1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
|
/* $OpenBSD: igc_mac.c,v 1.1 2021/10/31 14:52:57 patrick Exp $ */
/*-
* Copyright 2021 Intel Corp
* Copyright 2021 Rubicon Communications, LLC (Netgate)
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <dev/pci/igc_api.h>
/**
* igc_init_mac_ops_generic - Initialize MAC function pointers
* @hw: pointer to the HW structure
*
* Setups up the function pointers to no-op functions
**/
void
igc_init_mac_ops_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
DEBUGFUNC("igc_init_mac_ops_generic");
/* General Setup */
mac->ops.init_params = igc_null_ops_generic;
mac->ops.config_collision_dist = igc_config_collision_dist_generic;
mac->ops.rar_set = igc_rar_set_generic;
}
/**
* igc_null_ops_generic - No-op function, returns 0
* @hw: pointer to the HW structure
**/
int
igc_null_ops_generic(struct igc_hw IGC_UNUSEDARG *hw)
{
DEBUGFUNC("igc_null_ops_generic");
return IGC_SUCCESS;
}
/**
* igc_write_vfta_generic - Write value to VLAN filter table
* @hw: pointer to the HW structure
* @offset: register offset in VLAN filter table
* @value: register value written to VLAN filter table
*
* Writes value at the given offset in the register array which stores
* the VLAN filter table.
**/
void
igc_write_vfta_generic(struct igc_hw *hw, uint32_t offset, uint32_t value)
{
DEBUGFUNC("igc_write_vfta_generic");
IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, value);
IGC_WRITE_FLUSH(hw);
}
/**
* igc_init_rx_addrs_generic - Initialize receive address's
* @hw: pointer to the HW structure
* @rar_count: receive address registers
*
* Setup the receive address registers by setting the base receive address
* register to the devices MAC address and clearing all the other receive
* address registers to 0.
**/
void
igc_init_rx_addrs_generic(struct igc_hw *hw, uint16_t rar_count)
{
uint32_t i;
uint8_t mac_addr[ETHER_ADDR_LEN] = {0};
DEBUGFUNC("igc_init_rx_addrs_generic");
/* Setup the receive address */
DEBUGOUT("Programming MAC Address into RAR[0]\n");
hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
/* Zero out the other (rar_entry_count - 1) receive addresses */
DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
for (i = 1; i < rar_count; i++)
hw->mac.ops.rar_set(hw, mac_addr, i);
}
/**
* igc_check_alt_mac_addr_generic - Check for alternate MAC addr
* @hw: pointer to the HW structure
*
* Checks the nvm for an alternate MAC address. An alternate MAC address
* can be setup by pre-boot software and must be treated like a permanent
* address and must override the actual permanent MAC address. If an
* alternate MAC address is found it is programmed into RAR0, replacing
* the permanent address that was installed into RAR0 by the Si on reset.
* This function will return SUCCESS unless it encounters an error while
* reading the EEPROM.
**/
int
igc_check_alt_mac_addr_generic(struct igc_hw *hw)
{
uint32_t i;
int ret_val;
uint16_t offset, nvm_alt_mac_addr_offset, nvm_data;
uint8_t alt_mac_addr[ETHER_ADDR_LEN];
DEBUGFUNC("igc_check_alt_mac_addr_generic");
ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
if (ret_val)
return ret_val;
ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
&nvm_alt_mac_addr_offset);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
(nvm_alt_mac_addr_offset == 0x0000))
/* There is no Alternate MAC Address */
return IGC_SUCCESS;
if (hw->bus.func == IGC_FUNC_1)
nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN1;
for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
offset = nvm_alt_mac_addr_offset + (i >> 1);
ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
alt_mac_addr[i] = (uint8_t)(nvm_data & 0xFF);
alt_mac_addr[i + 1] = (uint8_t)(nvm_data >> 8);
}
/* if multicast bit is set, the alternate address will not be used */
if (alt_mac_addr[0] & 0x01) {
DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
return IGC_SUCCESS;
}
/* We have a valid alternate MAC address, and we want to treat it the
* same as the normal permanent MAC address stored by the HW into the
* RAR. Do this by mapping this address into RAR0.
*/
hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
return IGC_SUCCESS;
}
/**
* igc_rar_set_generic - Set receive address register
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index: receive address array register
*
* Sets the receive address array register at index to the address passed
* in by addr.
**/
int
igc_rar_set_generic(struct igc_hw *hw, uint8_t *addr, uint32_t index)
{
uint32_t rar_low, rar_high;
DEBUGFUNC("igc_rar_set_generic");
/* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((uint32_t) addr[0] | ((uint32_t) addr[1] << 8) |
((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
/* If MAC address zero, no need to set the AV bit */
if (rar_low || rar_high)
rar_high |= IGC_RAH_AV;
/* Some bridges will combine consecutive 32-bit writes into
* a single burst write, which will malfunction on some parts.
* The flushes avoid this.
*/
IGC_WRITE_REG(hw, IGC_RAL(index), rar_low);
IGC_WRITE_FLUSH(hw);
IGC_WRITE_REG(hw, IGC_RAH(index), rar_high);
IGC_WRITE_FLUSH(hw);
return IGC_SUCCESS;
}
/**
* igc_hash_mc_addr_generic - Generate a multicast hash value
* @hw: pointer to the HW structure
* @mc_addr: pointer to a multicast address
*
* Generates a multicast address hash value which is used to determine
* the multicast filter table array address and new table value.
**/
int
igc_hash_mc_addr_generic(struct igc_hw *hw, uint8_t *mc_addr)
{
uint32_t hash_value, hash_mask;
uint8_t bit_shift = 0;
DEBUGFUNC("igc_hash_mc_addr_generic");
/* Register count multiplied by bits per register */
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
* where 0xFF would still fall within the hash mask.
*/
while (hash_mask >> bit_shift != 0xFF)
bit_shift++;
/* The portion of the address that is used for the hash table
* is determined by the mc_filter_type setting.
* The algorithm is such that there is a total of 8 bits of shifting.
* The bit_shift for a mc_filter_type of 0 represents the number of
* left-shifts where the MSB of mc_addr[5] would still fall within
* the hash_mask. Case 0 does this exactly. Since there are a total
* of 8 bits of shifting, then mc_addr[4] will shift right the
* remaining number of bits. Thus 8 - bit_shift. The rest of the
* cases are a variation of this algorithm...essentially raising the
* number of bits to shift mc_addr[5] left, while still keeping the
* 8-bit shifting total.
*
* For example, given the following Destination MAC Address and an
* mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
* we can see that the bit_shift for case 0 is 4. These are the hash
* values resulting from each mc_filter_type...
* [0] [1] [2] [3] [4] [5]
* 01 AA 00 12 34 56
* LSB MSB
*
* case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
* case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
* case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
* case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
*/
switch (hw->mac.mc_filter_type) {
default:
case 0:
break;
case 1:
bit_shift += 1;
break;
case 2:
bit_shift += 2;
break;
case 3:
bit_shift += 4;
break;
}
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
(((uint16_t) mc_addr[5]) << bit_shift)));
return hash_value;
}
/**
* igc_update_mc_addr_list_generic - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
*
* Updates entire Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
**/
void
igc_update_mc_addr_list_generic(struct igc_hw *hw, uint8_t *mc_addr_list,
uint32_t mc_addr_count)
{
uint32_t hash_value, hash_bit, hash_reg;
int i;
DEBUGFUNC("igc_update_mc_addr_list_generic");
/* clear mta_shadow */
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
/* update mta_shadow from mc_addr_list */
for (i = 0; (uint32_t)i < mc_addr_count; i++) {
hash_value = igc_hash_mc_addr_generic(hw, mc_addr_list);
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
hash_bit = hash_value & 0x1F;
hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
mc_addr_list += (ETHER_ADDR_LEN);
}
/* replace the entire MTA table */
for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
IGC_WRITE_REG_ARRAY(hw, IGC_MTA, i, hw->mac.mta_shadow[i]);
IGC_WRITE_FLUSH(hw);
}
/**
* igc_clear_hw_cntrs_base_generic - Clear base hardware counters
* @hw: pointer to the HW structure
*
* Clears the base hardware counters by reading the counter registers.
**/
void
igc_clear_hw_cntrs_base_generic(struct igc_hw *hw)
{
DEBUGFUNC("igc_clear_hw_cntrs_base_generic");
IGC_READ_REG(hw, IGC_CRCERRS);
IGC_READ_REG(hw, IGC_MPC);
IGC_READ_REG(hw, IGC_SCC);
IGC_READ_REG(hw, IGC_ECOL);
IGC_READ_REG(hw, IGC_MCC);
IGC_READ_REG(hw, IGC_LATECOL);
IGC_READ_REG(hw, IGC_COLC);
IGC_READ_REG(hw, IGC_RERC);
IGC_READ_REG(hw, IGC_DC);
IGC_READ_REG(hw, IGC_RLEC);
IGC_READ_REG(hw, IGC_XONRXC);
IGC_READ_REG(hw, IGC_XONTXC);
IGC_READ_REG(hw, IGC_XOFFRXC);
IGC_READ_REG(hw, IGC_XOFFTXC);
IGC_READ_REG(hw, IGC_FCRUC);
IGC_READ_REG(hw, IGC_GPRC);
IGC_READ_REG(hw, IGC_BPRC);
IGC_READ_REG(hw, IGC_MPRC);
IGC_READ_REG(hw, IGC_GPTC);
IGC_READ_REG(hw, IGC_GORCL);
IGC_READ_REG(hw, IGC_GORCH);
IGC_READ_REG(hw, IGC_GOTCL);
IGC_READ_REG(hw, IGC_GOTCH);
IGC_READ_REG(hw, IGC_RNBC);
IGC_READ_REG(hw, IGC_RUC);
IGC_READ_REG(hw, IGC_RFC);
IGC_READ_REG(hw, IGC_ROC);
IGC_READ_REG(hw, IGC_RJC);
IGC_READ_REG(hw, IGC_TORL);
IGC_READ_REG(hw, IGC_TORH);
IGC_READ_REG(hw, IGC_TOTL);
IGC_READ_REG(hw, IGC_TOTH);
IGC_READ_REG(hw, IGC_TPR);
IGC_READ_REG(hw, IGC_TPT);
IGC_READ_REG(hw, IGC_MPTC);
IGC_READ_REG(hw, IGC_BPTC);
IGC_READ_REG(hw, IGC_TLPIC);
IGC_READ_REG(hw, IGC_RLPIC);
IGC_READ_REG(hw, IGC_RXDMTC);
}
/**
* igc_setup_link_generic - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Determines which flow control settings to use, then configures flow
* control. Calls the appropriate media-specific link configuration
* function. Assuming the adapter has a valid link partner, a valid link
* should be established. Assumes the hardware has previously been reset
* and the transmitter and receiver are not enabled.
**/
int
igc_setup_link_generic(struct igc_hw *hw)
{
int ret_val;
DEBUGFUNC("igc_setup_link_generic");
/* In the case of the phy reset being blocked, we already have a link.
* We do not need to set it up again.
*/
if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
return IGC_SUCCESS;
/* If requested flow control is set to default, set flow control
* for both 'rx' and 'tx' pause frames.
*/
if (hw->fc.requested_mode == igc_fc_default) {
hw->fc.requested_mode = igc_fc_full;
}
/* Save off the requested flow control mode for use later. Depending
* on the link partner's capabilities, we may or may not use this mode.
*/
hw->fc.current_mode = hw->fc.requested_mode;
DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
hw->fc.current_mode);
/* Call the necessary media_type subroutine to configure the link. */
ret_val = hw->mac.ops.setup_physical_interface(hw);
if (ret_val)
return ret_val;
/* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
IGC_WRITE_REG(hw, IGC_FCT, FLOW_CONTROL_TYPE);
IGC_WRITE_REG(hw, IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
IGC_WRITE_REG(hw, IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW);
IGC_WRITE_REG(hw, IGC_FCTTV, hw->fc.pause_time);
return igc_set_fc_watermarks_generic(hw);
}
/**
* igc_config_collision_dist_generic - Configure collision distance
* @hw: pointer to the HW structure
*
* Configures the collision distance to the default value and is used
* during link setup.
**/
void
igc_config_collision_dist_generic(struct igc_hw *hw)
{
uint32_t tctl;
DEBUGFUNC("igc_config_collision_dist_generic");
tctl = IGC_READ_REG(hw, IGC_TCTL);
tctl &= ~IGC_TCTL_COLD;
tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT;
IGC_WRITE_REG(hw, IGC_TCTL, tctl);
IGC_WRITE_FLUSH(hw);
}
/**
* igc_set_fc_watermarks_generic - Set flow control high/low watermarks
* @hw: pointer to the HW structure
*
* Sets the flow control high/low threshold (watermark) registers. If
* flow control XON frame transmission is enabled, then set XON frame
* transmission as well.
**/
int
igc_set_fc_watermarks_generic(struct igc_hw *hw)
{
uint32_t fcrtl = 0, fcrth = 0;
DEBUGFUNC("igc_set_fc_watermarks_generic");
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames is not enabled, then these
* registers will be set to 0.
*/
if (hw->fc.current_mode & igc_fc_tx_pause) {
/* We need to set up the Receive Threshold high and low water
* marks as well as (optionally) enabling the transmission of
* XON frames.
*/
fcrtl = hw->fc.low_water;
if (hw->fc.send_xon)
fcrtl |= IGC_FCRTL_XONE;
fcrth = hw->fc.high_water;
}
IGC_WRITE_REG(hw, IGC_FCRTL, fcrtl);
IGC_WRITE_REG(hw, IGC_FCRTH, fcrth);
return IGC_SUCCESS;
}
/**
* igc_force_mac_fc_generic - Force the MAC's flow control settings
* @hw: pointer to the HW structure
*
* Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
* device control register to reflect the adapter settings. TFCE and RFCE
* need to be explicitly set by software when a copper PHY is used because
* autonegotiation is managed by the PHY rather than the MAC. Software must
* also configure these bits when link is forced on a fiber connection.
**/
int
igc_force_mac_fc_generic(struct igc_hw *hw)
{
uint32_t ctrl;
DEBUGFUNC("igc_force_mac_fc_generic");
ctrl = IGC_READ_REG(hw, IGC_CTRL);
/* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc.current_mode" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* frames but we do not receive pause frames).
* 3: Both Rx and Tx flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
switch (hw->fc.current_mode) {
case igc_fc_none:
ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE));
break;
case igc_fc_rx_pause:
ctrl &= (~IGC_CTRL_TFCE);
ctrl |= IGC_CTRL_RFCE;
break;
case igc_fc_tx_pause:
ctrl &= (~IGC_CTRL_RFCE);
ctrl |= IGC_CTRL_TFCE;
break;
case igc_fc_full:
ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -IGC_ERR_CONFIG;
}
IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
return IGC_SUCCESS;
}
/**
* igc_config_fc_after_link_up_generic - Configures flow control after link
* @hw: pointer to the HW structure
*
* Checks the status of auto-negotiation after link up to ensure that the
* speed and duplex were not forced. If the link needed to be forced, then
* flow control needs to be forced also. If auto-negotiation is enabled
* and did not fail, then we configure flow control based on our link
* partner.
**/
int
igc_config_fc_after_link_up_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
uint16_t mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
uint16_t speed, duplex;
int ret_val = IGC_SUCCESS;
DEBUGFUNC("igc_config_fc_after_link_up_generic");
if (ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
/* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if (mac->autoneg) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE))
return ret_val;
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement
* Register (Address 4) and the Auto_Negotiation Base
* Page Ability Register (Address 5) to determine how
* flow control was negotiated.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
&mii_nway_adv_reg);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
&mii_nway_lp_ability_reg);
if (ret_val)
return ret_val;
/* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | igc_fc_none
* 0 | 1 | 0 | DC | igc_fc_none
* 0 | 1 | 1 | 0 | igc_fc_none
* 0 | 1 | 1 | 1 | igc_fc_tx_pause
* 1 | 0 | 0 | DC | igc_fc_none
* 1 | DC | 1 | DC | igc_fc_full
* 1 | 1 | 0 | 0 | igc_fc_none
* 1 | 1 | 0 | 1 | igc_fc_rx_pause
*
* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | IGC_fc_full
*
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise Rx
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == igc_fc_full)
hw->fc.current_mode = igc_fc_full;
else
hw->fc.current_mode = igc_fc_rx_pause;
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | igc_fc_tx_pause
*/
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = igc_fc_tx_pause;
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | igc_fc_rx_pause
*/
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = igc_fc_rx_pause;
} else {
/* Per the IEEE spec, at this point flow control
* should be disabled.
*/
hw->fc.current_mode = igc_fc_none;
DEBUGOUT("Flow Control = NONE.\n");
}
/* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
if (ret_val) {
DEBUGOUT("Error getting link speed and duplex\n");
return ret_val;
}
if (duplex == HALF_DUPLEX)
hw->fc.current_mode = igc_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = igc_force_mac_fc_generic(hw);
if (ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
}
return IGC_SUCCESS;
}
/**
* igc_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Read the status register for the current speed/duplex and store the current
* speed and duplex for copper connections.
**/
int
igc_get_speed_and_duplex_copper_generic(struct igc_hw *hw, uint16_t *speed,
uint16_t *duplex)
{
uint32_t status;
DEBUGFUNC("igc_get_speed_and_duplex_copper_generic");
status = IGC_READ_REG(hw, IGC_STATUS);
if (status & IGC_STATUS_SPEED_1000) {
/* For I225, STATUS will indicate 1G speed in both 1 Gbps
* and 2.5 Gbps link modes. An additional bit is used
* to differentiate between 1 Gbps and 2.5 Gbps.
*/
if ((hw->mac.type == igc_i225) &&
(status & IGC_STATUS_SPEED_2500)) {
*speed = SPEED_2500;
DEBUGOUT("2500 Mbs, ");
} else {
*speed = SPEED_1000;
DEBUGOUT("1000 Mbs, ");
}
} else if (status & IGC_STATUS_SPEED_100) {
*speed = SPEED_100;
DEBUGOUT("100 Mbs, ");
} else {
*speed = SPEED_10;
DEBUGOUT("10 Mbs, ");
}
if (status & IGC_STATUS_FD) {
*duplex = FULL_DUPLEX;
DEBUGOUT("Full Duplex\n");
} else {
*duplex = HALF_DUPLEX;
DEBUGOUT("Half Duplex\n");
}
return IGC_SUCCESS;
}
/**
* igc_put_hw_semaphore_generic - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used to access the PHY or NVM
**/
void
igc_put_hw_semaphore_generic(struct igc_hw *hw)
{
uint32_t swsm;
DEBUGFUNC("igc_put_hw_semaphore_generic");
swsm = IGC_READ_REG(hw, IGC_SWSM);
swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI);
IGC_WRITE_REG(hw, IGC_SWSM, swsm);
}
/**
* igc_get_auto_rd_done_generic - Check for auto read completion
* @hw: pointer to the HW structure
*
* Check EEPROM for Auto Read done bit.
**/
int
igc_get_auto_rd_done_generic(struct igc_hw *hw)
{
int i = 0;
DEBUGFUNC("igc_get_auto_rd_done_generic");
while (i < AUTO_READ_DONE_TIMEOUT) {
if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_AUTO_RD)
break;
msec_delay(1);
i++;
}
if (i == AUTO_READ_DONE_TIMEOUT) {
DEBUGOUT("Auto read by HW from NVM has not completed.\n");
return -IGC_ERR_RESET;
}
return IGC_SUCCESS;
}
/**
* igc_disable_pcie_master_generic - Disables PCI-express master access
* @hw: pointer to the HW structure
*
* Returns IGC_SUCCESS if successful, else returns -10
* (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
* the master requests to be disabled.
*
* Disables PCI-Express master access and verifies there are no pending
* requests.
**/
int
igc_disable_pcie_master_generic(struct igc_hw *hw)
{
uint32_t ctrl;
int timeout = MASTER_DISABLE_TIMEOUT;
DEBUGFUNC("igc_disable_pcie_master_generic");
ctrl = IGC_READ_REG(hw, IGC_CTRL);
ctrl |= IGC_CTRL_GIO_MASTER_DISABLE;
IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
while (timeout) {
if (!(IGC_READ_REG(hw, IGC_STATUS) &
IGC_STATUS_GIO_MASTER_ENABLE))
break;
DELAY(100);
timeout--;
}
if (!timeout) {
DEBUGOUT("Master requests are pending.\n");
return -IGC_ERR_MASTER_REQUESTS_PENDING;
}
return IGC_SUCCESS;
}
|