1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
/* $OpenBSD: kern_clock.c,v 1.119 2023/09/14 22:27:09 cheloha Exp $ */
/* $NetBSD: kern_clock.c,v 1.34 1996/06/09 04:51:03 briggs Exp $ */
/*-
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/clockintr.h>
#include <sys/timeout.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/resourcevar.h>
#include <sys/sysctl.h>
#include <sys/sched.h>
#include <sys/timetc.h>
#include "dt.h"
#if NDT > 0
#include <dev/dt/dtvar.h>
#endif
/*
* Clock handling routines.
*
* This code is written to operate with two timers that run independently of
* each other. The main clock, running hz times per second, is used to keep
* track of real time. The second timer handles kernel and user profiling,
* and does resource use estimation. If the second timer is programmable,
* it is randomized to avoid aliasing between the two clocks. For example,
* the randomization prevents an adversary from always giving up the cpu
* just before its quantum expires. Otherwise, it would never accumulate
* cpu ticks. The mean frequency of the second timer is stathz.
*
* If no second timer exists, stathz will be zero; in this case we drive
* profiling and statistics off the main clock. This WILL NOT be accurate;
* do not do it unless absolutely necessary.
*
* The statistics clock may (or may not) be run at a higher rate while
* profiling. This profile clock runs at profhz. We require that profhz
* be an integral multiple of stathz.
*
* If the statistics clock is running fast, it must be divided by the ratio
* profhz/stathz for statistics. (For profiling, every tick counts.)
*/
int stathz;
int profhz;
int profprocs;
int ticks = INT_MAX - (15 * 60 * HZ);
/* Don't force early wrap around, triggers bug in inteldrm */
volatile unsigned long jiffies;
uint32_t hardclock_period; /* [I] hardclock period (ns) */
uint32_t statclock_avg; /* [I] average statclock period (ns) */
uint32_t statclock_min; /* [I] minimum statclock period (ns) */
uint32_t statclock_mask; /* [I] set of allowed offsets */
int statclock_is_randomized; /* [I] fixed or pseudorandom period? */
/*
* Initialize clock frequencies and start both clocks running.
*/
void
initclocks(void)
{
uint32_t half_avg, var;
/*
* Let the machine-specific code do its bit.
*/
cpu_initclocks();
KASSERT(hz > 0 && hz <= 1000000000);
hardclock_period = 1000000000 / hz;
roundrobin_period = hardclock_period * 10;
KASSERT(stathz >= 1 && stathz <= 1000000000);
/*
* Compute the average statclock() period. Then find var, the
* largest power of two such that var <= statclock_avg / 2.
*/
statclock_avg = 1000000000 / stathz;
half_avg = statclock_avg / 2;
for (var = 1U << 31; var > half_avg; var /= 2)
continue;
/*
* Set a lower bound for the range using statclock_avg and var.
* The mask for that range is just (var - 1).
*/
statclock_min = statclock_avg - (var / 2);
statclock_mask = var - 1;
KASSERT(profhz >= stathz && profhz <= 1000000000);
KASSERT(profhz % stathz == 0);
profclock_period = 1000000000 / profhz;
inittimecounter();
/* Start dispatching clock interrupts on the primary CPU. */
cpu_startclock();
}
/*
* The real-time timer, interrupting hz times per second.
*/
void
hardclock(struct clockframe *frame)
{
#if NDT > 0
DT_ENTER(profile, NULL);
if (CPU_IS_PRIMARY(curcpu()))
DT_ENTER(interval, NULL);
#endif
/*
* If we are not the primary CPU, we're not allowed to do
* any more work.
*/
if (CPU_IS_PRIMARY(curcpu()) == 0)
return;
tc_ticktock();
ticks++;
jiffies++;
/*
* Update the timeout wheel.
*/
timeout_hardclock_update();
}
/*
* Compute number of hz in the specified amount of time.
*/
int
tvtohz(const struct timeval *tv)
{
unsigned long nticks;
time_t sec;
long usec;
/*
* If the number of usecs in the whole seconds part of the time
* fits in a long, then the total number of usecs will
* fit in an unsigned long. Compute the total and convert it to
* ticks, rounding up and adding 1 to allow for the current tick
* to expire. Rounding also depends on unsigned long arithmetic
* to avoid overflow.
*
* Otherwise, if the number of ticks in the whole seconds part of
* the time fits in a long, then convert the parts to
* ticks separately and add, using similar rounding methods and
* overflow avoidance. This method would work in the previous
* case but it is slightly slower and assumes that hz is integral.
*
* Otherwise, round the time down to the maximum
* representable value.
*
* If ints have 32 bits, then the maximum value for any timeout in
* 10ms ticks is 248 days.
*/
sec = tv->tv_sec;
usec = tv->tv_usec;
if (sec < 0 || (sec == 0 && usec <= 0))
nticks = 0;
else if (sec <= LONG_MAX / 1000000)
nticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
/ tick + 1;
else if (sec <= LONG_MAX / hz)
nticks = sec * hz
+ ((unsigned long)usec + (tick - 1)) / tick + 1;
else
nticks = LONG_MAX;
if (nticks > INT_MAX)
nticks = INT_MAX;
return ((int)nticks);
}
int
tstohz(const struct timespec *ts)
{
struct timeval tv;
TIMESPEC_TO_TIMEVAL(&tv, ts);
/* Round up. */
if ((ts->tv_nsec % 1000) != 0) {
tv.tv_usec += 1;
if (tv.tv_usec >= 1000000) {
tv.tv_usec -= 1000000;
tv.tv_sec += 1;
}
}
return (tvtohz(&tv));
}
/*
* Start profiling on a process.
*
* Kernel profiling passes proc0 which never exits and hence
* keeps the profile clock running constantly.
*/
void
startprofclock(struct process *pr)
{
int s;
if ((pr->ps_flags & PS_PROFIL) == 0) {
atomic_setbits_int(&pr->ps_flags, PS_PROFIL);
if (++profprocs == 1) {
s = splstatclock();
setstatclockrate(profhz);
splx(s);
}
}
}
/*
* Stop profiling on a process.
*/
void
stopprofclock(struct process *pr)
{
int s;
if (pr->ps_flags & PS_PROFIL) {
atomic_clearbits_int(&pr->ps_flags, PS_PROFIL);
if (--profprocs == 0) {
s = splstatclock();
setstatclockrate(stathz);
splx(s);
}
}
}
/*
* Statistics clock. Grab profile sample, and if divider reaches 0,
* do process and kernel statistics.
*/
void
statclock(struct clockintr *cl, void *cf, void *arg)
{
uint64_t count, i;
struct clockframe *frame = cf;
struct cpu_info *ci = curcpu();
struct schedstate_percpu *spc = &ci->ci_schedstate;
struct proc *p = curproc;
struct process *pr;
if (statclock_is_randomized) {
count = clockintr_advance_random(cl, statclock_min,
statclock_mask);
} else {
count = clockintr_advance(cl, statclock_avg);
}
if (CLKF_USERMODE(frame)) {
pr = p->p_p;
/*
* Came from user mode; CPU was in user state.
* If this process is being profiled record the tick.
*/
p->p_uticks += count;
if (pr->ps_nice > NZERO)
spc->spc_cp_time[CP_NICE] += count;
else
spc->spc_cp_time[CP_USER] += count;
} else {
/*
* Came from kernel mode, so we were:
* - spinning on a lock
* - handling an interrupt,
* - doing syscall or trap work on behalf of the current
* user process, or
* - spinning in the idle loop.
* Whichever it is, charge the time as appropriate.
* Note that we charge interrupts to the current process,
* regardless of whether they are ``for'' that process,
* so that we know how much of its real time was spent
* in ``non-process'' (i.e., interrupt) work.
*/
if (CLKF_INTR(frame)) {
if (p != NULL)
p->p_iticks += count;
spc->spc_cp_time[spc->spc_spinning ?
CP_SPIN : CP_INTR] += count;
} else if (p != NULL && p != spc->spc_idleproc) {
p->p_sticks += count;
spc->spc_cp_time[spc->spc_spinning ?
CP_SPIN : CP_SYS] += count;
} else
spc->spc_cp_time[spc->spc_spinning ?
CP_SPIN : CP_IDLE] += count;
}
if (p != NULL) {
p->p_cpticks += count;
/*
* schedclock() runs every fourth statclock().
*/
for (i = 0; i < count; i++) {
if ((++spc->spc_schedticks & 3) == 0)
schedclock(p);
}
}
}
/*
* Return information about system clocks.
*/
int
sysctl_clockrate(char *where, size_t *sizep, void *newp)
{
struct clockinfo clkinfo;
/*
* Construct clockinfo structure.
*/
memset(&clkinfo, 0, sizeof clkinfo);
clkinfo.tick = tick;
clkinfo.hz = hz;
clkinfo.profhz = profhz;
clkinfo.stathz = stathz;
return (sysctl_rdstruct(where, sizep, newp, &clkinfo, sizeof(clkinfo)));
}
|