summaryrefslogtreecommitdiff
path: root/sys/kern/kern_clock.c
blob: 024bc6cc2ae1794d368892f30129b1c42c956168 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
/*	$OpenBSD: kern_clock.c,v 1.60 2006/12/24 20:29:45 miod Exp $	*/
/*	$NetBSD: kern_clock.c,v 1.34 1996/06/09 04:51:03 briggs Exp $	*/

/*-
 * Copyright (c) 1982, 1986, 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/dkstat.h>
#include <sys/timeout.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <uvm/uvm_extern.h>
#include <sys/sysctl.h>
#include <sys/sched.h>
#ifdef __HAVE_TIMECOUNTER
#include <sys/timetc.h>
#endif

#include <machine/cpu.h>

#ifdef GPROF
#include <sys/gmon.h>
#endif

/*
 * Clock handling routines.
 *
 * This code is written to operate with two timers that run independently of
 * each other.  The main clock, running hz times per second, is used to keep
 * track of real time.  The second timer handles kernel and user profiling,
 * and does resource use estimation.  If the second timer is programmable,
 * it is randomized to avoid aliasing between the two clocks.  For example,
 * the randomization prevents an adversary from always giving up the cpu
 * just before its quantum expires.  Otherwise, it would never accumulate
 * cpu ticks.  The mean frequency of the second timer is stathz.
 *
 * If no second timer exists, stathz will be zero; in this case we drive
 * profiling and statistics off the main clock.  This WILL NOT be accurate;
 * do not do it unless absolutely necessary.
 *
 * The statistics clock may (or may not) be run at a higher rate while
 * profiling.  This profile clock runs at profhz.  We require that profhz
 * be an integral multiple of stathz.
 *
 * If the statistics clock is running fast, it must be divided by the ratio
 * profhz/stathz for statistics.  (For profiling, every tick counts.)
 */

/*
 * Bump a timeval by a small number of usec's.
 */
#define BUMPTIME(t, usec) { \
	volatile struct timeval *tp = (t); \
	long us; \
 \
	tp->tv_usec = us = tp->tv_usec + (usec); \
	if (us >= 1000000) { \
		tp->tv_usec = us - 1000000; \
		tp->tv_sec++; \
	} \
}

int	stathz;
int	schedhz;
int	profhz;
int	profprocs;
int	ticks;
static int psdiv, pscnt;		/* prof => stat divider */
int	psratio;			/* ratio: prof / stat */

long cp_time[CPUSTATES];

#ifndef __HAVE_TIMECOUNTER
int	tickfix, tickfixinterval;	/* used if tick not really integral */
static int tickfixcnt;			/* accumulated fractional error */

volatile time_t time_second;
volatile time_t time_uptime;

volatile struct	timeval time
	__attribute__((__aligned__(__alignof__(quad_t))));
volatile struct	timeval mono_time;
#endif

#ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
void	*softclock_si;
void	generic_softclock(void *);

void
generic_softclock(void *ignore)
{
	/*
	 * XXX - don't commit, just a dummy wrapper until we learn everyone
	 *       deal with a changed proto for softclock().
	 */
	softclock();
}
#endif

/*
 * Initialize clock frequencies and start both clocks running.
 */
void
initclocks(void)
{
	int i;
#ifdef __HAVE_TIMECOUNTER
	extern void inittimecounter(void);
#endif

#ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
	softclock_si = softintr_establish(IPL_SOFTCLOCK, generic_softclock, NULL);
	if (softclock_si == NULL)
		panic("initclocks: unable to register softclock intr");
#endif

	/*
	 * Set divisors to 1 (normal case) and let the machine-specific
	 * code do its bit.
	 */
	psdiv = pscnt = 1;
	cpu_initclocks();

	/*
	 * Compute profhz/stathz, and fix profhz if needed.
	 */
	i = stathz ? stathz : hz;
	if (profhz == 0)
		profhz = i;
	psratio = profhz / i;
#ifdef __HAVE_TIMECOUNTER
	inittimecounter();
#endif
}

/*
 * hardclock does the accounting needed for ITIMER_PROF and ITIMER_VIRTUAL.
 * We don't want to send signals with psignal from hardclock because it makes
 * MULTIPROCESSOR locking very complicated. Instead we use a small trick
 * to send the signals safely and without blocking too many interrupts
 * while doing that (signal handling can be heavy).
 *
 * hardclock detects that the itimer has expired, and schedules a timeout
 * to deliver the signal. This works because of the following reasons:
 *  - The timeout structures can be in struct pstats because the timers
 *    can be only activated on curproc (never swapped). Swapout can
 *    only happen from a kernel thread and softclock runs before threads
 *    are scheduled.
 *  - The timeout can be scheduled with a 1 tick time because we're
 *    doing it before the timeout processing in hardclock. So it will
 *    be scheduled to run as soon as possible.
 *  - The timeout will be run in softclock which will run before we
 *    return to userland and process pending signals.
 *  - If the system is so busy that several VIRTUAL/PROF ticks are
 *    sent before softclock processing, we'll send only one signal.
 *    But if we'd send the signal from hardclock only one signal would
 *    be delivered to the user process. So userland will only see one
 *    signal anyway.
 */

void
virttimer_trampoline(void *v)
{
	struct proc *p = v;

	psignal(p, SIGVTALRM);
}

void
proftimer_trampoline(void *v)
{
	struct proc *p = v;

	psignal(p, SIGPROF);
}

/*
 * The real-time timer, interrupting hz times per second.
 */
void
hardclock(struct clockframe *frame)
{
	struct proc *p;
#ifndef __HAVE_TIMECOUNTER
	int delta;
	extern int tickdelta;
	extern long timedelta;
	extern int64_t ntp_tick_permanent;
	extern int64_t ntp_tick_acc;
#endif
#ifdef __HAVE_CPUINFO
	struct cpu_info *ci = curcpu();
#endif

	p = curproc;
	if (p && ((p->p_flag & P_WEXIT) == 0)) {
		struct pstats *pstats;

		/*
		 * Run current process's virtual and profile time, as needed.
		 */
		pstats = p->p_stats;
		if (CLKF_USERMODE(frame) &&
		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
			timeout_add(&pstats->p_virt_to, 1);
		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
			timeout_add(&pstats->p_prof_to, 1);
	}

	/*
	 * If no separate statistics clock is available, run it from here.
	 */
	if (stathz == 0)
		statclock(frame);

#if defined(__HAVE_CPUINFO)
	if (--ci->ci_schedstate.spc_rrticks <= 0)
		roundrobin(ci);

	/*
	 * If we are not the primary CPU, we're not allowed to do
	 * any more work.
	 */
	if (CPU_IS_PRIMARY(ci) == 0)
		return;
#endif

#ifndef __HAVE_TIMECOUNTER
	/*
	 * Increment the time-of-day.  The increment is normally just
	 * ``tick''.  If the machine is one which has a clock frequency
	 * such that ``hz'' would not divide the second evenly into
	 * milliseconds, a periodic adjustment must be applied.  Finally,
	 * if we are still adjusting the time (see adjtime()),
	 * ``tickdelta'' may also be added in.
	 */

	delta = tick;

	if (tickfix) {
		tickfixcnt += tickfix;
		if (tickfixcnt >= tickfixinterval) {
			delta++;
			tickfixcnt -= tickfixinterval;
		}
	}
	/* Imprecise 4bsd adjtime() handling */
	if (timedelta != 0) {
		delta += tickdelta;
		timedelta -= tickdelta;
	}

	/*
	 * ntp_tick_permanent accumulates the clock correction each
	 * tick. The unit is ns per tick shifted left 32 bits. If we have
	 * accumulated more than 1us, we bump delta in the right
	 * direction. Use a loop to avoid long long div; typicallly
	 * the loops will be executed 0 or 1 iteration.
	 */
	if (ntp_tick_permanent != 0) {
		ntp_tick_acc += ntp_tick_permanent;
		while (ntp_tick_acc >= (1000LL << 32)) {
			delta++;
			ntp_tick_acc -= (1000LL << 32);
		}
		while (ntp_tick_acc <= -(1000LL << 32)) {
			delta--;
			ntp_tick_acc += (1000LL << 32);
		}
	}

	BUMPTIME(&time, delta);
	BUMPTIME(&mono_time, delta);
	time_second = time.tv_sec;
	time_uptime = mono_time.tv_sec;
#else
	tc_ticktock();
#endif

#ifdef CPU_CLOCKUPDATE
	CPU_CLOCKUPDATE();
#endif

	/*
	 * Update real-time timeout queue.
	 * Process callouts at a very low cpu priority, so we don't keep the
	 * relatively high clock interrupt priority any longer than necessary.
	 */
	if (timeout_hardclock_update()) {
#ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
		softintr_schedule(softclock_si);
#else
		setsoftclock();
#endif
	}
}

/*
 * Compute number of hz until specified time.  Used to
 * compute the second argument to timeout_add() from an absolute time.
 */
int
hzto(struct timeval *tv)
{
	struct timeval now;
	unsigned long ticks;
	long sec, usec;

	/*
	 * If the number of usecs in the whole seconds part of the time
	 * difference fits in a long, then the total number of usecs will
	 * fit in an unsigned long.  Compute the total and convert it to
	 * ticks, rounding up and adding 1 to allow for the current tick
	 * to expire.  Rounding also depends on unsigned long arithmetic
	 * to avoid overflow.
	 *
	 * Otherwise, if the number of ticks in the whole seconds part of
	 * the time difference fits in a long, then convert the parts to
	 * ticks separately and add, using similar rounding methods and
	 * overflow avoidance.  This method would work in the previous
	 * case but it is slightly slower and assumes that hz is integral.
	 *
	 * Otherwise, round the time difference down to the maximum
	 * representable value.
	 *
	 * If ints have 32 bits, then the maximum value for any timeout in
	 * 10ms ticks is 248 days.
	 */
	getmicrotime(&now);
	sec = tv->tv_sec - now.tv_sec;
	usec = tv->tv_usec - now.tv_usec;
	if (usec < 0) {
		sec--;
		usec += 1000000;
	}
	if (sec < 0 || (sec == 0 && usec <= 0)) {
		ticks = 0;
	} else if (sec <= LONG_MAX / 1000000)
		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
		    / tick + 1;
	else if (sec <= LONG_MAX / hz)
		ticks = sec * hz
		    + ((unsigned long)usec + (tick - 1)) / tick + 1;
	else
		ticks = LONG_MAX;
	if (ticks > INT_MAX)
		ticks = INT_MAX;
	return ((int)ticks);
}

/*
 * Compute number of hz in the specified amount of time.
 */
int
tvtohz(struct timeval *tv)
{
	unsigned long ticks;
	long sec, usec;

	/*
	 * If the number of usecs in the whole seconds part of the time
	 * fits in a long, then the total number of usecs will
	 * fit in an unsigned long.  Compute the total and convert it to
	 * ticks, rounding up and adding 1 to allow for the current tick
	 * to expire.  Rounding also depends on unsigned long arithmetic
	 * to avoid overflow.
	 *
	 * Otherwise, if the number of ticks in the whole seconds part of
	 * the time fits in a long, then convert the parts to
	 * ticks separately and add, using similar rounding methods and
	 * overflow avoidance.  This method would work in the previous
	 * case but it is slightly slower and assumes that hz is integral.
	 *
	 * Otherwise, round the time down to the maximum
	 * representable value.
	 *
	 * If ints have 32 bits, then the maximum value for any timeout in
	 * 10ms ticks is 248 days.
	 */
	sec = tv->tv_sec;
	usec = tv->tv_usec;
	if (sec < 0 || (sec == 0 && usec <= 0))
		ticks = 0;
	else if (sec <= LONG_MAX / 1000000)
		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
		    / tick + 1;
	else if (sec <= LONG_MAX / hz)
		ticks = sec * hz
		    + ((unsigned long)usec + (tick - 1)) / tick + 1;
	else
		ticks = LONG_MAX;
	if (ticks > INT_MAX)
		ticks = INT_MAX;
	return ((int)ticks);
}

/*
 * Start profiling on a process.
 *
 * Kernel profiling passes proc0 which never exits and hence
 * keeps the profile clock running constantly.
 */
void
startprofclock(struct proc *p)
{
	int s;

	if ((p->p_flag & P_PROFIL) == 0) {
		p->p_flag |= P_PROFIL;
		if (++profprocs == 1 && stathz != 0) {
			s = splstatclock();
			psdiv = pscnt = psratio;
			setstatclockrate(profhz);
			splx(s);
		}
	}
}

/*
 * Stop profiling on a process.
 */
void
stopprofclock(struct proc *p)
{
	int s;

	if (p->p_flag & P_PROFIL) {
		p->p_flag &= ~P_PROFIL;
		if (--profprocs == 0 && stathz != 0) {
			s = splstatclock();
			psdiv = pscnt = 1;
			setstatclockrate(stathz);
			splx(s);
		}
	}
}

/*
 * Statistics clock.  Grab profile sample, and if divider reaches 0,
 * do process and kernel statistics.
 */
void
statclock(struct clockframe *frame)
{
#ifdef GPROF
	struct gmonparam *g;
	int i;
#endif
#ifdef __HAVE_CPUINFO
	struct cpu_info *ci = curcpu();
	struct schedstate_percpu *spc = &ci->ci_schedstate;
#else
	static int schedclk;
#endif
	struct proc *p = curproc;

#ifdef __HAVE_CPUINFO
	/*
	 * Notice changes in divisor frequency, and adjust clock
	 * frequency accordingly.
	 */
	if (spc->spc_psdiv != psdiv) {
		spc->spc_psdiv = psdiv;
		spc->spc_pscnt = psdiv;
		if (psdiv == 1) {
			setstatclockrate(stathz);
		} else {
			setstatclockrate(profhz);			
		}
	}

/* XXX Kludgey */
#define pscnt spc->spc_pscnt
#define cp_time spc->spc_cp_time
#endif

	if (CLKF_USERMODE(frame)) {
		if (p->p_flag & P_PROFIL)
			addupc_intr(p, CLKF_PC(frame));
		if (--pscnt > 0)
			return;
		/*
		 * Came from user mode; CPU was in user state.
		 * If this process is being profiled record the tick.
		 */
		p->p_uticks++;
		if (p->p_nice > NZERO)
			cp_time[CP_NICE]++;
		else
			cp_time[CP_USER]++;
	} else {
#ifdef GPROF
		/*
		 * Kernel statistics are just like addupc_intr, only easier.
		 */
		g = &_gmonparam;
		if (g->state == GMON_PROF_ON) {
			i = CLKF_PC(frame) - g->lowpc;
			if (i < g->textsize) {
				i /= HISTFRACTION * sizeof(*g->kcount);
				g->kcount[i]++;
			}
		}
#endif
#if defined(PROC_PC)
		if (p != NULL && p->p_flag & P_PROFIL)
			addupc_intr(p, PROC_PC(p));
#endif
		if (--pscnt > 0)
			return;
		/*
		 * Came from kernel mode, so we were:
		 * - handling an interrupt,
		 * - doing syscall or trap work on behalf of the current
		 *   user process, or
		 * - spinning in the idle loop.
		 * Whichever it is, charge the time as appropriate.
		 * Note that we charge interrupts to the current process,
		 * regardless of whether they are ``for'' that process,
		 * so that we know how much of its real time was spent
		 * in ``non-process'' (i.e., interrupt) work.
		 */
		if (CLKF_INTR(frame)) {
			if (p != NULL)
				p->p_iticks++;
			cp_time[CP_INTR]++;
		} else if (p != NULL) {
			p->p_sticks++;
			cp_time[CP_SYS]++;
		} else
			cp_time[CP_IDLE]++;
	}
	pscnt = psdiv;

#ifdef __HAVE_CPUINFO
#undef pscnt
#undef cp_time
#endif

	if (p != NULL) {
		p->p_cpticks++;
		/*
		 * If no schedclock is provided, call it here at ~~12-25 Hz;
		 * ~~16 Hz is best
		 */
		if (schedhz == 0) {
#ifdef __HAVE_CPUINFO
			if ((++curcpu()->ci_schedstate.spc_schedticks & 3) ==
			    0)
				schedclock(p);
#else
			if ((++schedclk & 3) == 0)
				schedclock(p);
#endif
		}
	}
}

/*
 * Return information about system clocks.
 */
int
sysctl_clockrate(char *where, size_t *sizep)
{
	struct clockinfo clkinfo;

	/*
	 * Construct clockinfo structure.
	 */
	clkinfo.tick = tick;
	clkinfo.tickadj = tickadj;
	clkinfo.hz = hz;
	clkinfo.profhz = profhz;
	clkinfo.stathz = stathz ? stathz : hz;
	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
}

#ifndef __HAVE_TIMECOUNTER
/*
 * Placeholders until everyone uses the timecounters code.
 * Won't improve anything except maybe removing a bunch of bugs in fixed code.
 */

void
getmicrotime(struct timeval *tvp)
{
	int s;

	s = splhigh();
	*tvp = time;
	splx(s);
}

void
nanotime(struct timespec *tsp)
{
	struct timeval tv;

	microtime(&tv);
	TIMEVAL_TO_TIMESPEC(&tv, tsp);
}

void
getnanotime(struct timespec *tsp)
{
	struct timeval tv;

	getmicrotime(&tv);
	TIMEVAL_TO_TIMESPEC(&tv, tsp);
}

void
nanouptime(struct timespec *tsp)
{
	struct timeval tv;

	microuptime(&tv);
	TIMEVAL_TO_TIMESPEC(&tv, tsp);
}


void
getnanouptime(struct timespec *tsp)
{
	struct timeval tv;

	getmicrouptime(&tv);
	TIMEVAL_TO_TIMESPEC(&tv, tsp);
}

void
microuptime(struct timeval *tvp)
{
	struct timeval tv;

	microtime(&tv);
	timersub(&tv, &boottime, tvp);
}

void
getmicrouptime(struct timeval *tvp)
{
	int s;

	s = splhigh();
	*tvp = mono_time;
	splx(s);
}
#endif /* __HAVE_TIMECOUNTER */