summaryrefslogtreecommitdiff
path: root/sys/dev/sdmmc/sdhc.c
blob: eb0a8e5374b6396d013520e7fbedf4dcd1a18bd4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
/*	$OpenBSD: sdhc.c,v 1.76 2023/10/01 08:56:24 kettenis Exp $	*/

/*
 * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

/*
 * SD Host Controller driver based on the SD Host Controller Standard
 * Simplified Specification Version 1.00 (www.sdcard.org).
 */

#include <sys/param.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/time.h>

#include <dev/sdmmc/sdhcreg.h>
#include <dev/sdmmc/sdhcvar.h>
#include <dev/sdmmc/sdmmcchip.h>
#include <dev/sdmmc/sdmmcreg.h>
#include <dev/sdmmc/sdmmcvar.h>
#include <dev/sdmmc/sdmmc_ioreg.h>

/* Timeouts in seconds */
#define SDHC_COMMAND_TIMEOUT	1
#define SDHC_BUFFER_TIMEOUT	1
#define SDHC_TRANSFER_TIMEOUT	1
#define SDHC_DMA_TIMEOUT	3

struct sdhc_host {
	struct sdhc_softc *sc;		/* host controller device */
	struct device *sdmmc;		/* generic SD/MMC device */
	bus_space_tag_t iot;		/* host register set tag */
	bus_space_handle_t ioh;		/* host register set handle */
	u_int16_t version;		/* specification version */
	u_int clkbase;			/* base clock frequency in KHz */
	int maxblklen;			/* maximum block length */
	int flags;			/* flags for this host */
	u_int32_t ocr;			/* OCR value from capabilities */
	u_int8_t regs[14];		/* host controller state */
	u_int16_t intr_status;		/* soft interrupt status */
	u_int16_t intr_error_status;	/* soft error status */

	bus_dmamap_t adma_map;
	bus_dma_segment_t adma_segs[1];
	caddr_t adma2;

	uint16_t block_size;
	uint16_t block_count;
	uint16_t transfer_mode;
};

/* flag values */
#define SHF_USE_DMA		0x0001
#define SHF_USE_DMA64		0x0002
#define SHF_USE_32BIT_ACCESS	0x0004

#define HREAD1(hp, reg)							\
	(sdhc_read_1((hp), (reg)))
#define HREAD2(hp, reg)							\
	(sdhc_read_2((hp), (reg)))
#define HREAD4(hp, reg)							\
	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
#define HWRITE1(hp, reg, val)						\
	sdhc_write_1((hp), (reg), (val))
#define HWRITE2(hp, reg, val)						\
	sdhc_write_2((hp), (reg), (val))
#define HWRITE4(hp, reg, val)						\
	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
#define HCLR1(hp, reg, bits)						\
	HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
#define HCLR2(hp, reg, bits)						\
	HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
#define HSET1(hp, reg, bits)						\
	HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
#define HSET2(hp, reg, bits)						\
	HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))

int	sdhc_host_reset(sdmmc_chipset_handle_t);
u_int32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
int	sdhc_card_detect(sdmmc_chipset_handle_t);
int	sdhc_bus_power(sdmmc_chipset_handle_t, u_int32_t);
int	sdhc_bus_clock(sdmmc_chipset_handle_t, int, int);
int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
void	sdhc_card_intr_mask(sdmmc_chipset_handle_t, int);
void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
void	sdhc_exec_command(sdmmc_chipset_handle_t, struct sdmmc_command *);
int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
int	sdhc_wait_state(struct sdhc_host *, u_int32_t, u_int32_t);
int	sdhc_soft_reset(struct sdhc_host *, int);
int	sdhc_wait_intr_cold(struct sdhc_host *, int, int);
int	sdhc_wait_intr(struct sdhc_host *, int, int);
void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
void	sdhc_read_data(struct sdhc_host *, u_char *, int);
void	sdhc_write_data(struct sdhc_host *, u_char *, int);
int	sdhc_hibernate_init(sdmmc_chipset_handle_t, void *);

#ifdef SDHC_DEBUG
int sdhcdebug = 0;
#define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
void	sdhc_dump_regs(struct sdhc_host *);
#else
#define DPRINTF(n,s)	do {} while(0)
#endif

struct sdmmc_chip_functions sdhc_functions = {
	.host_reset = sdhc_host_reset,
	.host_ocr = sdhc_host_ocr,
	.host_maxblklen = sdhc_host_maxblklen,
	.card_detect = sdhc_card_detect,
	.bus_power = sdhc_bus_power,
	.bus_clock = sdhc_bus_clock,
	.bus_width = sdhc_bus_width,
	.exec_command = sdhc_exec_command,
	.card_intr_mask = sdhc_card_intr_mask,
	.card_intr_ack = sdhc_card_intr_ack,
	.signal_voltage = sdhc_signal_voltage,
	.hibernate_init = sdhc_hibernate_init,
};

struct cfdriver sdhc_cd = {
	NULL, "sdhc", DV_DULL
};

/*
 * Some controllers live on a bus that only allows 32-bit
 * transactions.  In that case we use a RMW cycle for 8-bit and 16-bit
 * register writes.  However that doesn't work for the Transfer Mode
 * register as this register lives in the same 32-bit word as the
 * Command register and writing the Command register triggers SD
 * command generation.  We avoid this issue by using a shadow variable
 * for the Transfer Mode register that we write out when we write the
 * Command register.
 *
 * The Arasan controller integrated on the Broadcom SoCs
 * used in the Raspberry Pi has an interesting bug where writing the
 * same 32-bit register twice doesn't work.  This means that we lose
 * writes to the Block Sine and/or Block Count register.  We work
 * around that issue by using shadow variables as well.
 */

uint8_t
sdhc_read_1(struct sdhc_host *hp, bus_size_t offset)
{
	uint32_t reg;

	if (hp->flags & SHF_USE_32BIT_ACCESS) {
		reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~3);
		return (reg >> ((offset & 3) * 8)) & 0xff;
	}

	return bus_space_read_1(hp->iot, hp->ioh, offset);
}

uint16_t
sdhc_read_2(struct sdhc_host *hp, bus_size_t offset)
{
	uint32_t reg;

	if (hp->flags & SHF_USE_32BIT_ACCESS) {
		reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~2);
		return (reg >> ((offset & 2) * 8)) & 0xffff;
	}

	return bus_space_read_2(hp->iot, hp->ioh, offset);
}

void
sdhc_write_1(struct sdhc_host *hp, bus_size_t offset, uint8_t value)
{
	uint32_t reg;

	if (hp->flags & SHF_USE_32BIT_ACCESS) {
		reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~3);
		reg &= ~(0xff << ((offset & 3) * 8));
		reg |= (value << ((offset & 3) * 8));
		bus_space_write_4(hp->iot, hp->ioh, offset & ~3, reg);
		return;
	}

	bus_space_write_1(hp->iot, hp->ioh, offset, value);
}

void
sdhc_write_2(struct sdhc_host *hp, bus_size_t offset, uint16_t value)
{
	uint32_t reg;

	if (hp->flags & SHF_USE_32BIT_ACCESS) {
		switch (offset) {
		case SDHC_BLOCK_SIZE:
			hp->block_size = value;
			return;
		case SDHC_BLOCK_COUNT:
			hp->block_count = value;
			return;
		case SDHC_TRANSFER_MODE:
			hp->transfer_mode = value;
			return;
		case SDHC_COMMAND:
			bus_space_write_4(hp->iot, hp->ioh, SDHC_BLOCK_SIZE,
			    (hp->block_count << 16) | hp->block_size);
			bus_space_write_4(hp->iot, hp->ioh, SDHC_TRANSFER_MODE,
			    (value << 16) | hp->transfer_mode);
			return;
		}

		reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~2);
		reg &= ~(0xffff << ((offset & 2) * 8));
		reg |= (value << ((offset & 2) * 8));
		bus_space_write_4(hp->iot, hp->ioh, offset & ~2, reg);
		return;
	}

	bus_space_write_2(hp->iot, hp->ioh, offset, value);
}

/*
 * Called by attachment driver.  For each SD card slot there is one SD
 * host controller standard register set. (1.3)
 */
int
sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    bus_space_handle_t ioh, bus_size_t iosize, int usedma, uint64_t capmask,
    uint64_t capset)
{
	struct sdmmcbus_attach_args saa;
	struct sdhc_host *hp;
	uint32_t caps;
	int major, minor;
	int error = 1;
	int max_clock;

	/* Allocate one more host structure. */
	sc->sc_nhosts++;
	hp = malloc(sizeof(*hp), M_DEVBUF, M_WAITOK | M_ZERO);
	sc->sc_host[sc->sc_nhosts - 1] = hp;

	if (ISSET(sc->sc_flags, SDHC_F_32BIT_ACCESS))
		SET(hp->flags, SHF_USE_32BIT_ACCESS);

	/* Fill in the new host structure. */
	hp->sc = sc;
	hp->iot = iot;
	hp->ioh = ioh;

	/* Store specification version. */
	hp->version = HREAD2(hp, SDHC_HOST_CTL_VERSION);

	/*
	 * Reset the host controller and enable interrupts.
	 */
	(void)sdhc_host_reset(hp);

	/* Determine host capabilities. */
	caps = HREAD4(hp, SDHC_CAPABILITIES);
	caps &= ~capmask;
	caps |= capset;

	/* Use DMA if the host system and the controller support it. */
	if (usedma && ISSET(caps, SDHC_ADMA2_SUPP)) {
		SET(hp->flags, SHF_USE_DMA);
		if (ISSET(caps, SDHC_64BIT_DMA_SUPP))
			SET(hp->flags, SHF_USE_DMA64);
	}

	/*
	 * Determine the base clock frequency. (2.2.24)
	 */
	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
		/* SDHC 3.0 supports 10-255 MHz. */
		max_clock = 255000;
		if (SDHC_BASE_FREQ_KHZ_V3(caps) != 0)
			hp->clkbase = SDHC_BASE_FREQ_KHZ_V3(caps);
	} else {
		/* SDHC 1.0/2.0 supports only 10-63 MHz. */
		max_clock = 63000;
		if (SDHC_BASE_FREQ_KHZ(caps) != 0)
			hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
	}
	if (hp->clkbase == 0) {
		/* Make sure we can clock down to 400 kHz. */
		max_clock = 400 * SDHC_SDCLK_DIV_MAX_V3;
		hp->clkbase = sc->sc_clkbase;
	}
	if (hp->clkbase == 0) {
		/* The attachment driver must tell us. */
		printf("%s: base clock frequency unknown\n",
		    sc->sc_dev.dv_xname);
		goto err;
	} else if (hp->clkbase < 10000 || hp->clkbase > max_clock) {
		printf("%s: base clock frequency out of range: %u MHz\n",
		    sc->sc_dev.dv_xname, hp->clkbase / 1000);
		goto err;
	}

	switch (SDHC_SPEC_VERSION(hp->version)) {
	case SDHC_SPEC_VERS_4_10:
		major = 4, minor = 10;
		break;
	case SDHC_SPEC_VERS_4_20:
		major = 4, minor = 20;
		break;
	default:
		major = SDHC_SPEC_VERSION(hp->version) + 1, minor = 0;
		break;
	}

	printf("%s: SDHC %d.%02d, %d MHz base clock\n", DEVNAME(sc),
	    major, minor, hp->clkbase / 1000);

	/*
	 * XXX Set the data timeout counter value according to
	 * capabilities. (2.2.15)
	 */

	/*
	 * Determine SD bus voltage levels supported by the controller.
	 */
	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
		SET(hp->ocr, MMC_OCR_1_65V_1_95V);
	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);

	/*
	 * Determine the maximum block length supported by the host
	 * controller. (2.2.24)
	 */
	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
	case SDHC_MAX_BLK_LEN_512:
		hp->maxblklen = 512;
		break;
	case SDHC_MAX_BLK_LEN_1024:
		hp->maxblklen = 1024;
		break;
	case SDHC_MAX_BLK_LEN_2048:
		hp->maxblklen = 2048;
		break;
	default:
		hp->maxblklen = 1;
		break;
	}

	if (ISSET(hp->flags, SHF_USE_DMA)) {
		int rseg;

		/* Allocate ADMA2 descriptor memory */
		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
		    PAGE_SIZE, hp->adma_segs, 1, &rseg,
		    BUS_DMA_WAITOK | BUS_DMA_ZERO);
		if (error)
			goto adma_done;
		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
		    PAGE_SIZE, &hp->adma2, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
		if (error) {
			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg);
			goto adma_done;
		}
		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
		    0, BUS_DMA_WAITOK, &hp->adma_map);
		if (error) {
			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg);
			goto adma_done;
		}
		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
		    hp->adma2, PAGE_SIZE, NULL,
		    BUS_DMA_WAITOK | BUS_DMA_WRITE);
		if (error) {
			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg);
			goto adma_done;
		}

	adma_done:
		if (error) {
			printf("%s: can't allocate DMA descriptor table\n",
			    DEVNAME(hp->sc));
			CLR(hp->flags, SHF_USE_DMA);
		}
	}

	/*
	 * Attach the generic SD/MMC bus driver.  (The bus driver must
	 * not invoke any chipset functions before it is attached.)
	 */
	bzero(&saa, sizeof(saa));
	saa.saa_busname = "sdmmc";
	saa.sct = &sdhc_functions;
	saa.sch = hp;
	saa.caps = SMC_CAPS_4BIT_MODE;
	saa.dmat = sc->sc_dmat;
	saa.dma_boundary = sc->sc_dma_boundary;
	if (ISSET(hp->flags, SHF_USE_DMA))
		saa.caps |= SMC_CAPS_DMA;

	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
		saa.caps |= SMC_CAPS_SD_HIGHSPEED;
	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
		saa.caps |= SMC_CAPS_MMC_HIGHSPEED;

	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
		uint32_t caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
		caps2 &= ~(capmask >> 32);
		caps2 |= capset >> 32;

		if (ISSET(caps, SDHC_8BIT_MODE_SUPP))
			saa.caps |= SMC_CAPS_8BIT_MODE;

		if (ISSET(caps2, SDHC_DDR50_SUPP))
			saa.caps |= SMC_CAPS_MMC_DDR52;
	}

	if (ISSET(sc->sc_flags, SDHC_F_NONREMOVABLE))
		saa.caps |= SMC_CAPS_NONREMOVABLE;

	hp->sdmmc = config_found(&sc->sc_dev, &saa, NULL);
	if (hp->sdmmc == NULL) {
		error = 0;
		goto err;
	}
	
	return 0;

err:
	free(hp, M_DEVBUF, sizeof *hp);
	sc->sc_host[sc->sc_nhosts - 1] = NULL;
	sc->sc_nhosts--;
	return (error);
}

int
sdhc_activate(struct device *self, int act)
{
	struct sdhc_softc *sc = (struct sdhc_softc *)self;
	struct sdhc_host *hp;
	int n, i, rv = 0;

	switch (act) {
	case DVACT_SUSPEND:
		rv = config_activate_children(self, act);

		/* Save the host controller state. */
		for (n = 0; n < sc->sc_nhosts; n++) {
			hp = sc->sc_host[n];
			for (i = 0; i < sizeof hp->regs; i++)
				hp->regs[i] = HREAD1(hp, i);
		}
		break;
	case DVACT_RESUME:
		/* Restore the host controller state. */
		for (n = 0; n < sc->sc_nhosts; n++) {
			hp = sc->sc_host[n];
			(void)sdhc_host_reset(hp);
			for (i = 0; i < sizeof hp->regs; i++)
				HWRITE1(hp, i, hp->regs[i]);
		}
		rv = config_activate_children(self, act);
		break;
	case DVACT_POWERDOWN:
		rv = config_activate_children(self, act);
		sdhc_shutdown(self);
		break;
	default:
		rv = config_activate_children(self, act);
		break;
	}
	return (rv);
}

/*
 * Shutdown hook established by or called from attachment driver.
 */
void
sdhc_shutdown(void *arg)
{
	struct sdhc_softc *sc = arg;
	struct sdhc_host *hp;
	int i;

	/* XXX chip locks up if we don't disable it before reboot. */
	for (i = 0; i < sc->sc_nhosts; i++) {
		hp = sc->sc_host[i];
		(void)sdhc_host_reset(hp);
	}
}

/*
 * Reset the host controller.  Called during initialization, when
 * cards are removed, upon resume, and during error recovery.
 */
int
sdhc_host_reset(sdmmc_chipset_handle_t sch)
{
	struct sdhc_host *hp = sch;
	u_int16_t imask;
	int error;
	int s;

	s = splsdmmc();

	/* Disable all interrupts. */
	HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);

	/*
	 * Reset the entire host controller and wait up to 100ms for
	 * the controller to clear the reset bit.
	 */
	if ((error = sdhc_soft_reset(hp, SDHC_RESET_ALL)) != 0) {
		splx(s);
		return (error);
	}	

	/* Set data timeout counter value to max for now. */
	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);

	/* Enable interrupts. */
	imask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;

	HWRITE2(hp, SDHC_NINTR_STATUS_EN, imask);
	HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
	HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, imask);
	HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);

	splx(s);
	return 0;
}

u_int32_t
sdhc_host_ocr(sdmmc_chipset_handle_t sch)
{
	struct sdhc_host *hp = sch;
	return hp->ocr;
}

int
sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
{
	struct sdhc_host *hp = sch;
	return hp->maxblklen;
}

/*
 * Return non-zero if the card is currently inserted.
 */
int
sdhc_card_detect(sdmmc_chipset_handle_t sch)
{
	struct sdhc_host *hp = sch;

	if (hp->sc->sc_card_detect)
		return hp->sc->sc_card_detect(hp->sc);

	return ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED) ?
	    1 : 0;
}

/*
 * Set or change SD bus voltage and enable or disable SD bus power.
 * Return zero on success.
 */
int
sdhc_bus_power(sdmmc_chipset_handle_t sch, u_int32_t ocr)
{
	struct sdhc_host *hp = sch;
	u_int8_t vdd;
	int s;

	s = splsdmmc();

	/*
	 * Disable bus power before voltage change.
	 */
	if (!(hp->sc->sc_flags & SDHC_F_NOPWR0))
		HWRITE1(hp, SDHC_POWER_CTL, 0);

	/* If power is disabled, reset the host and return now. */
	if (ocr == 0) {
		splx(s);
		(void)sdhc_host_reset(hp);
		return 0;
	}

	/*
	 * Select the maximum voltage according to capabilities.
	 */
	ocr &= hp->ocr;
	if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
		vdd = SDHC_VOLTAGE_3_3V;
	else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
		vdd = SDHC_VOLTAGE_3_0V;
	else if (ISSET(ocr, MMC_OCR_1_65V_1_95V))
		vdd = SDHC_VOLTAGE_1_8V;
	else {
		/* Unsupported voltage level requested. */
		splx(s);
		return EINVAL;
	}

	/*
	 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
	 * voltage ramp until power rises.
	 */
	HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT) |
	    SDHC_BUS_POWER);
	sdmmc_delay(10000);

	/*
	 * The host system may not power the bus due to battery low,
	 * etc.  In that case, the host controller should clear the
	 * bus power bit.
	 */
	if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
		splx(s);
		return ENXIO;
	}

	splx(s);
	return 0;
}

/*
 * Return the smallest possible base clock frequency divisor value
 * for the CLOCK_CTL register to produce `freq' (KHz).
 */
static int
sdhc_clock_divisor(struct sdhc_host *hp, u_int freq)
{
	int div;

	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
		if (hp->clkbase <= freq)
			return 0;

		for (div = 2; div <= SDHC_SDCLK_DIV_MAX_V3; div += 2)
			if ((hp->clkbase / div) <= freq)
				return (div / 2);
	} else {
		for (div = 1; div <= SDHC_SDCLK_DIV_MAX; div *= 2)
			if ((hp->clkbase / div) <= freq)
				return (div / 2);
	}

	/* No divisor found. */
	return -1;
}

/*
 * Set or change SDCLK frequency or disable the SD clock.
 * Return zero on success.
 */
int
sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq, int timing)
{
	struct sdhc_host *hp = sch;
	struct sdhc_softc *sc = hp->sc;
	int s;
	int div;
	int sdclk;
	int timo;
	int error = 0;

	s = splsdmmc();

	if (hp->sc->sc_bus_clock_pre)
		hp->sc->sc_bus_clock_pre(hp->sc, freq, timing);

#ifdef DIAGNOSTIC
	/* Must not stop the clock if commands are in progress. */
	if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK) &&
	    sdhc_card_detect(hp))
		printf("sdhc_sdclk_frequency_select: command in progress\n");
#endif

	/*
	 * Stop SD clock before changing the frequency.
	 */
	HWRITE2(hp, SDHC_CLOCK_CTL, 0);
	if (freq == SDMMC_SDCLK_OFF)
		goto ret;

	if (!ISSET(sc->sc_flags, SDHC_F_NO_HS_BIT)) {
		if (timing == SDMMC_TIMING_LEGACY)
			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
		else
			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
	}

	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
		switch (timing) {
		case SDMMC_TIMING_MMC_DDR52:
			HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_DDR50);
			break;
		}
	}

	/*
	 * Set the minimum base clock frequency divisor.
	 */
	if ((div = sdhc_clock_divisor(hp, freq)) < 0) {
		/* Invalid base clock frequency or `freq' value. */
		error = EINVAL;
		goto ret;
	}
	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3)
		sdclk = SDHC_SDCLK_DIV_V3(div);
	else
		sdclk = SDHC_SDCLK_DIV(div);
	HWRITE2(hp, SDHC_CLOCK_CTL, sdclk);

	/*
	 * Start internal clock.  Wait 10ms for stabilization.
	 */
	HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
	for (timo = 1000; timo > 0; timo--) {
		if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
			break;
		sdmmc_delay(10);
	}
	if (timo == 0) {
		error = ETIMEDOUT;
		goto ret;
	}

	/*
	 * Enable SD clock.
	 */
	HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);

	if (hp->sc->sc_bus_clock_post)
		hp->sc->sc_bus_clock_post(hp->sc, freq, timing);

ret:
	splx(s);
	return error;
}

int
sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
{
	struct sdhc_host *hp = (struct sdhc_host *)sch;
	int reg;
	int s;

	if (width != 1 && width != 4 && width != 8)
		return EINVAL;

	s = splsdmmc();

	reg = HREAD1(hp, SDHC_HOST_CTL);
	reg &= ~SDHC_4BIT_MODE;
	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
		reg &= ~SDHC_8BIT_MODE;
	}
	if (width == 4) {
		reg |= SDHC_4BIT_MODE;
	} else if (width == 8) {
		KASSERT(SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3);
		reg |= SDHC_8BIT_MODE;
	}
	HWRITE1(hp, SDHC_HOST_CTL, reg);

	splx(s);

	return 0;
}

void
sdhc_card_intr_mask(sdmmc_chipset_handle_t sch, int enable)
{
	struct sdhc_host *hp = sch;

	if (enable) {
		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
		HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
	} else {
		HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
		HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
	}
}

void
sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
{
	struct sdhc_host *hp = sch;

	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
}

int
sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
{
	struct sdhc_host *hp = sch;

	if (hp->sc->sc_signal_voltage)
		return hp->sc->sc_signal_voltage(hp->sc, signal_voltage);

	if (SDHC_SPEC_VERSION(hp->version) < SDHC_SPEC_V3)
		return EINVAL;

	switch (signal_voltage) {
	case SDMMC_SIGNAL_VOLTAGE_180:
		HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
		break;
	case SDMMC_SIGNAL_VOLTAGE_330:
		HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
		break;
	default:
		return EINVAL;
	}

	/* Regulator output shall be stable within 5 ms. */
	sdmmc_delay(5000);

	/* Host controller clears this bit if 1.8V signalling fails. */
	if (signal_voltage == SDMMC_SIGNAL_VOLTAGE_180 &&
	    !ISSET(HREAD2(hp, SDHC_HOST_CTL2), SDHC_1_8V_SIGNAL_EN))
		return EIO;

	return 0;
}

int
sdhc_wait_state(struct sdhc_host *hp, u_int32_t mask, u_int32_t value)
{
	u_int32_t state;
	int timeout;

	for (timeout = 10; timeout > 0; timeout--) {
		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask)
		    == value)
			return 0;
		sdmmc_delay(10000);
	}
	DPRINTF(0,("%s: timeout waiting for %x (state=%b)\n", DEVNAME(hp->sc),
	    value, state, SDHC_PRESENT_STATE_BITS));
	return ETIMEDOUT;
}

void
sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
{
	struct sdhc_host *hp = sch;
	int error;

	/*
	 * Start the MMC command, or mark `cmd' as failed and return.
	 */
	error = sdhc_start_command(hp, cmd);
	if (error != 0) {
		cmd->c_error = error;
		SET(cmd->c_flags, SCF_ITSDONE);
		return;
	}

	/*
	 * Wait until the command phase is done, or until the command
	 * is marked done for any other reason.
	 */
	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE,
	    SDHC_COMMAND_TIMEOUT)) {
		cmd->c_error = ETIMEDOUT;
		SET(cmd->c_flags, SCF_ITSDONE);
		return;
	}

	/*
	 * The host controller removes bits [0:7] from the response
	 * data (CRC) and we pass the data up unchanged to the bus
	 * driver (without padding).
	 */
	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
			u_char *p = (u_char *)cmd->c_resp;
			int i;

			for (i = 0; i < 15; i++)
				*p++ = HREAD1(hp, SDHC_RESPONSE + i);
		} else
			cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
	}

	/*
	 * If the command has data to transfer in any direction,
	 * execute the transfer now.
	 */
	if (cmd->c_error == 0 && cmd->c_data != NULL)
		sdhc_transfer_data(hp, cmd);

	/* Turn off the LED. */
	HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);

	DPRINTF(1,("%s: cmd %u done (flags=%#x error=%d)\n",
	    DEVNAME(hp->sc), cmd->c_opcode, cmd->c_flags, cmd->c_error));
	SET(cmd->c_flags, SCF_ITSDONE);
}

int
sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
	struct sdhc_adma2_descriptor32 *desc32 = (void *)hp->adma2;
	struct sdhc_adma2_descriptor64 *desc64 = (void *)hp->adma2;
	struct sdhc_softc *sc = hp->sc;
	u_int16_t blksize = 0;
	u_int16_t blkcount = 0;
	u_int16_t mode;
	u_int16_t command;
	int error;
	int seg;
	int s;
	
	DPRINTF(1,("%s: start cmd %u arg=%#x data=%p dlen=%d flags=%#x\n",
	    DEVNAME(hp->sc), cmd->c_opcode, cmd->c_arg, cmd->c_data,
	    cmd->c_datalen, cmd->c_flags));

	/*
	 * The maximum block length for commands should be the minimum
	 * of the host buffer size and the card buffer size. (1.7.2)
	 */

	/* Fragment the data into proper blocks. */
	if (cmd->c_datalen > 0) {
		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
		blkcount = cmd->c_datalen / blksize;
		if (cmd->c_datalen % blksize > 0) {
			/* XXX: Split this command. (1.7.4) */
			printf("%s: data not a multiple of %d bytes\n",
			    DEVNAME(hp->sc), blksize);
			return EINVAL;
		}
	}

	/* Check limit imposed by 9-bit block count. (1.7.2) */
	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
		printf("%s: too much data\n", DEVNAME(hp->sc));
		return EINVAL;
	}

	/* Prepare transfer mode register value. (2.2.5) */
	mode = 0;
	if (ISSET(cmd->c_flags, SCF_CMD_READ))
		mode |= SDHC_READ_MODE;
	if (blkcount > 0) {
		mode |= SDHC_BLOCK_COUNT_ENABLE;
		if (blkcount > 1) {
			mode |= SDHC_MULTI_BLOCK_MODE;
			if (cmd->c_opcode != SD_IO_RW_EXTENDED)
				mode |= SDHC_AUTO_CMD12_ENABLE;
		}
	}
	if (cmd->c_dmamap && cmd->c_datalen > 0 &&
	    ISSET(hp->flags, SHF_USE_DMA))
		mode |= SDHC_DMA_ENABLE;

	/*
	 * Prepare command register value. (2.2.6)
	 */
	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) <<
	    SDHC_COMMAND_INDEX_SHIFT;

	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
		command |= SDHC_CRC_CHECK_ENABLE;
	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
		command |= SDHC_INDEX_CHECK_ENABLE;
	if (cmd->c_data != NULL)
		command |= SDHC_DATA_PRESENT_SELECT;

	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
		command |= SDHC_NO_RESPONSE;
	else if (ISSET(cmd->c_flags, SCF_RSP_136))
		command |= SDHC_RESP_LEN_136;
	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
		command |= SDHC_RESP_LEN_48_CHK_BUSY;
	else
		command |= SDHC_RESP_LEN_48;

	/* Wait until command and data inhibit bits are clear. (1.5) */
	if ((error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0)) != 0)
		return error;

	s = splsdmmc();

	/* Alert the user not to remove the card. */
	HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);

	/* Set DMA start address if SHF_USE_DMA is set. */
	if (cmd->c_dmamap && ISSET(hp->flags, SHF_USE_DMA)) {
		for (seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
			bus_addr_t paddr =
			    cmd->c_dmamap->dm_segs[seg].ds_addr;
			uint16_t len =
			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
			uint16_t attr;

			attr = SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
			if (seg == cmd->c_dmamap->dm_nsegs - 1)
				attr |= SDHC_ADMA2_END;

			if (ISSET(hp->flags, SHF_USE_DMA64)) {
				desc64[seg].attribute = htole16(attr);
				desc64[seg].length = htole16(len);
				desc64[seg].address_lo =
				    htole32((uint64_t)paddr & 0xffffffff);
				desc64[seg].address_hi =
				    htole32((uint64_t)paddr >> 32);
			} else {
				desc32[seg].attribute = htole16(attr);
				desc32[seg].length = htole16(len);
				desc32[seg].address = htole32(paddr);
			}
		}

		if (ISSET(hp->flags, SHF_USE_DMA64))
			desc64[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
		else
			desc32[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);

		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
		    BUS_DMASYNC_PREWRITE);

		HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
		if (ISSET(hp->flags, SHF_USE_DMA64))
			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA64);
		else
			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA32);

		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR,
		    hp->adma_map->dm_segs[0].ds_addr);
	} else
		HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);

	DPRINTF(1,("%s: cmd=%#x mode=%#x blksize=%d blkcount=%d\n",
	    DEVNAME(hp->sc), command, mode, blksize, blkcount));

	/*
	 * Start a CPU data transfer.  Writing to the high order byte
	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
	 */
	HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
	HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
	HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
	HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
	HWRITE2(hp, SDHC_COMMAND, command);

	splx(s);
	return 0;
}

void
sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
	struct sdhc_softc *sc = hp->sc;
	u_char *datap = cmd->c_data;
	int i, datalen;
	int mask;
	int error;

	if (cmd->c_dmamap) {
		int status;

		error = 0;
		for (;;) {
			status = sdhc_wait_intr(hp,
			    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
			    SDHC_DMA_TIMEOUT);
			if (status & SDHC_TRANSFER_COMPLETE)
				break;
			if (!status) {
				error = ETIMEDOUT;
				break;
			}
		}

		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
		    BUS_DMASYNC_POSTWRITE);
		goto done;
	}

	mask = ISSET(cmd->c_flags, SCF_CMD_READ) ?
	    SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE;
	error = 0;
	datalen = cmd->c_datalen;

	DPRINTF(1,("%s: resp=%#x datalen=%d\n", DEVNAME(hp->sc),
	    MMC_R1(cmd->c_resp), datalen));

#ifdef SDHC_DEBUG
	/* XXX I forgot why I wanted to know when this happens :-( */
	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
	    ISSET(MMC_R1(cmd->c_resp), 0xcb00))
		printf("%s: CMD52/53 error response flags %#x\n",
		    DEVNAME(hp->sc), MMC_R1(cmd->c_resp) & 0xff00);
#endif

	while (datalen > 0) {
		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY|
		    SDHC_BUFFER_WRITE_READY, SDHC_BUFFER_TIMEOUT)) {
			error = ETIMEDOUT;
			break;
		}

		if ((error = sdhc_wait_state(hp, mask, mask)) != 0)
			break;

		i = MIN(datalen, cmd->c_blklen);
		if (ISSET(cmd->c_flags, SCF_CMD_READ))
			sdhc_read_data(hp, datap, i);
		else
			sdhc_write_data(hp, datap, i);

		datap += i;
		datalen -= i;
	}

	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
	    SDHC_TRANSFER_TIMEOUT))
		error = ETIMEDOUT;

done:
	if (error != 0)
		cmd->c_error = error;
	SET(cmd->c_flags, SCF_ITSDONE);

	DPRINTF(1,("%s: data transfer done (error=%d)\n",
	    DEVNAME(hp->sc), cmd->c_error));
}

void
sdhc_read_data(struct sdhc_host *hp, u_char *datap, int datalen)
{
	while (datalen > 3) {
		*(u_int32_t *)datap = HREAD4(hp, SDHC_DATA);
		datap += 4;
		datalen -= 4;
	}
	if (datalen > 0) {
		u_int32_t rv = HREAD4(hp, SDHC_DATA);
		do {
			*datap++ = rv & 0xff;
			rv = rv >> 8;
		} while (--datalen > 0);
	}
}

void
sdhc_write_data(struct sdhc_host *hp, u_char *datap, int datalen)
{
	while (datalen > 3) {
		DPRINTF(3,("%08x\n", *(u_int32_t *)datap));
		HWRITE4(hp, SDHC_DATA, *((u_int32_t *)datap));
		datap += 4;
		datalen -= 4;
	}
	if (datalen > 0) {
		u_int32_t rv = *datap++;
		if (datalen > 1)
			rv |= *datap++ << 8;
		if (datalen > 2)
			rv |= *datap++ << 16;
		DPRINTF(3,("rv %08x\n", rv));
		HWRITE4(hp, SDHC_DATA, rv);
	}
}

/* Prepare for another command. */
int
sdhc_soft_reset(struct sdhc_host *hp, int mask)
{
	int timo;

	DPRINTF(1,("%s: software reset reg=%#x\n", DEVNAME(hp->sc), mask));

	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
	for (timo = 10; timo > 0; timo--) {
		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
			break;
		sdmmc_delay(10000);
		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
	}
	if (timo == 0) {
		DPRINTF(1,("%s: timeout reg=%#x\n", DEVNAME(hp->sc),
		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
		return (ETIMEDOUT);
	}

	return (0);
}

int
sdhc_wait_intr_cold(struct sdhc_host *hp, int mask, int secs)
{
	int status, usecs;

	mask |= SDHC_ERROR_INTERRUPT;
	usecs = secs * 1000000;
	status = hp->intr_status;
	while ((status & mask) == 0) {

		status = HREAD2(hp, SDHC_NINTR_STATUS);
		if (ISSET(status, SDHC_NINTR_STATUS_MASK)) {
			HWRITE2(hp, SDHC_NINTR_STATUS, status);
			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
				uint16_t error;
				error = HREAD2(hp, SDHC_EINTR_STATUS);
				HWRITE2(hp, SDHC_EINTR_STATUS, error);
				hp->intr_status |= status;

				if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
				    SDHC_DATA_TIMEOUT_ERROR))
					break;
			}

			if (ISSET(status, SDHC_BUFFER_READ_READY |
			    SDHC_BUFFER_WRITE_READY | SDHC_COMMAND_COMPLETE |
			    SDHC_TRANSFER_COMPLETE)) {
				hp->intr_status |= status;
				break;
			}

			if (ISSET(status, SDHC_CARD_INTERRUPT)) {
				HSET2(hp, SDHC_NINTR_STATUS_EN,
				    SDHC_CARD_INTERRUPT);
			}

			continue;
		}

		delay(1);
		if (usecs-- == 0) {
			status |= SDHC_ERROR_INTERRUPT;
			break;
		}
	}

	hp->intr_status &= ~(status & mask);
	return (status & mask);
}

int
sdhc_wait_intr(struct sdhc_host *hp, int mask, int secs)
{
	int status;
	int s;

	if (cold)
		return (sdhc_wait_intr_cold(hp, mask, secs));

	mask |= SDHC_ERROR_INTERRUPT;

	s = splsdmmc();
	status = hp->intr_status & mask;
	while (status == 0) {
		if (tsleep_nsec(&hp->intr_status, PWAIT, "hcintr",
		    SEC_TO_NSEC(secs)) == EWOULDBLOCK) {
			status |= SDHC_ERROR_INTERRUPT;
			break;
		}
		status = hp->intr_status & mask;
	}
	hp->intr_status &= ~status;

	DPRINTF(2,("%s: intr status %#x error %#x\n", DEVNAME(hp->sc), status,
	    hp->intr_error_status));
	
	/* Command timeout has higher priority than command complete. */
	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
		hp->intr_error_status = 0;
		(void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
		status = 0;
	}

	splx(s);
	return status;
}

/*
 * Established by attachment driver at interrupt priority IPL_SDMMC.
 */
int
sdhc_intr(void *arg)
{
	struct sdhc_softc *sc = arg;
	int host;
	int done = 0;

	/* We got an interrupt, but we don't know from which slot. */
	for (host = 0; host < sc->sc_nhosts; host++) {
		struct sdhc_host *hp = sc->sc_host[host];
		u_int16_t status;

		if (hp == NULL)
			continue;

		/* Find out which interrupts are pending. */
		status = HREAD2(hp, SDHC_NINTR_STATUS);
		if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
			continue; /* no interrupt for us */

		/* Acknowledge the interrupts we are about to handle. */
		HWRITE2(hp, SDHC_NINTR_STATUS, status);
		DPRINTF(2,("%s: interrupt status=%b\n", DEVNAME(hp->sc),
		    status, SDHC_NINTR_STATUS_BITS));

		/* Claim this interrupt. */
		done = 1;

		/*
		 * Service error interrupts.
		 */
		if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
			u_int16_t error;

			/* Acknowledge error interrupts. */
			error = HREAD2(hp, SDHC_EINTR_STATUS);
			HWRITE2(hp, SDHC_EINTR_STATUS, error);
			DPRINTF(2,("%s: error interrupt, status=%b\n",
			    DEVNAME(hp->sc), error, SDHC_EINTR_STATUS_BITS));

			if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
			    SDHC_DATA_TIMEOUT_ERROR)) {
				hp->intr_error_status |= error;
				hp->intr_status |= status;
				wakeup(&hp->intr_status);
			}
		}

		/*
		 * Wake up the sdmmc event thread to scan for cards.
		 */
		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION))
			sdmmc_needs_discover(hp->sdmmc);

		/*
		 * Wake up the blocking process to service command
		 * related interrupt(s).
		 */
		if (ISSET(status, SDHC_BUFFER_READ_READY|
		    SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
		    SDHC_TRANSFER_COMPLETE)) {
			hp->intr_status |= status;
			wakeup(&hp->intr_status);
		}

		/*
		 * Service SD card interrupts.
		 */
		if (ISSET(status, SDHC_CARD_INTERRUPT)) {
			DPRINTF(0,("%s: card interrupt\n", DEVNAME(hp->sc)));
			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
			sdmmc_card_intr(hp->sdmmc);
		}
	}
	return done;
}

void
sdhc_needs_discover(struct sdhc_softc *sc)
{
	int host;

	for (host = 0; host < sc->sc_nhosts; host++)
		sdmmc_needs_discover(sc->sc_host[host]->sdmmc);
}

#ifdef SDHC_DEBUG
void
sdhc_dump_regs(struct sdhc_host *hp)
{
	printf("0x%02x PRESENT_STATE:    %b\n", SDHC_PRESENT_STATE,
	    HREAD4(hp, SDHC_PRESENT_STATE), SDHC_PRESENT_STATE_BITS);
	printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
	    HREAD1(hp, SDHC_POWER_CTL));
	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
	    HREAD2(hp, SDHC_NINTR_STATUS));
	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
	    HREAD2(hp, SDHC_EINTR_STATUS));
	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
	    HREAD4(hp, SDHC_CAPABILITIES));
	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
}
#endif

int
sdhc_hibernate_init(sdmmc_chipset_handle_t sch, void *fake_softc)
{
	struct sdhc_host *hp, *fhp;
	fhp = fake_softc;
	hp = sch;
	*fhp = *hp;

	return (0);
}