfigure PF LAN VSI
* @sc: the device private softc
* @pending_mib: FW has a pending MIB change to execute
*
* @pre Determined that the DCB configuration requires a change
*
* Reconfigures the PF LAN VSI based on updated DCB configuration
* found in the hw struct's/port_info's/ local dcbx configuration.
*/
void
ice_do_dcb_reconfig(struct ice_softc *sc, bool pending_mib)
{
#if 0
struct ice_aqc_port_ets_elem port_ets = { 0 };
struct ice_dcbx_cfg *local_dcbx_cfg;
struct ice_hw *hw = &sc->hw;
struct ice_port_info *pi;
device_t dev = sc->dev;
enum ice_status status;
pi = sc->hw.port_info;
local_dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
ice_rdma_notify_dcb_qos_change(sc);
/* If there's a pending MIB, tell the FW to execute the MIB change
* now.
*/
if (pending_mib) {
status = ice_lldp_execute_pending_mib(hw);
if ((status == ICE_ERR_AQ_ERROR) &&
(hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)) {
device_printf(dev,
"Execute Pending LLDP MIB AQ call failed, no pending MIB\n");
} else if (status) {
device_printf(dev,
"Execute Pending LLDP MIB AQ call failed, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
/* This won't break traffic, but QoS will not work as expected */
}
}
/* Set state when there's more than one TC */
if (ice_dcb_get_num_tc(local_dcbx_cfg) > 1) {
device_printf(dev, "Multiple traffic classes enabled\n");
ice_set_state(&sc->state, ICE_STATE_MULTIPLE_TCS);
} else {
device_printf(dev, "Multiple traffic classes disabled\n");
ice_clear_state(&sc->state, ICE_STATE_MULTIPLE_TCS);
}
/* Disable PF VSI since it's going to be reconfigured */
ice_stop_pf_vsi(sc);
/* Query ETS configuration and update SW Tx scheduler info */
status = ice_query_port_ets(pi, &port_ets, sizeof(port_ets), NULL);
if (status != ICE_SUCCESS) {
device_printf(dev,
"Query Port ETS AQ call failed, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
/* This won't break traffic, but QoS will not work as expected */
}
/* Change PF VSI configuration */
ice_dcb_recfg(sc);
/* Send new configuration to RDMA client driver */
ice_rdma_dcb_qos_update(sc, pi);
ice_request_stack_reinit(sc);
#else
printf("%s: not implemented", __func__);
#endif
}
/**
* ice_handle_mib_change_event - handle LLDP MIB change events
* @sc: the device private softc
* @event: event received on a control queue
*
* Checks the updated MIB it receives and possibly reconfigures the PF LAN
* VSI depending on what has changed. This will also print out some debug
* information about the MIB event if ICE_DBG_DCB is enabled in the debug_mask.
*/
void
ice_handle_mib_change_event(struct ice_softc *sc,
struct ice_rq_event_info *event)
{
struct ice_aqc_lldp_get_mib *params =
(struct ice_aqc_lldp_get_mib *)&event->desc.params.lldp_get_mib;
struct ice_dcbx_cfg tmp_dcbx_cfg, *local_dcbx_cfg;
struct ice_port_info *pi;
struct ice_hw *hw = &sc->hw;
bool needs_reconfig, mib_is_pending;
enum ice_status status;
uint8_t mib_type, bridge_type;
#if 0
ASSERT_CFG_LOCKED(sc);
#endif
ice_debug_print_mib_change_event(sc, event);
pi = sc->hw.port_info;
mib_type = (params->type & ICE_AQ_LLDP_MIB_TYPE_M) >>
ICE_AQ_LLDP_MIB_TYPE_S;
bridge_type = (params->type & ICE_AQ_LLDP_BRID_TYPE_M) >>
ICE_AQ_LLDP_BRID_TYPE_S;
mib_is_pending = (params->state & ICE_AQ_LLDP_MIB_CHANGE_STATE_M) >>
ICE_AQ_LLDP_MIB_CHANGE_STATE_S;
/* Ignore if event is not for Nearest Bridge */
if (bridge_type != ICE_AQ_LLDP_BRID_TYPE_NEAREST_BRID)
return;
/* Check MIB Type and return if event for Remote MIB update */
if (mib_type == ICE_AQ_LLDP_MIB_REMOTE) {
/* Update the cached remote MIB and return */
status = ice_aq_get_dcb_cfg(pi->hw, ICE_AQ_LLDP_MIB_REMOTE,
ICE_AQ_LLDP_BRID_TYPE_NEAREST_BRID,
&pi->qos_cfg.remote_dcbx_cfg);
if (status)
printf("%s: Failed to get Remote DCB config; "
"status %s, aq_err %s\n",
sc->sc_dev.dv_xname, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
/* Not fatal if this fails */
return;
}
/* Save line length by aliasing the local dcbx cfg */
local_dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
/* Save off the old configuration and clear current config */
tmp_dcbx_cfg = *local_dcbx_cfg;
memset(local_dcbx_cfg, 0, sizeof(*local_dcbx_cfg));
/* Update the current local_dcbx_cfg with new data */
if (mib_is_pending) {
ice_get_dcb_cfg_from_mib_change(pi, event);
} else {
/* Get updated DCBX data from firmware */
status = ice_get_dcb_cfg(pi);
if (status) {
printf("%s: Failed to get Local DCB config; "
"status %s, aq_err %s\n",
sc->sc_dev.dv_xname, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return;
}
}
/* Check to see if DCB needs reconfiguring */
needs_reconfig = ice_dcb_needs_reconfig(sc, &tmp_dcbx_cfg,
local_dcbx_cfg);
if (!needs_reconfig && !mib_is_pending)
return;
/* Reconfigure -- this will also notify FW that configuration is done,
* if the FW MIB change is only pending instead of executed.
*/
ice_do_dcb_reconfig(sc, mib_is_pending);
}
/**
* ice_handle_lan_overflow_event - helper function to log LAN overflow events
* @sc: device softc
* @event: event received on a control queue
*
* Prints out a message when a LAN overflow event is detected on a receive
* queue.
*/
void
ice_handle_lan_overflow_event(struct ice_softc *sc,
struct ice_rq_event_info *event)
{
#ifdef ICE_DEBUG
struct ice_aqc_event_lan_overflow *params =
(struct ice_aqc_event_lan_overflow *)&event->desc.params.lan_overflow;
DNPRINTF(ICE_DBG_DCB, "%s: LAN overflow event detected, "
"prtdcb_ruptq=0x%08x, qtx_ctl=0x%08x\n",
sc->sc_dev.dv_xname, le32toh(params->prtdcb_ruptq),
le32toh(params->qtx_ctl));
#endif
}
/**
* ice_print_health_status_string - Print message for given FW health event
* @dev: the PCIe device
* @elem: health status element containing status code
*
* A rather large list of possible health status codes and their associated
* messages.
*/
void
ice_print_health_status_string(struct ice_softc *sc,
struct ice_aqc_health_status_elem *elem)
{
uint16_t status_code = le16toh(elem->health_status_code);
switch (status_code) {
case ICE_AQC_HEALTH_STATUS_INFO_RECOVERY:
printf("%s: The device is in firmware recovery mode.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_FLASH_ACCESS:
printf("%s: The flash chip cannot be accessed.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_NVM_AUTH:
printf("%s: NVM authentication failed.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_OROM_AUTH:
printf("%s: Option ROM authentication failed.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_DDP_AUTH:
printf("%s: DDP package failed.\n", sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_NVM_COMPAT:
printf("%s: NVM image is incompatible.\n", sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_OROM_COMPAT:
printf("%s: Option ROM is incompatible.\n", sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_DCB_MIB:
printf("%s: Supplied MIB file is invalid. "
"DCB reverted to default configuration.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_UNKNOWN_MOD_STRICT:
printf("%s: An unsupported module was detected.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_MOD_TYPE:
printf("%s: Module type is not supported.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_MOD_QUAL:
printf("%s: Module is not qualified.\n", sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_MOD_COMM:
printf("%s: Device cannot communicate with the module.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_MOD_CONFLICT:
printf("%s: Unresolved module conflict.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_MOD_NOT_PRESENT:
printf("%s: Module is not present.\n", sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_INFO_MOD_UNDERUTILIZED:
printf("%s: Underutilized module.\n", sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_UNKNOWN_MOD_LENIENT:
printf("%s: An unsupported module was detected.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_INVALID_LINK_CFG:
printf("%s: Invalid link configuration.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_PORT_ACCESS:
printf("%s: Port hardware access error.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_PORT_UNREACHABLE:
printf("%s: A port is unreachable.\n", sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_INFO_PORT_SPEED_MOD_LIMITED:
printf("%s: Port speed is limited due to module.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_PARALLEL_FAULT:
printf("%s: A parallel fault was detected.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_INFO_PORT_SPEED_PHY_LIMITED:
printf("%s: Port speed is limited by PHY capabilities.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_NETLIST_TOPO:
printf("%s: LOM topology netlist is corrupted.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_NETLIST:
printf("%s: Unrecoverable netlist error.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_TOPO_CONFLICT:
printf("%s: Port topology conflict.\n", sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_LINK_HW_ACCESS:
printf("%s: Unrecoverable hardware access error.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_LINK_RUNTIME:
printf("%s: Unrecoverable runtime error.\n",
sc->sc_dev.dv_xname);
break;
case ICE_AQC_HEALTH_STATUS_ERR_DNL_INIT:
printf("%s: Link management engine failed to initialize.\n",
sc->sc_dev.dv_xname);
break;
default:
break;
}
}
/**
* ice_handle_health_status_event - helper function to output health status
* @sc: device softc structure
* @event: event received on a control queue
*
* Prints out the appropriate string based on the given Health Status Event
* code.
*/
void
ice_handle_health_status_event(struct ice_softc *sc,
struct ice_rq_event_info *event)
{
struct ice_aqc_health_status_elem *health_info;
uint16_t status_count;
int i;
if (!ice_is_bit_set(sc->feat_en, ICE_FEATURE_HEALTH_STATUS))
return;
health_info = (struct ice_aqc_health_status_elem *)event->msg_buf;
status_count = le16toh(
event->desc.params.get_health_status.health_status_count);
if (status_count > (event->buf_len / sizeof(*health_info))) {
DPRINTF("%s: Received a health status event with invalid "
"event count\n", sc->sc_dev.dv_xname);
return;
}
for (i = 0; i < status_count; i++) {
ice_print_health_status_string(sc, health_info);
health_info++;
}
}
/**
* ice_process_ctrlq_event - Respond to a controlq event
* @sc: device private structure
* @qname: the name for this controlq
* @event: the event to process
*
* Perform actions in response to various controlq event notifications.
*/
void
ice_process_ctrlq_event(struct ice_softc *sc, const char *qname,
struct ice_rq_event_info *event)
{
uint16_t opcode;
opcode = le16toh(event->desc.opcode);
switch (opcode) {
case ice_aqc_opc_get_link_status:
ice_process_link_event(sc, event);
break;
case ice_aqc_opc_fw_logs_event:
ice_handle_fw_log_event(sc, &event->desc, event->msg_buf);
break;
case ice_aqc_opc_lldp_set_mib_change:
ice_handle_mib_change_event(sc, event);
break;
case ice_aqc_opc_event_lan_overflow:
ice_handle_lan_overflow_event(sc, event);
break;
case ice_aqc_opc_get_health_status:
ice_handle_health_status_event(sc, event);
break;
default:
printf("%s: %s Receive Queue unhandled event 0x%04x ignored\n",
sc->sc_dev.dv_xname, qname, opcode);
break;
}
}
/**
* ice_clean_rq_elem
* @hw: pointer to the HW struct
* @cq: pointer to the specific Control queue
* @e: event info from the receive descriptor, includes any buffers
* @pending: number of events that could be left to process
*
* Clean one element from the receive side of a control queue. On return 'e'
* contains contents of the message, and 'pending' contains the number of
* events left to process.
*/
enum ice_status
ice_clean_rq_elem(struct ice_hw *hw, struct ice_ctl_q_info *cq,
struct ice_rq_event_info *e, uint16_t *pending)
{
uint16_t ntc = cq->rq.next_to_clean;
enum ice_aq_err rq_last_status;
enum ice_status ret_code = ICE_SUCCESS;
struct ice_aq_desc *desc;
struct ice_dma_mem *bi;
uint16_t desc_idx;
uint16_t datalen;
uint16_t flags;
uint16_t ntu;
/* pre-clean the event info */
memset(&e->desc, 0, sizeof(e->desc));
#if 0
/* take the lock before we start messing with the ring */
ice_acquire_lock(&cq->rq_lock);
#endif
if (!cq->rq.count) {
DNPRINTF(ICE_DBG_AQ_MSG,
"%s: Control Receive queue not initialized.\n", __func__);
ret_code = ICE_ERR_AQ_EMPTY;
goto clean_rq_elem_err;
}
/* set next_to_use to head */
ntu = (uint16_t)(ICE_READ(hw, cq->rq.head) & cq->rq.head_mask);
if (ntu == ntc) {
/* nothing to do - shouldn't need to update ring's values */
ret_code = ICE_ERR_AQ_NO_WORK;
goto clean_rq_elem_out;
}
/* now clean the next descriptor */
desc = ICE_CTL_Q_DESC(cq->rq, ntc);
desc_idx = ntc;
rq_last_status = (enum ice_aq_err)le16toh(desc->retval);
flags = le16toh(desc->flags);
if (flags & ICE_AQ_FLAG_ERR) {
ret_code = ICE_ERR_AQ_ERROR;
DNPRINTF(ICE_DBG_AQ_MSG, "%s: Control Receive Queue "
"Event 0x%04X received with error 0x%X\n",
__func__, le16toh(desc->opcode), rq_last_status);
}
memcpy(&e->desc, desc, sizeof(e->desc));
datalen = le16toh(desc->datalen);
e->msg_len = MIN(datalen, e->buf_len);
if (e->msg_buf && e->msg_len)
memcpy(e->msg_buf, cq->rq.r.rq_bi[desc_idx].va, e->msg_len);
DNPRINTF(ICE_DBG_AQ_DESC, "%s: ARQ: desc and buffer:\n", __func__);
ice_debug_cq(hw, cq, (void *)desc, e->msg_buf, cq->rq_buf_size, true);
/* Restore the original datalen and buffer address in the desc,
* FW updates datalen to indicate the event message size
*/
bi = &cq->rq.r.rq_bi[ntc];
memset(desc, 0, sizeof(*desc));
desc->flags = htole16(ICE_AQ_FLAG_BUF);
if (cq->rq_buf_size > ICE_AQ_LG_BUF)
desc->flags |= htole16(ICE_AQ_FLAG_LB);
desc->datalen = htole16(bi->size);
desc->params.generic.addr_high = htole32(ICE_HI_DWORD(bi->pa));
desc->params.generic.addr_low = htole32(ICE_LO_DWORD(bi->pa));
/* set tail = the last cleaned desc index. */
ICE_WRITE(hw, cq->rq.tail, ntc);
/* ntc is updated to tail + 1 */
ntc++;
if (ntc == cq->num_rq_entries)
ntc = 0;
cq->rq.next_to_clean = ntc;
cq->rq.next_to_use = ntu;
clean_rq_elem_out:
/* Set pending if needed, unlock and return */
if (pending) {
/* re-read HW head to calculate actual pending messages */
ntu = (uint16_t)(ICE_READ(hw, cq->rq.head) & cq->rq.head_mask);
*pending = (uint16_t)((ntc > ntu ? cq->rq.count : 0) +
(ntu - ntc));
}
clean_rq_elem_err:
#if 0
ice_release_lock(&cq->rq_lock);
#endif
return ret_code;
}
/**
* ice_process_ctrlq - helper function to process controlq rings
* @sc: device private structure
* @q_type: specific control queue type
* @pending: return parameter to track remaining events
*
* Process controlq events for a given control queue type. Returns zero on
* success, and an error code on failure. If successful, pending is the number
* of remaining events left in the queue.
*/
int
ice_process_ctrlq(struct ice_softc *sc, enum ice_ctl_q q_type,
uint16_t *pending)
{
struct ice_rq_event_info event = { { 0 } };
struct ice_hw *hw = &sc->hw;
struct ice_ctl_q_info *cq;
enum ice_status status;
const char *qname;
int loop = 0;
switch (q_type) {
case ICE_CTL_Q_ADMIN:
cq = &hw->adminq;
qname = "Admin";
break;
case ICE_CTL_Q_MAILBOX:
cq = &hw->mailboxq;
qname = "Mailbox";
break;
default:
DPRINTF("%s: Unknown control queue type 0x%x\n",
__func__, q_type);
return 0;
}
ice_check_ctrlq_errors(sc, qname, cq);
/*
* Control queue processing happens during the admin task which may be
* holding a non-sleepable lock, so we *must* use M_NOWAIT here.
*/
event.buf_len = cq->rq_buf_size;
event.msg_buf = (uint8_t *)malloc(event.buf_len, M_DEVBUF,
M_ZERO | M_NOWAIT);
if (!event.msg_buf) {
printf("%s: Unable to allocate memory for %s Receive Queue "
"event\n", sc->sc_dev.dv_xname, qname);
return (ENOMEM);
}
do {
status = ice_clean_rq_elem(hw, cq, &event, pending);
if (status == ICE_ERR_AQ_NO_WORK)
break;
if (status) {
if (q_type == ICE_CTL_Q_ADMIN) {
printf("%s: %s Receive Queue event error %s\n",
sc->sc_dev.dv_xname, qname,
ice_status_str(status));
} else {
printf("%s: %s Receive Queue event error %s\n",
sc->sc_dev.dv_xname, qname,
ice_status_str(status));
}
free(event.msg_buf, M_DEVBUF, event.buf_len);
return (EIO);
}
/* XXX should we separate this handler by controlq type? */
ice_process_ctrlq_event(sc, qname, &event);
} while (*pending && (++loop < ICE_CTRLQ_WORK_LIMIT));
free(event.msg_buf, M_DEVBUF, event.buf_len);
return 0;
}
/**
* ice_poll_for_media_avail - Re-enable link if media is detected
* @sc: device private structure
*
* Intended to be called from the driver's timer function, this function
* sends the Get Link Status AQ command and re-enables HW link if the
* command says that media is available.
*
* If the driver doesn't have the "NO_MEDIA" state set, then this does nothing,
* since media removal events are supposed to be sent to the driver through
* a link status event.
*/
void
ice_poll_for_media_avail(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
struct ifnet *ifp = &sc->sc_ac.ac_if;
struct ice_port_info *pi = hw->port_info;
if (ice_test_state(&sc->state, ICE_STATE_NO_MEDIA)) {
pi->phy.get_link_info = true;
ice_get_link_status(pi, &sc->link_up);
if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
enum ice_status status;
/* Re-enable link and re-apply user link settings */
if (ice_test_state(&sc->state,
ICE_STATE_LINK_ACTIVE_ON_DOWN) ||
(ifp->if_flags & IFF_UP)) {
ice_apply_saved_phy_cfg(sc,
ICE_APPLY_LS_FEC_FC);
/* Update OS with changes in media capability */
status = ice_add_media_types(sc, &sc->media);
if (status) {
printf("%s: Error adding device "
"media types: %s aq_err %s\n",
sc->sc_dev.dv_xname,
ice_status_str(status),
ice_aq_str(
hw->adminq.sq_last_status));
}
}
ice_clear_state(&sc->state, ICE_STATE_NO_MEDIA);
}
}
}
/**
* ice_if_update_admin_status - update admin status
* @ctx: iflib ctx structure
*
* Called by iflib to update the admin status. For our purposes, this means
* check the adminq, and update the link status. It's ultimately triggered by
* our admin interrupt, or by the ice_if_timer periodically.
*
* @pre assumes the caller holds the iflib CTX lock
*/
void
ice_if_update_admin_status(void *arg)
{
struct ice_softc *sc = (struct ice_softc *)arg;
enum ice_fw_modes fw_mode;
bool reschedule = false;
uint16_t pending = 0;
int s;
#if 0
ASSERT_CTX_LOCKED(sc);
#endif
s = splnet();
if (ice_driver_is_detaching(sc)) {
splx(s);
return;
}
/* Check if the firmware entered recovery mode at run time */
fw_mode = ice_get_fw_mode(&sc->hw);
if (fw_mode == ICE_FW_MODE_REC) {
if (!ice_testandset_state(&sc->state,
ICE_STATE_RECOVERY_MODE)) {
/* If we just entered recovery mode, log a warning to
* the system administrator and deinit driver state
* that is no longer functional.
*/
ice_transition_recovery_mode(sc);
}
} else if (fw_mode == ICE_FW_MODE_ROLLBACK) {
if (!ice_testandset_state(&sc->state,
ICE_STATE_ROLLBACK_MODE)) {
/* Rollback mode isn't fatal, but we don't want to
* repeatedly post a message about it.
*/
ice_print_rollback_msg(&sc->hw);
}
}
/* Handle global reset events */
ice_handle_reset_event(sc);
/* Handle PF reset requests */
ice_handle_pf_reset_request(sc);
/* Handle MDD events */
ice_handle_mdd_event(sc);
if (ice_test_state(&sc->state, ICE_STATE_RESET_FAILED) ||
ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET) ||
ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) {
/*
* If we know the control queues are disabled, skip processing
* the control queues entirely.
*/
;
} else if (ice_testandclear_state(&sc->state,
ICE_STATE_CONTROLQ_EVENT_PENDING)) {
ice_process_ctrlq(sc, ICE_CTL_Q_ADMIN, &pending);
if (pending > 0)
reschedule = true;
ice_process_ctrlq(sc, ICE_CTL_Q_MAILBOX, &pending);
if (pending > 0)
reschedule = true;
}
/* Poll for link up */
ice_poll_for_media_avail(sc);
/* Check and update link status */
ice_update_link_status(sc, false);
/*
* If there are still messages to process, we need to reschedule
* ourselves. Otherwise, we can just re-enable the interrupt. We'll be
* woken up at the next interrupt or timer event.
*/
if (reschedule) {
ice_set_state(&sc->state, ICE_STATE_CONTROLQ_EVENT_PENDING);
task_add(systq, &sc->sc_admin_task);
} else {
ice_enable_intr(&sc->hw, 0);
}
splx(s);
}
/**
* ice_admin_timer - called periodically to trigger the admin task
* @arg: timeout(9) argument pointing to the device private softc structure
*
* Timer function used as part of a timeout(9) timer that will periodically
* trigger the admin task, even when the interface is down.
*
* @remark because this is a timeout function, it cannot sleep and should not
* attempt taking the iflib CTX lock.
*/
void
ice_admin_timer(void *arg)
{
struct ice_softc *sc = (struct ice_softc *)arg;
struct ifnet *ifp = &sc->sc_ac.ac_if;
int s;
s = splnet();
if (ice_driver_is_detaching(sc) ||
(ifp->if_flags & IFF_RUNNING) == 0) {
splx(s);
return;
}
/* Fire off the admin task */
task_add(systq, &sc->sc_admin_task);
/* Reschedule the admin timer */
timeout_add_nsec(&sc->sc_admin_timer, SEC_TO_NSEC(1));
splx(s);
}
/**
* @enum hmc_error_type
* @brief enumeration of HMC errors
*
* Enumeration defining the possible HMC errors that might occur.
*/
enum hmc_error_type {
HMC_ERR_PMF_INVALID = 0,
HMC_ERR_VF_IDX_INVALID = 1,
HMC_ERR_VF_PARENT_PF_INVALID = 2,
/* 3 is reserved */
HMC_ERR_INDEX_TOO_BIG = 4,
HMC_ERR_ADDRESS_TOO_LARGE = 5,
HMC_ERR_SEGMENT_DESC_INVALID = 6,
HMC_ERR_SEGMENT_DESC_TOO_SMALL = 7,
HMC_ERR_PAGE_DESC_INVALID = 8,
HMC_ERR_UNSUPPORTED_REQUEST_COMPLETION = 9,
/* 10 is reserved */
HMC_ERR_INVALID_OBJECT_TYPE = 11,
/* 12 is reserved */
};
/**
* ice_log_hmc_error - Log an HMC error message
* @hw: device hw structure
* @dev: the device to pass to device_printf()
*
* Log a message when an HMC error interrupt is triggered.
*/
void
ice_log_hmc_error(struct ice_hw *hw)
{
struct ice_softc *sc = hw->hw_sc;
uint32_t info, data;
uint8_t index, errtype, objtype;
bool isvf;
info = ICE_READ(hw, PFHMC_ERRORINFO);
data = ICE_READ(hw, PFHMC_ERRORDATA);
index = (uint8_t)(info & PFHMC_ERRORINFO_PMF_INDEX_M);
errtype = (uint8_t)((info & PFHMC_ERRORINFO_HMC_ERROR_TYPE_M) >>
PFHMC_ERRORINFO_HMC_ERROR_TYPE_S);
objtype = (uint8_t)((info & PFHMC_ERRORINFO_HMC_OBJECT_TYPE_M) >>
PFHMC_ERRORINFO_HMC_OBJECT_TYPE_S);
isvf = info & PFHMC_ERRORINFO_PMF_ISVF_M;
printf("%s: %s HMC Error detected on PMF index %d: "
"error type %d, object type %d, data 0x%08x\n",
sc->sc_dev.dv_xname, isvf ? "VF" : "PF", index,
errtype, objtype, data);
switch (errtype) {
case HMC_ERR_PMF_INVALID:
DPRINTF("Private Memory Function is not valid\n");
break;
case HMC_ERR_VF_IDX_INVALID:
DPRINTF("Invalid Private Memory Function index for PE enabled VF\n");
break;
case HMC_ERR_VF_PARENT_PF_INVALID:
DPRINTF("Invalid parent PF for PE enabled VF\n");
break;
case HMC_ERR_INDEX_TOO_BIG:
DPRINTF("Object index too big\n");
break;
case HMC_ERR_ADDRESS_TOO_LARGE:
DPRINTF("Address extends beyond segment descriptor limit\n");
break;
case HMC_ERR_SEGMENT_DESC_INVALID:
DPRINTF("Segment descriptor is invalid\n");
break;
case HMC_ERR_SEGMENT_DESC_TOO_SMALL:
DPRINTF("Segment descriptor is too small\n");
break;
case HMC_ERR_PAGE_DESC_INVALID:
DPRINTF("Page descriptor is invalid\n");
break;
case HMC_ERR_UNSUPPORTED_REQUEST_COMPLETION:
DPRINTF("Unsupported Request completion received from PCIe\n");
break;
case HMC_ERR_INVALID_OBJECT_TYPE:
DPRINTF("Invalid object type\n");
break;
default:
DPRINTF("Unknown HMC error\n");
}
/* Clear the error indication */
ICE_WRITE(hw, PFHMC_ERRORINFO, 0);
}
/**
* Interrupt handler for MSI-X admin interrupt
*/
int
ice_intr0(void *xsc)
{
struct ice_softc *sc = (struct ice_softc *)xsc;
struct ice_hw *hw = &sc->hw;
struct ifnet *ifp = &sc->sc_ac.ac_if;
uint32_t oicr;
/* There is no safe way to modify the enabled miscellaneous causes of
* the OICR vector at runtime, as doing so would be prone to race
* conditions. Reading PFINT_OICR will unmask the associated interrupt
* causes and allow future interrupts to occur. The admin interrupt
* vector will not be re-enabled until after we exit this function,
* but any delayed tasks must be resilient against possible "late
* arrival" interrupts that occur while we're already handling the
* task. This is done by using state bits and serializing these
* delayed tasks via the admin status task function.
*/
oicr = ICE_READ(hw, PFINT_OICR);
/* Processing multiple controlq interrupts on a single vector does not
* provide an indication of which controlq triggered the interrupt.
* We might try reading the INTEVENT bit of the respective PFINT_*_CTL
* registers. However, the INTEVENT bit is not guaranteed to be set as
* it gets automatically cleared when the hardware acknowledges the
* interrupt.
*
* This means we don't really have a good indication of whether or
* which controlq triggered this interrupt. We'll just notify the
* admin task that it should check all the controlqs.
*/
ice_set_state(&sc->state, ICE_STATE_CONTROLQ_EVENT_PENDING);
if (oicr & PFINT_OICR_VFLR_M) {
ice_set_state(&sc->state, ICE_STATE_VFLR_PENDING);
}
if (oicr & PFINT_OICR_MAL_DETECT_M) {
ice_set_state(&sc->state, ICE_STATE_MDD_PENDING);
}
if (oicr & PFINT_OICR_GRST_M) {
uint32_t reset;
reset = (ICE_READ(hw, GLGEN_RSTAT) &
GLGEN_RSTAT_RESET_TYPE_M) >> GLGEN_RSTAT_RESET_TYPE_S;
#if 0
if (reset == ICE_RESET_CORER)
sc->soft_stats.corer_count++;
else if (reset == ICE_RESET_GLOBR)
sc->soft_stats.globr_count++;
else
sc->soft_stats.empr_count++;
#endif
/* There are a couple of bits at play for handling resets.
* First, the ICE_STATE_RESET_OICR_RECV bit is used to
* indicate that the driver has received an OICR with a reset
* bit active, indicating that a CORER/GLOBR/EMPR is about to
* happen. Second, we set hw->reset_ongoing to indicate that
* the hardware is in reset. We will set this back to false as
* soon as the driver has determined that the hardware is out
* of reset.
*
* If the driver wishes to trigger a request, it can set one of
* the ICE_STATE_RESET_*_REQ bits, which will trigger the
* correct type of reset.
*/
if (!ice_testandset_state(&sc->state,
ICE_STATE_RESET_OICR_RECV)) {
hw->reset_ongoing = true;
/*
* During the NVM update process, there is a driver
* reset and link goes down and then up. The below
* if-statement prevents a second link flap from
* occurring in ice_up().
*/
if (ifp->if_flags & IFF_UP) {
ice_set_state(&sc->state,
ICE_STATE_FIRST_INIT_LINK);
}
}
}
if (oicr & PFINT_OICR_ECC_ERR_M) {
DPRINTF("%s: ECC Error detected!\n", sc->sc_dev.dv_xname);
ice_set_state(&sc->state, ICE_STATE_RESET_PFR_REQ);
}
if (oicr & (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M)) {
if (oicr & PFINT_OICR_HMC_ERR_M)
/* Log the HMC errors */
ice_log_hmc_error(hw);
#if 0
ice_rdma_notify_pe_intr(sc, oicr);
#endif
}
if (oicr & PFINT_OICR_PCI_EXCEPTION_M) {
DPRINTF("%s: PCI Exception detected!\n", sc->sc_dev.dv_xname);
ice_set_state(&sc->state, ICE_STATE_RESET_PFR_REQ);
}
task_add(systq, &sc->sc_admin_task);
return 1;
}
/*
* Macro to help extract the NIC mode flexible Rx descriptor fields from the
* advanced 32byte Rx descriptors.
*/
#define ICE_RX_FLEX_NIC(desc, field) \
(((struct ice_32b_rx_flex_desc_nic *)desc)->field)
void
ice_rx_checksum(struct mbuf *m, uint16_t status0)
{
/* TODO */
}
int
ice_rxeof(struct ice_softc *sc, struct ice_rx_queue *rxq)
{
struct ifiqueue *ifiq = rxq->rxq_ifiq;
struct ifnet *ifp = &sc->sc_ac.ac_if;
union ice_32b_rx_flex_desc *ring, *cur;
struct ice_rx_map *rxm;
bus_dmamap_t map;
unsigned int cons, prod;
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct mbuf *m;
uint16_t status0;
unsigned int eop;
unsigned int len;
unsigned int mask;
int done = 0;
prod = rxq->rxq_prod;
cons = rxq->rxq_cons;
if (cons == prod)
return (0);
rxm = &rxq->rx_map[cons];
map = rxm->rxm_map;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
ring = ICE_DMA_KVA(&rxq->rx_desc_mem);
mask = rxq->desc_count - 1;
do {
cur = &ring[cons];
status0 = le16toh(cur->wb.status_error0);
if ((status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S)) == 0)
break;
if_rxr_put(&rxq->rxq_acct, 1);
rxm = &rxq->rx_map[cons];
map = rxm->rxm_map;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, map);
m = rxm->rxm_m;
rxm->rxm_m = NULL;
len = le16toh(cur->wb.pkt_len) & ICE_RX_FLX_DESC_PKT_LEN_M;
m->m_len = len;
m->m_pkthdr.len = 0;
m->m_next = NULL;
*rxq->rxq_m_tail = m;
rxq->rxq_m_tail = &m->m_next;
m = rxq->rxq_m_head;
m->m_pkthdr.len += len;
eop = !!(status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S));
if (eop && (status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S))) {
/*
* Make sure packets with bad L2 values are discarded.
* This bit is only valid in the last descriptor.
*/
ifp->if_ierrors++;
m_freem(m);
m = NULL;
rxq->rxq_m_head = NULL;
rxq->rxq_m_tail = &rxq->rxq_m_head;
} else if (eop) {
#if NVLAN > 0
if (status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
m->m_pkthdr.ether_vtag =
le16toh(cur->wb.l2tag1);
SET(m->m_flags, M_VLANTAG);
}
#endif
if (status0 &
BIT(ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S)) {
m->m_pkthdr.ph_flowid = le32toh(
ICE_RX_FLEX_NIC(&cur->wb, rss_hash));
m->m_pkthdr.csum_flags |= M_FLOWID;
}
ice_rx_checksum(m, status0);
ml_enqueue(&ml, m);
rxq->rxq_m_head = NULL;
rxq->rxq_m_tail = &rxq->rxq_m_head;
}
cons++;
cons &= mask;
done = 1;
} while (cons != prod);
if (done) {
rxq->rxq_cons = cons;
if (ifiq_input(ifiq, &ml))
if_rxr_livelocked(&rxq->rxq_acct);
ice_rxfill(sc, rxq);
}
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
return (done);
}
int
ice_txeof(struct ice_softc *sc, struct ice_tx_queue *rxq)
{
/* TODO */
return 0;
}
int
ice_intr_vector(void *ivp)
{
struct ice_intr_vector *iv = ivp;
struct ice_softc *sc = iv->iv_sc;
struct ifnet *ifp = &sc->sc_ac.ac_if;
int rv = 0, v = iv->iv_qid + 1;
if (ISSET(ifp->if_flags, IFF_RUNNING)) {
rv |= ice_rxeof(sc, iv->iv_rxq);
rv |= ice_txeof(sc, iv->iv_txq);
}
/* Wake threads waiting for software interrupt confirmation. */
if (sc->sw_intr[v] == -1) {
sc->sw_intr[v] = 1;
wakeup(&sc->sw_intr[v]);
}
ice_enable_intr(&sc->hw, v);
return rv;
}
/**
* ice_allocate_msix - Allocate MSI-X vectors for the interface
* @sc: the device private softc
*
* @post on success this function must set the following scctx parameters:
* isc_vectors, isc_nrxqsets, isc_ntxqsets, and isc_intr.
*
* @returns zero on success or an error code on failure.
*/
int
ice_allocate_msix(struct ice_softc *sc)
{
int err, i;
sc->sc_ihc = pci_intr_establish(sc->sc_pct, sc->sc_ih,
IPL_NET | IPL_MPSAFE, ice_intr0, sc, sc->sc_dev.dv_xname);
if (sc->sc_ihc == NULL) {
printf("%s: unable to establish interrupt handler\n",
sc->sc_dev.dv_xname);
return ENOTRECOVERABLE;
}
if (sc->sc_intrmap) {
for (i = 0; i < sc->sc_nqueues; i++) {
struct ice_intr_vector *iv = &sc->sc_vectors[i];
int v = i + 1; /* 0 is used for adminq */
iv->iv_sc = sc;
iv->iv_qid = i;
iv->iv_ihc = pci_intr_establish_cpu(sc->sc_pct, iv->ih,
IPL_NET | IPL_MPSAFE,
intrmap_cpu(sc->sc_intrmap, i),
ice_intr_vector, iv, iv->iv_name);
if (iv->iv_ihc == NULL) {
printf("%s: unable to establish interrupt %d\n",
sc->sc_dev.dv_xname, v);
err = ENOTRECOVERABLE;
goto disestablish;
}
}
}
sc->isc_vectors = sc->sc_nvectors;
sc->isc_nrxqsets = sc->sc_nqueues;
sc->isc_ntxqsets = sc->sc_nqueues;
return 0;
disestablish:
if (sc->sc_intrmap != NULL) {
for (i = 0; i < sc->sc_nqueues; i++) {
struct ice_intr_vector *iv = &sc->sc_vectors[i];
if (iv->iv_ihc == NULL)
continue;
pci_intr_disestablish(sc->sc_pct, iv->iv_ihc);
}
}
pci_intr_disestablish(sc->sc_pct, sc->sc_ihc);
sc->sc_ihc = NULL;
return err;
}
void
ice_free_tx_queues(struct ice_softc *sc)
{
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_tx_queue *txq;
struct ice_tx_map *map;
int i, j;
for (i = 0, txq = vsi->tx_queues; i < sc->sc_nqueues; i++, txq++) {
ice_free_dma_mem(&sc->hw, &txq->tx_desc_mem);
for (j = 0; j < txq->desc_count; j++) {
map = &txq->tx_map[j];
if (map->txm_map != NULL) {
bus_dmamap_destroy(sc->sc_dmat, map->txm_map);
map->txm_map = NULL;
}
}
free(txq->tx_map, M_DEVBUF, txq->desc_count * sizeof(*map));
txq->tx_map = NULL;
if (txq->tx_rsq != NULL) {
free(txq->tx_rsq, M_DEVBUF,
sc->isc_ntxd[0] * sizeof(uint16_t));
txq->tx_rsq = NULL;
}
}
free(vsi->tx_queues, M_DEVBUF,
sc->sc_nqueues * sizeof(struct ice_tx_queue));
vsi->tx_queues = NULL;
}
/* ice_tx_queues_alloc - Allocate Tx queue memory */
int
ice_tx_queues_alloc(struct ice_softc *sc)
{
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_tx_queue *txq;
int err, i, j;
KASSERT(sc->isc_ntxd[0] <= ICE_MAX_DESC_COUNT);
#if 0
ASSERT_CTX_LOCKED(sc);
#endif
/* Do not bother allocating queues if we're in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return (0);
/* Allocate queue structure memory */
if (!(vsi->tx_queues =
(struct ice_tx_queue *) mallocarray(sc->sc_nqueues,
sizeof(struct ice_tx_queue), M_DEVBUF, M_NOWAIT | M_ZERO))) {
printf("%s: Unable to allocate Tx queue memory\n",
sc->sc_dev.dv_xname);
return (ENOMEM);
}
/* Allocate Tx descriptor memory */
for (i = 0, txq = vsi->tx_queues; i < sc->sc_nqueues; i++, txq++) {
txq->tx_base = ice_alloc_dma_mem(&sc->hw, &txq->tx_desc_mem,
sc->isc_ntxd[i] * sizeof(struct ice_tx_desc));
if (txq->tx_base == NULL) {
printf("%s: Unable to allocate Tx descriptor memory\n",
sc->sc_dev.dv_xname);
err = ENOMEM;
goto free_tx_queues;
}
txq->tx_paddr = txq->tx_desc_mem.pa;
}
/* Create Tx queue DMA maps. */
for (i = 0, txq = vsi->tx_queues; i < sc->sc_nqueues; i++, txq++) {
struct ice_tx_map *map;
int j;
txq->tx_map = mallocarray(sc->isc_ntxd[i], sizeof(*map),
M_DEVBUF, M_NOWAIT| M_ZERO);
if (txq->tx_map == NULL) {
printf("%s: could not allocate Tx DMA map\n",
sc->sc_dev.dv_xname);
err = ENOMEM;
goto free_tx_queues;
}
for (j = 0; j < sc->isc_ntxd[i]; j++) {
map = &txq->tx_map[j];
if (bus_dmamap_create(sc->sc_dmat, ICE_MAX_FRAME_SIZE, 1,
ICE_MAX_FRAME_SIZE, 0,
BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW | BUS_DMA_64BIT,
&map->txm_map) != 0) {
printf("%s: could not allocate Tx DMA map\n",
sc->sc_dev.dv_xname);
err = ENOMEM;
goto free_tx_queues;
}
}
}
/* Allocate report status arrays */
for (i = 0, txq = vsi->tx_queues; i < sc->sc_nqueues; i++, txq++) {
if (!(txq->tx_rsq =
(uint16_t *) mallocarray(sc->isc_ntxd[0],
sizeof(uint16_t), M_DEVBUF, M_NOWAIT))) {
printf("%s: Unable to allocate tx_rsq memory\n",
sc->sc_dev.dv_xname);
err = ENOMEM;
goto free_tx_queues;
}
/* Initialize report status array */
for (j = 0; j < sc->isc_ntxd[i]; j++)
txq->tx_rsq[j] = ICE_QIDX_INVALID;
}
/* Assign queues from PF space to the main VSI */
err = ice_resmgr_assign_contiguous(&sc->tx_qmgr, vsi->tx_qmap,
sc->sc_nqueues);
if (err) {
printf("%s: Unable to assign PF queues: error %d\n",
sc->sc_dev.dv_xname, err);
goto free_tx_queues;
}
vsi->qmap_type = ICE_RESMGR_ALLOC_CONTIGUOUS;
#if 0
/* Add Tx queue sysctls context */
ice_vsi_add_txqs_ctx(vsi);
#endif
for (i = 0, txq = vsi->tx_queues; i < sc->sc_nqueues; i++, txq++) {
/* q_handle == me when only one TC */
txq->me = txq->q_handle = i;
txq->vsi = vsi;
/* store the queue size for easier access */
txq->desc_count = sc->isc_ntxd[i];
/* set doorbell address */
txq->tail = QTX_COMM_DBELL(vsi->tx_qmap[i]);
#if 0
ice_add_txq_sysctls(txq);
#endif
}
vsi->num_tx_queues = sc->sc_nqueues;
return (0);
free_tx_queues:
ice_free_tx_queues(sc);
return err;
}
uint32_t
ice_hardmtu(struct ice_hw *hw)
{
return hw->port_info->phy.link_info.max_frame_size -
ETHER_HDR_LEN - ETHER_CRC_LEN;
}
void
ice_free_rx_queues(struct ice_softc *sc)
{
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_rx_queue *rxq;
struct ice_rx_map *map;
int i, j;
for (i = 0, rxq = vsi->rx_queues; i < sc->sc_nqueues; i++, rxq++) {
ice_free_dma_mem(&sc->hw, &rxq->rx_desc_mem);
for (j = 0; j < rxq->desc_count; j++) {
map = &rxq->rx_map[j];
if (map->rxm_map != NULL) {
bus_dmamap_destroy(sc->sc_dmat, map->rxm_map);
map->rxm_map = NULL;
}
}
free(rxq->rx_map, M_DEVBUF, rxq->desc_count * sizeof(*map));
rxq->rx_map = NULL;
}
free(vsi->rx_queues, M_DEVBUF,
sc->sc_nqueues * sizeof(struct ice_rx_queue));
vsi->rx_queues = NULL;
}
void
ice_rxrefill(void *arg)
{
struct ice_rx_queue *rxq = arg;
struct ice_softc *sc = rxq->vsi->sc;
ice_rxfill(sc, rxq);
}
/* ice_rx_queues_alloc - Allocate Rx queue memory */
int
ice_rx_queues_alloc(struct ice_softc *sc)
{
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_rx_queue *rxq;
int err, i;
uint32_t hardmtu = ice_hardmtu(&sc->hw);
KASSERT(sc->isc_nrxd[0] <= ICE_MAX_DESC_COUNT);
#if 0
ASSERT_CTX_LOCKED(sc);
#endif
/* Do not bother allocating queues if we're in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return (0);
/* Allocate queue structure memory */
if (!(vsi->rx_queues =
(struct ice_rx_queue *) mallocarray(sc->sc_nqueues,
sizeof(struct ice_rx_queue), M_DEVBUF, M_NOWAIT | M_ZERO))) {
printf("%s: Unable to allocate Rx queue memory\n",
sc->sc_dev.dv_xname);
return (ENOMEM);
}
/* Allocate Rx descriptor memory */
for (i = 0, rxq = vsi->rx_queues; i < sc->sc_nqueues; i++, rxq++) {
rxq->rx_base = ice_alloc_dma_mem(&sc->hw, &rxq->rx_desc_mem,
sc->isc_nrxd[i] * sizeof(union ice_32b_rx_flex_desc));
if (rxq->rx_base == NULL) {
printf("%s: Unable to allocate Rx descriptor memory\n",
sc->sc_dev.dv_xname);
err = ENOMEM;
goto free_rx_queues;
}
rxq->rx_paddr = rxq->rx_desc_mem.pa;
}
/* Create Rx queue DMA maps. */
for (i = 0, rxq = vsi->rx_queues; i < sc->sc_nqueues; i++, rxq++) {
struct ice_rx_map *map;
int j;
rxq->rx_map = mallocarray(sc->isc_nrxd[i], sizeof(*map),
M_DEVBUF, M_NOWAIT| M_ZERO);
if (rxq->rx_map == NULL) {
printf("%s: could not allocate Rx DMA map\n",
sc->sc_dev.dv_xname);
err = ENOMEM;
goto free_rx_queues;
}
for (j = 0; j < sc->isc_nrxd[i]; j++) {
map = &rxq->rx_map[j];
if (bus_dmamap_create(sc->sc_dmat, hardmtu, 1,
hardmtu, 0,
BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW | BUS_DMA_64BIT,
&map->rxm_map) != 0) {
printf("%s: could not allocate Rx DMA map\n",
sc->sc_dev.dv_xname);
err = ENOMEM;
goto free_rx_queues;
}
}
}
/* Assign queues from PF space to the main VSI */
err = ice_resmgr_assign_contiguous(&sc->rx_qmgr, vsi->rx_qmap,
sc->sc_nqueues);
if (err) {
printf("%s: Unable to assign PF queues: error %d\n",
sc->sc_dev.dv_xname, err);
goto free_rx_queues;
}
vsi->qmap_type = ICE_RESMGR_ALLOC_CONTIGUOUS;
#if 0
/* Add Rx queue sysctls context */
ice_vsi_add_rxqs_ctx(vsi);
#endif
for (i = 0, rxq = vsi->rx_queues; i < sc->sc_nqueues; i++, rxq++) {
rxq->me = i;
rxq->vsi = vsi;
/* store the queue size for easier access */
rxq->desc_count = sc->isc_nrxd[i];
/* set tail address */
rxq->tail = QRX_TAIL(vsi->rx_qmap[i]);
#if 0
ice_add_rxq_sysctls(rxq);
#endif
if_rxr_init(&rxq->rxq_acct, ICE_MIN_DESC_COUNT,
rxq->desc_count - 1);
timeout_set(&rxq->rxq_refill, ice_rxrefill, rxq);
rxq->rxq_cons = rxq->rxq_prod = 0;
rxq->rxq_m_head = NULL;
rxq->rxq_m_tail = &rxq->rxq_m_head;
}
vsi->num_rx_queues = sc->sc_nqueues;
return (0);
free_rx_queues:
ice_free_rx_queues(sc);
return err;
}
/**
* ice_aq_start_stop_dcbx - Start/Stop DCBX service in FW
* @hw: pointer to the HW struct
* @start_dcbx_agent: True if DCBX Agent needs to be started
* False if DCBX Agent needs to be stopped
* @dcbx_agent_status: FW indicates back the DCBX agent status
* True if DCBX Agent is active
* False if DCBX Agent is stopped
* @cd: pointer to command details structure or NULL
*
* Start/Stop the embedded dcbx Agent. In case that this wrapper function
* returns ICE_SUCCESS, caller will need to check if FW returns back the same
* value as stated in dcbx_agent_status, and react accordingly. (0x0A09)
*/
enum ice_status
ice_aq_start_stop_dcbx(struct ice_hw *hw, bool start_dcbx_agent,
bool *dcbx_agent_status, struct ice_sq_cd *cd)
{
struct ice_aqc_lldp_stop_start_specific_agent *cmd;
enum ice_adminq_opc opcode;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.lldp_agent_ctrl;
opcode = ice_aqc_opc_lldp_stop_start_specific_agent;
ice_fill_dflt_direct_cmd_desc(&desc, opcode);
if (start_dcbx_agent)
cmd->command = ICE_AQC_START_STOP_AGENT_START_DCBX;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
*dcbx_agent_status = false;
if (status == ICE_SUCCESS &&
cmd->command == ICE_AQC_START_STOP_AGENT_START_DCBX)
*dcbx_agent_status = true;
return status;
}
/**
* ice_get_dcbx_status
* @hw: pointer to the HW struct
*
* Get the DCBX status from the Firmware
*/
uint8_t
ice_get_dcbx_status(struct ice_hw *hw)
{
uint32_t reg;
reg = ICE_READ(hw, PRTDCB_GENS);
return (uint8_t)((reg & PRTDCB_GENS_DCBX_STATUS_M) >>
PRTDCB_GENS_DCBX_STATUS_S);
}
/**
* ice_start_dcbx_agent - Start DCBX agent in FW via AQ command
* @sc: the device softc
*
* @pre device is DCB capable and the FW LLDP agent has started
*
* Checks DCBX status and starts the DCBX agent if it is not in
* a valid state via an AQ command.
*/
void
ice_start_dcbx_agent(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
bool dcbx_agent_status;
enum ice_status status;
hw->port_info->qos_cfg.dcbx_status = ice_get_dcbx_status(hw);
if (hw->port_info->qos_cfg.dcbx_status != ICE_DCBX_STATUS_DONE &&
hw->port_info->qos_cfg.dcbx_status != ICE_DCBX_STATUS_IN_PROGRESS) {
/*
* Start DCBX agent, but not LLDP. The return value isn't
* checked here because a more detailed dcbx agent status is
* retrieved and checked in ice_init_dcb() and elsewhere.
*/
status = ice_aq_start_stop_dcbx(hw, true, &dcbx_agent_status,
NULL);
if (status && hw->adminq.sq_last_status != ICE_AQ_RC_EPERM)
printf("%s: start_stop_dcbx failed, err %s aq_err %s\n",
sc->sc_dev.dv_xname, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
}
/**
* ice_aq_cfg_lldp_mib_change
* @hw: pointer to the HW struct
* @ena_update: Enable or Disable event posting
* @cd: pointer to command details structure or NULL
*
* Enable or Disable posting of an event on ARQ when LLDP MIB
* associated with the interface changes (0x0A01)
*/
enum ice_status
ice_aq_cfg_lldp_mib_change(struct ice_hw *hw, bool ena_update,
struct ice_sq_cd *cd)
{
struct ice_aqc_lldp_set_mib_change *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.lldp_set_event;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_mib_change);
if (!ena_update)
cmd->command |= ICE_AQ_LLDP_MIB_UPDATE_DIS;
else
cmd->command |= ICE_AQ_LLDP_MIB_PENDING_ENABLE <<
ICE_AQ_LLDP_MIB_PENDING_S;
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_init_dcb
* @hw: pointer to the HW struct
* @enable_mib_change: enable MIB change event
*
* Update DCB configuration from the Firmware
*/
enum ice_status
ice_init_dcb(struct ice_hw *hw, bool enable_mib_change)
{
struct ice_qos_cfg *qos_cfg = &hw->port_info->qos_cfg;
enum ice_status ret = ICE_SUCCESS;
if (!hw->func_caps.common_cap.dcb)
return ICE_ERR_NOT_SUPPORTED;
qos_cfg->is_sw_lldp = true;
/* Get DCBX status */
qos_cfg->dcbx_status = ice_get_dcbx_status(hw);
if (qos_cfg->dcbx_status == ICE_DCBX_STATUS_DONE ||
qos_cfg->dcbx_status == ICE_DCBX_STATUS_IN_PROGRESS ||
qos_cfg->dcbx_status == ICE_DCBX_STATUS_NOT_STARTED) {
/* Get current DCBX configuration */
ret = ice_get_dcb_cfg(hw->port_info);
if (ret)
return ret;
qos_cfg->is_sw_lldp = false;
} else if (qos_cfg->dcbx_status == ICE_DCBX_STATUS_DIS) {
return ICE_ERR_NOT_READY;
}
/* Configure the LLDP MIB change event */
if (enable_mib_change) {
ret = ice_aq_cfg_lldp_mib_change(hw, true, NULL);
if (ret)
qos_cfg->is_sw_lldp = true;
}
return ret;
}
/**
* ice_aq_query_pfc_mode - Query PFC mode
* @hw: pointer to the HW struct
* @pfcmode_ret: Return PFC mode
* @cd: pointer to command details structure or NULL
*
* This will return an indication if DSCP-based PFC or VLAN-based PFC
* is enabled. (0x0302)
*/
enum ice_status
ice_aq_query_pfc_mode(struct ice_hw *hw, uint8_t *pfcmode_ret,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_query_pfc_mode *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.set_query_pfc_mode;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_pfc_mode);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
if (!status)
*pfcmode_ret = cmd->pfc_mode;
return status;
}
/**
* ice_init_dcb_setup - Initialize DCB settings for HW
* @sc: the device softc
*
* This needs to be called after the fw_lldp_agent sysctl is added, since that
* can update the device's LLDP agent status if a tunable value is set.
*
* Get and store the initial state of DCB settings on driver load. Print out
* informational messages as well.
*/
void
ice_init_dcb_setup(struct ice_softc *sc)
{
struct ice_dcbx_cfg *local_dcbx_cfg;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
uint8_t pfcmode_ret;
/* Don't do anything if DCB isn't supported */
if (!ice_is_bit_set(sc->feat_cap, ICE_FEATURE_DCB)) {
DPRINTF("%s: No DCB support\n", __func__);
return;
}
/* Starts DCBX agent if it needs starting */
ice_start_dcbx_agent(sc);
/* This sets hw->port_info->qos_cfg.is_sw_lldp */
status = ice_init_dcb(hw, true);
/* If there is an error, then FW LLDP is not in a usable state */
if (status != 0 && status != ICE_ERR_NOT_READY) {
/* Don't print an error message if the return code from the AQ
* cmd performed in ice_init_dcb() is EPERM; that means the
* FW LLDP engine is disabled, and that is a valid state.
*/
if (!(status == ICE_ERR_AQ_ERROR &&
hw->adminq.sq_last_status == ICE_AQ_RC_EPERM)) {
printf("%s: DCB init failed, err %s aq_err %s\n",
sc->sc_dev.dv_xname, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
hw->port_info->qos_cfg.dcbx_status = ICE_DCBX_STATUS_NOT_STARTED;
}
switch (hw->port_info->qos_cfg.dcbx_status) {
case ICE_DCBX_STATUS_DIS:
DNPRINTF(ICE_DBG_DCB, "%s: DCBX disabled\n", __func__);
break;
case ICE_DCBX_STATUS_NOT_STARTED:
DNPRINTF(ICE_DBG_DCB, "%s: DCBX not started\n", __func__);
break;
case ICE_DCBX_STATUS_MULTIPLE_PEERS:
DNPRINTF(ICE_DBG_DCB, "%s: DCBX detected multiple peers\n",
__func__);
break;
default:
break;
}
/* LLDP disabled in FW */
if (hw->port_info->qos_cfg.is_sw_lldp) {
ice_add_rx_lldp_filter(sc);
DPRINTF("%s: Firmware LLDP agent disabled\n", __func__);
}
/* Query and cache PFC mode */
status = ice_aq_query_pfc_mode(hw, &pfcmode_ret, NULL);
if (status) {
printf("%s: PFC mode query failed, err %s aq_err %s\n",
sc->sc_dev.dv_xname, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
local_dcbx_cfg = &hw->port_info->qos_cfg.local_dcbx_cfg;
switch (pfcmode_ret) {
case ICE_AQC_PFC_VLAN_BASED_PFC:
local_dcbx_cfg->pfc_mode = ICE_QOS_MODE_VLAN;
break;
case ICE_AQC_PFC_DSCP_BASED_PFC:
local_dcbx_cfg->pfc_mode = ICE_QOS_MODE_DSCP;
break;
default:
/* DCB is disabled, but we shouldn't get here */
break;
}
/* Set default SW MIB for init */
ice_set_default_local_mib_settings(sc);
ice_set_bit(ICE_FEATURE_DCB, sc->feat_en);
}
/**
* ice_set_link_management_mode -- Strict or lenient link management
* @sc: device private structure
*
* Some NVMs give the adapter the option to advertise a superset of link
* configurations. This checks to see if that option is enabled.
* Further, the NVM could also provide a specific set of configurations
* to try; these are cached in the driver's private structure if they
* are available.
*/
void
ice_set_link_management_mode(struct ice_softc *sc)
{
struct ice_port_info *pi = sc->hw.port_info;
struct ice_link_default_override_tlv tlv = { 0 };
enum ice_status status;
/* Port must be in strict mode if FW version is below a certain
* version. (i.e. Don't set lenient mode features)
*/
if (!(ice_fw_supports_link_override(&sc->hw)))
return;
status = ice_get_link_default_override(&tlv, pi);
if (status != ICE_SUCCESS) {
DPRINTF("%s: ice_get_link_default_override failed; "
"status %s, aq_err %s\n", __func__, ice_status_str(status),
ice_aq_str(sc->hw.adminq.sq_last_status));
return;
}
#if 0
if (sc->hw.debug_mask & ICE_DBG_LINK)
ice_print_ldo_tlv(sc, &tlv);
#endif
/* Set lenient link mode */
if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_LENIENT_LINK_MODE) &&
(!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE)))
ice_set_bit(ICE_FEATURE_LENIENT_LINK_MODE, sc->feat_en);
/* FW supports reporting a default configuration */
if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_LINK_MGMT_VER_2) &&
ice_fw_supports_report_dflt_cfg(&sc->hw)) {
ice_set_bit(ICE_FEATURE_LINK_MGMT_VER_2, sc->feat_en);
/* Knowing we're at a high enough firmware revision to
* support this link management configuration, we don't
* need to check/support earlier versions.
*/
return;
}
/* Default overrides only work if in lenient link mode */
if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_LINK_MGMT_VER_1) &&
ice_is_bit_set(sc->feat_en, ICE_FEATURE_LENIENT_LINK_MODE) &&
(tlv.options & ICE_LINK_OVERRIDE_EN))
ice_set_bit(ICE_FEATURE_LINK_MGMT_VER_1, sc->feat_en);
/* Cache the LDO TLV structure in the driver, since it
* won't change during the driver's lifetime.
*/
sc->ldo_tlv = tlv;
}
/**
* ice_init_saved_phy_cfg -- Set cached user PHY cfg settings with NVM defaults
* @sc: device private structure
*
* This should be called before the tunables for these link settings
* (e.g. advertise_speed) are added -- so that these defaults don't overwrite
* the cached values that the sysctl handlers will write.
*
* This also needs to be called before ice_init_link_configuration, to ensure
* that there are sane values that can be written if there is media available
* in the port.
*/
void
ice_init_saved_phy_cfg(struct ice_softc *sc)
{
struct ice_port_info *pi = sc->hw.port_info;
struct ice_aqc_get_phy_caps_data pcaps = { 0 };
enum ice_status status;
uint64_t phy_low, phy_high;
uint8_t report_mode = ICE_AQC_REPORT_TOPO_CAP_MEDIA;
if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_LINK_MGMT_VER_2))
report_mode = ICE_AQC_REPORT_DFLT_CFG;
status = ice_aq_get_phy_caps(pi, false, report_mode, &pcaps, NULL);
if (status != ICE_SUCCESS) {
DPRINTF("%s: ice_aq_get_phy_caps (%s) failed; status %s, "
"aq_err %s\n", __func__,
report_mode == ICE_AQC_REPORT_DFLT_CFG ? "DFLT" : "w/MEDIA",
ice_status_str(status),
ice_aq_str(sc->hw.adminq.sq_last_status));
return;
}
phy_low = le64toh(pcaps.phy_type_low);
phy_high = le64toh(pcaps.phy_type_high);
/* Save off initial config parameters */
pi->phy.curr_user_speed_req =
ice_aq_phy_types_to_link_speeds(phy_low, phy_high);
pi->phy.curr_user_fec_req = ice_caps_to_fec_mode(pcaps.caps,
pcaps.link_fec_options);
pi->phy.curr_user_fc_req = ice_caps_to_fc_mode(pcaps.caps);
}
/**
* ice_read_pba_string - Reads part number string from NVM
* @hw: pointer to hardware structure
* @pba_num: stores the part number string from the NVM
* @pba_num_size: part number string buffer length
*
* Reads the part number string from the NVM.
*/
enum ice_status
ice_read_pba_string(struct ice_hw *hw, uint8_t *pba_num, uint32_t pba_num_size)
{
uint16_t pba_tlv, pba_tlv_len;
enum ice_status status;
uint16_t pba_word, pba_size;
uint16_t i;
status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
ICE_SR_PBA_BLOCK_PTR);
if (status != ICE_SUCCESS) {
DNPRINTF(ICE_DBG_INIT, "%s: Failed to read PBA Block TLV.\n",
__func__);
return status;
}
/* pba_size is the next word */
status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
if (status != ICE_SUCCESS) {
DNPRINTF(ICE_DBG_INIT, "%s: Failed to read PBA Section size.\n",
__func__);
return status;
}
if (pba_tlv_len < pba_size) {
DNPRINTF(ICE_DBG_INIT, "%s: Invalid PBA Block TLV size.\n",
__func__);
return ICE_ERR_INVAL_SIZE;
}
/* Subtract one to get PBA word count (PBA Size word is included in
* total size)
*/
pba_size--;
if (pba_num_size < (((uint32_t)pba_size * 2) + 1)) {
DNPRINTF(ICE_DBG_INIT, "%s: Buffer too small for PBA data.\n",
__func__);
return ICE_ERR_PARAM;
}
for (i = 0; i < pba_size; i++) {
status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
if (status != ICE_SUCCESS) {
DNPRINTF(ICE_DBG_INIT,
"%s: Failed to read PBA Block word %d.\n",
__func__, i);
return status;
}
pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
pba_num[(i * 2) + 1] = pba_word & 0xFF;
}
pba_num[(pba_size * 2)] = '\0';
return status;
}
/**
* ice_cfg_pba_num - Determine if PBA Number is retrievable
* @sc: the device private softc structure
*
* Sets the feature flag for the existence of a PBA number
* based on the success of the read command. This does not
* cache the result.
*/
void
ice_cfg_pba_num(struct ice_softc *sc)
{
uint8_t pba_string[32] = "";
if ((ice_is_bit_set(sc->feat_cap, ICE_FEATURE_HAS_PBA)) &&
(ice_read_pba_string(&sc->hw, pba_string, sizeof(pba_string)) == 0))
ice_set_bit(ICE_FEATURE_HAS_PBA, sc->feat_en);
}
/**
* ice_init_link_configuration -- Setup link in different ways depending
* on whether media is available or not.
* @sc: device private structure
*
* Called at the end of the attach process to either set default link
* parameters if there is media available, or force HW link down and
* set a state bit if there is no media.
*/
void
ice_init_link_configuration(struct ice_softc *sc)
{
struct ice_port_info *pi = sc->hw.port_info;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
pi->phy.get_link_info = true;
status = ice_get_link_status(pi, &sc->link_up);
if (status != ICE_SUCCESS) {
DPRINTF("%s: ice_get_link_status failed; status %s, "
"aq_err %s\n", __func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return;
}
if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
ice_clear_state(&sc->state, ICE_STATE_NO_MEDIA);
/* Apply default link settings */
if (!ice_test_state(&sc->state,
ICE_STATE_LINK_ACTIVE_ON_DOWN)) {
ice_set_link(sc, false);
ice_set_state(&sc->state,
ICE_STATE_LINK_STATUS_REPORTED);
} else
ice_apply_saved_phy_cfg(sc, ICE_APPLY_LS_FEC_FC);
} else {
/*
* Set link down, and poll for media available in timer.
* This prevents the driver from receiving spurious
* link-related events.
*/
ice_set_state(&sc->state, ICE_STATE_NO_MEDIA);
status = ice_aq_set_link_restart_an(pi, false, NULL);
if (status != ICE_SUCCESS &&
hw->adminq.sq_last_status != ICE_AQ_RC_EMODE) {
DPRINTF("%s: ice_aq_set_link_restart_an: status %s, "
"aq_err %s\n", __func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
}
}
void
ice_attach_hook(struct device *self)
{
struct ice_softc *sc = (void *)self;
struct ice_hw *hw = &sc->hw;
struct ifnet *ifp = &sc->sc_ac.ac_if;
enum ice_status status;
unsigned nmsix, nqueues_max, nqueues;
int err;
KASSERT(!cold);
/*
* Attempt to load a firmware package.
* Success indicates a change was made that requires a reinitialization
* of the hardware
*/
status = ice_load_pkg_file(sc);
if (status == ICE_SUCCESS) {
ice_reinit_hw(sc);
return;
}
err = ice_init_link_events(sc);
if (err)
goto deinit_hw;
/* Initialize VLAN mode in FW; if dual VLAN mode is supported by the package
* and firmware, this will force them to use single VLAN mode.
*/
status = ice_set_vlan_mode(hw);
if (status) {
err = EIO;
DPRINTF("%s: Unable to initialize VLAN mode, "
"err %s aq_err %s\n", __func__,
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
goto deinit_hw;
}
ice_print_nvm_version(sc);
/* Setup the MAC address */
err = if_setlladdr(ifp, hw->port_info->mac.perm_addr);
if (err)
printf("%s: could not set MAC address (error %d)\n",
sc->sc_dev.dv_xname, err);
ice_setup_scctx(sc);
if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_SAFE_MODE))
ice_set_safe_mode_caps(hw);
/*
* Figure out how many queues we can use.
* Require at least two MSIX vectors, one for traffic and
* one for misc causes.
*/
nmsix = MIN(sc->sc_nmsix_max,
hw->func_caps.common_cap.num_msix_vectors);
if (nmsix < 2) {
printf("%s: insufficient amount of MSIx vectors available\n",
sc->sc_dev.dv_xname);
goto deinit_hw;
}
sc->sc_nmsix = nmsix;
nqueues_max = MIN(hw->func_caps.common_cap.num_rxq,
hw->func_caps.common_cap.num_txq);
sc->sc_intrmap = intrmap_create(&sc->sc_dev, sc->sc_nmsix - 1,
nqueues_max, INTRMAP_POWEROF2);
nqueues = intrmap_count(sc->sc_intrmap);
KASSERT(nqueues > 0);
KASSERT(powerof2(nqueues));
sc->sc_nqueues = MIN(nqueues, sc->sc_nvectors);
DPRINTF("%s: %d MSIx vector%s available, using %d queue%s\n", __func__,
sc->sc_nmsix, sc->sc_nmsix > 1 ? "s" : "",
sc->sc_nqueues, sc->sc_nqueues > 1 ? "s" : "");
/* Initialize the Tx queue manager */
err = ice_resmgr_init(&sc->tx_qmgr, hw->func_caps.common_cap.num_txq);
if (err) {
printf("%s: Unable to initialize Tx queue manager: err %d\n",
sc->sc_dev.dv_xname, err);
goto deinit_hw;
}
/* Initialize the Rx queue manager */
err = ice_resmgr_init(&sc->rx_qmgr, hw->func_caps.common_cap.num_rxq);
if (err) {
printf("%s: Unable to initialize Rx queue manager: %d\n",
sc->sc_dev.dv_xname, err);
goto free_tx_qmgr;
}
/* Initialize the PF device interrupt resource manager */
err = ice_alloc_intr_tracking(sc);
if (err)
/* Errors are already printed */
goto free_rx_qmgr;
/* Determine maximum number of VSIs we'll prepare for */
sc->num_available_vsi = MIN(ICE_MAX_VSI_AVAILABLE,
hw->func_caps.guar_num_vsi);
if (!sc->num_available_vsi) {
err = EIO;
printf("%s: No VSIs allocated to host\n",
sc->sc_dev.dv_xname);
goto free_intr_tracking;
}
/* Allocate storage for the VSI pointers */
sc->all_vsi = (struct ice_vsi **)
mallocarray(sc->num_available_vsi, sizeof(struct ice_vsi *),
M_DEVBUF, M_WAITOK | M_ZERO);
if (sc->all_vsi == NULL) {
err = ENOMEM;
printf("%s: Unable to allocate VSI array\n",
sc->sc_dev.dv_xname);
goto free_intr_tracking;
}
/*
* Prepare the statically allocated primary PF VSI in the softc
* structure. Other VSIs will be dynamically allocated as needed.
*/
ice_setup_pf_vsi(sc);
err = ice_alloc_vsi_qmap(&sc->pf_vsi, sc->isc_ntxqsets_max,
sc->isc_nrxqsets_max);
if (err) {
printf("%s: Unable to allocate VSI Queue maps\n",
sc->sc_dev.dv_xname);
goto free_main_vsi;
}
/* Allocate MSI-X vectors. */
err = ice_allocate_msix(sc);
if (err)
goto free_main_vsi;
err = ice_tx_queues_alloc(sc);
if (err)
goto free_main_vsi;
err = ice_rx_queues_alloc(sc);
if (err)
goto free_queues;
err = ice_initialize_vsi(&sc->pf_vsi);
if (err)
goto free_queues;
if_attach_queues(ifp, sc->sc_nqueues);
if_attach_iqueues(ifp, sc->sc_nqueues);
/* Enable FW health event reporting */
ice_init_health_events(sc);
#if 0
/* Configure the main PF VSI for RSS */
err = ice_config_rss(&sc->pf_vsi);
if (err) {
device_printf(sc->dev,
"Unable to configure RSS for the main VSI, err %s\n",
ice_err_str(err));
return err;
}
/* Configure switch to drop transmitted LLDP and PAUSE frames */
err = ice_cfg_pf_ethertype_filters(sc);
if (err)
return err;
ice_get_and_print_bus_info(sc);
#endif
ice_set_link_management_mode(sc);
ice_init_saved_phy_cfg(sc);
ice_cfg_pba_num(sc);
#if 0
/* Set a default value for PFC mode on attach since the FW state is unknown
* before sysctl tunables are executed and it can't be queried. This fixes an
* issue when loading the driver with the FW LLDP agent enabled but the FW
* was previously in DSCP PFC mode.
*/
status = ice_aq_set_pfc_mode(&sc->hw, ICE_AQC_PFC_VLAN_BASED_PFC, NULL);
if (status != ICE_SUCCESS)
device_printf(sc->dev, "Setting pfc mode failed, status %s\n", ice_status_str(status));
ice_add_device_sysctls(sc);
#endif
/* Get DCBX/LLDP state and start DCBX agent */
ice_init_dcb_setup(sc);
/* Setup link configuration parameters */
ice_init_link_configuration(sc);
ice_update_link_status(sc, true);
/* Configure interrupt causes for the administrative interrupt */
ice_configure_misc_interrupts(sc);
/* Enable ITR 0 right away, so that we can handle admin interrupts */
ice_enable_intr(&sc->hw, 0);
#if 0
err = ice_rdma_pf_attach(sc);
if (err)
return (err);
#endif
if (ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN) &&
!ice_test_state(&sc->state, ICE_STATE_NO_MEDIA))
ice_set_state(&sc->state, ICE_STATE_FIRST_INIT_LINK);
ice_clear_state(&sc->state, ICE_STATE_ATTACHING);
return;
free_queues:
ice_free_tx_queues(sc);
ice_free_rx_queues(sc);
free_main_vsi:
/* ice_release_vsi will free the queue maps if they were allocated */
ice_release_vsi(&sc->pf_vsi);
free(sc->all_vsi, M_DEVBUF,
sc->num_available_vsi * sizeof(struct ice_vis *));
sc->all_vsi = NULL;
free_intr_tracking:
ice_free_intr_tracking(sc);
free_rx_qmgr:
ice_resmgr_destroy(&sc->rx_qmgr);
free_tx_qmgr:
ice_resmgr_destroy(&sc->tx_qmgr);
deinit_hw:
ice_deinit_hw(hw);
}
void
ice_attach(struct device *parent, struct device *self, void *aux)
{
struct ice_softc *sc = (void *)self;
struct ifnet *ifp = &sc->sc_ac.ac_if;
struct ice_hw *hw = &sc->hw;
struct pci_attach_args *pa = aux;
enum ice_fw_modes fw_mode;
pcireg_t memtype;
enum ice_status status;
int err, i;
ice_set_state(&sc->state, ICE_STATE_ATTACHING);
sc->sc_pid = PCI_PRODUCT(pa->pa_id);
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
sc->sc_dmat = pa->pa_dmat;
hw->hw_sc = sc;
task_set(&sc->sc_admin_task, ice_if_update_admin_status, sc);
timeout_set(&sc->sc_admin_timer, ice_admin_timer, sc);
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
err = pci_mapreg_map(pa, PCI_MAPREG_START, memtype, 0,
&sc->sc_st, &sc->sc_sh, NULL, &sc->sc_sz, 0);
if (err) {
printf("%s: can't map mem space\n", sc->sc_dev.dv_xname);
return;
}
ice_set_ctrlq_len(hw);
fw_mode = ice_get_fw_mode(hw);
if (fw_mode == ICE_FW_MODE_REC) {
printf("%s: firmware is in recovery mode\n",
sc->sc_dev.dv_xname);
#if 0
err = ice_attach_pre_recovery_mode(sc);
if (err)
goto free_pci_mapping;
#endif
return;
}
/* Initialize the hw data structure */
status = ice_init_hw(hw);
if (status) {
if (status == ICE_ERR_FW_API_VER) {
printf("%s: incompatible firmware API version\n",
sc->sc_dev.dv_xname);
#if 0
/* Enter recovery mode, so that the driver remains
* loaded. This way, if the system administrator
* cannot update the driver, they may still attempt to
* downgrade the NVM.
*/
err = ice_attach_pre_recovery_mode(sc);
if (err)
goto free_pci_mapping;
#endif
return;
} else {
printf("%s: could not initialize hardware, "
"status %s aq_err %s\n",
sc->sc_dev.dv_xname, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return;
}
}
if (pci_intr_map_msix(pa, 0, &sc->sc_ih) == 0) {
unsigned int nmsix = pci_intr_msix_count(pa);
/*
* Require at least two MSIX vectors, one for traffic and
* one for misc causes.
*/
if (nmsix < 2) {
printf(": can't map interrupt\n");
return;
}
sc->sc_nmsix_max = nmsix;
} else {
printf(": can't map interrupt\n");
return;
}
/*
* Map an extra MSI-X vector per CPU, up to a hard-coded limit.
* We may not need them all but we can only figure out the supported
* number of queues once firmware is loaded.
*/
sc->sc_nvectors = MIN(sc->sc_nmsix_max, ncpus);
sc->sc_nvectors = MIN(sc->sc_nvectors, ICE_MAX_VECTORS);
sc->sc_vectors = mallocarray(sizeof(*sc->sc_vectors), sc->sc_nvectors,
M_DEVBUF, M_WAITOK|M_CANFAIL|M_ZERO);
if (sc->sc_vectors == NULL) {
printf(": unable to allocate MSIx interrupt vector array\n");
return;
}
for (i = 0; i < sc->sc_nvectors; i++) {
struct ice_intr_vector *iv = &sc->sc_vectors[i];
int v = i + 1; /* 0 is used for adminq */
iv->iv_sc = sc;
iv->iv_qid = i;
snprintf(iv->iv_name, sizeof(iv->iv_name),
"%s:%u", sc->sc_dev.dv_xname, i);
if (pci_intr_map_msix(pa, v, &iv->ih)) {
printf(": unable to map MSI-X vector %d\n", v);
goto free_vectors;
}
}
printf(": %s\n", pci_intr_string(sc->sc_pct, sc->sc_ih));
ice_init_device_features(sc);
/* Keep flag set by default */
ice_set_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN);
/* Notify firmware of the device driver version */
err = ice_send_version(sc);
if (err)
goto deinit_hw;
ifp->if_softc = sc;
strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_xflags = IFXF_MPSAFE;
ifp->if_ioctl = ice_ioctl;
ifp->if_qstart = ice_start;
ifp->if_watchdog = ice_watchdog;
ifp->if_hardmtu = ice_hardmtu(hw);
ifq_init_maxlen(&ifp->if_snd, ICE_DEFAULT_DESC_COUNT);
/* Initialize ifmedia structures. */
ifmedia_init(&sc->media, IFM_IMASK, ice_media_change, ice_media_status);
ice_add_media_types(sc, &sc->media);
if_attach(ifp);
ether_ifattach(ifp);
config_mountroot(self, ice_attach_hook);
return;
deinit_hw:
ice_deinit_hw(hw);
free_vectors:
free(sc->sc_vectors, M_DEVBUF,
sc->sc_nvectors * sizeof(*sc->sc_vectors));
sc->sc_vectors = NULL;
sc->sc_nvectors = 0;
}
struct cfdriver ice_cd = {
NULL, "ice", DV_IFNET
};
const struct cfattach ice_ca = {
sizeof(struct ice_softc), ice_match, ice_attach,
NULL, NULL,
};
|