1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
|
/* $OpenBSD: kern_clockintr.c,v 1.1 2022/11/05 19:29:46 cheloha Exp $ */
/*
* Copyright (c) 2003 Dale Rahn <drahn@openbsd.org>
* Copyright (c) 2020 Mark Kettenis <kettenis@openbsd.org>
* Copyright (c) 2020-2022 Scott Cheloha <cheloha@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/atomic.h>
#include <sys/clockintr.h>
#include <sys/kernel.h>
#include <sys/mutex.h>
#include <sys/stdint.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#ifdef __HAVE_CLOCKINTR
/*
* Protection for global variables in this file:
*
* C Global clockintr configuration mutex (clockintr_mtx).
* I Immutable after initialization.
*/
struct mutex clockintr_mtx = MUTEX_INITIALIZER(IPL_CLOCK);
u_int clockintr_flags; /* [I] global state + behavior flags */
uint32_t hardclock_period; /* [I] hardclock period (ns) */
uint32_t schedclock_period; /* [I] schedclock period (ns) */
volatile u_int statclock_gen = 1; /* [C] statclock update generation */
volatile uint32_t statclock_avg; /* [C] average statclock period (ns) */
uint32_t statclock_min; /* [C] minimum statclock period (ns) */
uint32_t statclock_mask; /* [C] set of allowed offsets */
uint32_t stat_avg; /* [I] average stathz period (ns) */
uint32_t stat_min; /* [I] set of allowed offsets */
uint32_t stat_mask; /* [I] max offset from minimum (ns) */
uint32_t prof_avg; /* [I] average profhz period (ns) */
uint32_t prof_min; /* [I] minimum profhz period (ns) */
uint32_t prof_mask; /* [I] set of allowed offsets */
void clockintr_statvar_init(int, uint32_t *, uint32_t *, uint32_t *);
uint64_t nsec_advance(uint64_t *, uint64_t, uint64_t);
/*
* Initialize global state. Set flags and compute intervals.
*/
void
clockintr_init(u_int flags)
{
KASSERT(CPU_IS_PRIMARY(curcpu()));
KASSERT(clockintr_flags == 0);
KASSERT(!ISSET(flags, ~CL_FLAG_MASK));
KASSERT(hz > 0 && hz <= 1000000000);
hardclock_period = 1000000000 / hz;
KASSERT(stathz >= 1 && stathz <= 1000000000);
KASSERT(profhz >= stathz && profhz <= 1000000000);
KASSERT(profhz % stathz == 0);
clockintr_statvar_init(stathz, &stat_avg, &stat_min, &stat_mask);
clockintr_statvar_init(profhz, &prof_avg, &prof_min, &prof_mask);
SET(clockintr_flags, CL_STATCLOCK);
clockintr_setstatclockrate(stathz);
KASSERT(schedhz >= 0 && schedhz <= 1000000000);
if (schedhz != 0) {
schedclock_period = 1000000000 / schedhz;
SET(clockintr_flags, CL_SCHEDCLOCK);
}
SET(clockintr_flags, flags | CL_INIT);
}
/*
* Ready the calling CPU for clockintr_dispatch(). If this is our
* first time here, install the intrclock, if any, and set necessary
* flags. Advance the schedule as needed.
*/
void
clockintr_cpu_init(const struct intrclock *ic)
{
uint64_t multiplier, now;
struct cpu_info *ci = curcpu();
struct clockintr_queue *cq = &ci->ci_queue;
KASSERT(ISSET(clockintr_flags, CL_INIT));
if (!ISSET(cq->cq_flags, CL_CPU_INIT)) {
if (ic != NULL) {
cq->cq_intrclock = *ic;
SET(cq->cq_flags, CL_CPU_INTRCLOCK);
}
cq->cq_gen = 1;
}
/*
* Until we understand scheduler lock contention better, stagger
* the hardclock and statclock so they don't all happen at once.
* If we have no intrclock it doesn't matter, we have no control
* anyway. The primary CPU's starting offset is always zero, so
* set multiplier to zero.
*/
if (!CPU_IS_PRIMARY(ci) && ISSET(cq->cq_flags, CL_CPU_INTRCLOCK))
multiplier = CPU_INFO_UNIT(ci);
else
multiplier = 0;
now = nsecuptime();
/*
* The first time we do this, the primary CPU cannot skip any
* hardclocks. We can skip hardclocks on subsequent calls because
* the global tick value is advanced during inittodr(9) on our
* behalf.
*/
if (!CPU_IS_PRIMARY(ci) || ISSET(cq->cq_flags, CL_CPU_INIT)) {
cq->cq_next_hardclock = hardclock_period / ncpus * multiplier;
nsec_advance(&cq->cq_next_hardclock, hardclock_period, now);
}
/*
* We can always advance the statclock and schedclock.
*/
cq->cq_next_statclock = stat_avg / ncpus * multiplier;
nsec_advance(&cq->cq_next_statclock, stat_avg, now);
if (ISSET(clockintr_flags, CL_SCHEDCLOCK)) {
cq->cq_next_schedclock = schedclock_period / ncpus * multiplier;
nsec_advance(&cq->cq_next_schedclock, schedclock_period, now);
}
SET(cq->cq_flags, CL_CPU_INIT);
}
/*
* If we have an intrclock, trigger it to start the dispatch cycle.
*/
void
clockintr_trigger(void)
{
struct clockintr_queue *cq = &curcpu()->ci_queue;
KASSERT(ISSET(cq->cq_flags, CL_CPU_INIT));
if (ISSET(cq->cq_flags, CL_CPU_INTRCLOCK))
intrclock_trigger(&cq->cq_intrclock);
}
/*
* Run all expired events scheduled on the calling CPU.
*/
int
clockintr_dispatch(void *frame)
{
uint64_t count, i, lateness, now, run = 0, start;
struct cpu_info *ci = curcpu();
struct clockintr_queue *cq = &ci->ci_queue;
struct proc *p = curproc;
uint32_t mask, min, off;
u_int gen, ogen;
if (cq->cq_dispatch != 0)
panic("%s: recursive dispatch", __func__);
cq->cq_dispatch = 1;
splassert(IPL_CLOCK);
KASSERT(ISSET(cq->cq_flags, CL_CPU_INIT));
/*
* If we arrived too early we have nothing to do.
*/
start = nsecuptime();
now = start;
if (now < cq->cq_next)
goto done;
lateness = now - cq->cq_next;
/*
* Dispatch expired events.
*/
again:
/* hardclock */
count = nsec_advance(&cq->cq_next_hardclock, hardclock_period, now);
for (i = 0; i < count; i++)
hardclock(frame);
run += count;
/* statclock */
if (ISSET(clockintr_flags, CL_RNDSTAT)) {
do {
gen = statclock_gen;
membar_consumer();
min = statclock_min;
mask = statclock_mask;
membar_consumer();
} while (gen == 0 || gen != statclock_gen);
count = 0;
while (cq->cq_next_statclock <= now) {
while ((off = (random() & mask)) == 0)
continue;
cq->cq_next_statclock += min + off;
count++;
}
} else {
count = nsec_advance(&cq->cq_next_statclock, statclock_avg,
now);
}
for (i = 0; i < count; i++)
statclock(frame);
run += count;
/* schedclock */
if (ISSET(clockintr_flags, CL_SCHEDCLOCK)) {
count = nsec_advance(&cq->cq_next_schedclock,
schedclock_period, now);
if (p != NULL) {
for (i = 0; i < count; i++)
schedclock(p);
}
run += count;
}
/* Run the dispatch again if the next event has already expired. */
cq->cq_next = cq->cq_next_hardclock;
if (cq->cq_next_statclock < cq->cq_next)
cq->cq_next = cq->cq_next_statclock;
if (ISSET(clockintr_flags, CL_SCHEDCLOCK)) {
if (cq->cq_next_schedclock < cq->cq_next)
cq->cq_next = cq->cq_next_schedclock;
}
now = nsecuptime();
if (cq->cq_next <= now)
goto again;
/*
* Dispatch complete.
*/
done:
/* Rearm the interrupt clock if we have one. */
if (ISSET(cq->cq_flags, CL_CPU_INTRCLOCK))
intrclock_rearm(&cq->cq_intrclock, cq->cq_next - now);
/* Update our stats. */
ogen = cq->cq_gen;
cq->cq_gen = 0;
membar_producer();
cq->cq_stat.cs_dispatched += now - start;
if (run > 0) {
cq->cq_stat.cs_lateness += lateness;
cq->cq_stat.cs_prompt++;
cq->cq_stat.cs_run += run;
} else {
cq->cq_stat.cs_early++;
cq->cq_stat.cs_earliness += cq->cq_next - now;
}
membar_producer();
cq->cq_gen = MAX(1, ogen + 1);
if (cq->cq_dispatch != 1)
panic("%s: unexpected value: %u", __func__, cq->cq_dispatch);
cq->cq_dispatch = 0;
return run > 0;
}
/*
* Compute the period (avg) for the given frequency and a range around
* that period. The range is [min + 1, min + mask]. The range is used
* during dispatch to choose a new pseudorandom deadline for each statclock
* event.
*/
void
clockintr_statvar_init(int freq, uint32_t *avg, uint32_t *min, uint32_t *mask)
{
uint32_t half_avg, var;
KASSERT(!ISSET(clockintr_flags, CL_INIT | CL_STATCLOCK));
KASSERT(freq > 0 && freq <= 1000000000);
/* Compute avg, the average period. */
*avg = 1000000000 / freq;
/* Find var, the largest power of two such that var <= avg / 2. */
half_avg = *avg / 2;
for (var = 1U << 31; var > half_avg; var /= 2)
continue;
/* Using avg and var, set a lower bound for the range. */
*min = *avg - (var / 2);
/* The mask is just (var - 1). */
*mask = var - 1;
}
/*
* Update the statclock_* variables according to the given frequency.
* Must only be called after clockintr_statvar_init() initializes both
* stathz_* and profhz_*.
*/
void
clockintr_setstatclockrate(int freq)
{
u_int ogen;
KASSERT(ISSET(clockintr_flags, CL_STATCLOCK));
mtx_enter(&clockintr_mtx);
ogen = statclock_gen;
statclock_gen = 0;
membar_producer();
if (freq == stathz) {
statclock_avg = stat_avg;
statclock_min = stat_min;
statclock_mask = stat_mask;
} else if (freq == profhz) {
statclock_avg = prof_avg;
statclock_min = prof_min;
statclock_mask = prof_mask;
} else {
panic("%s: frequency is not stathz (%d) or profhz (%d): %d",
__func__, stathz, profhz, freq);
}
membar_producer();
statclock_gen = MAX(1, ogen + 1);
mtx_leave(&clockintr_mtx);
}
/*
* Advance *next in increments of period until it exceeds now.
* Returns the number of increments *next was advanced.
*
* We check the common cases first to avoid division if possible.
* This does no overflow checking.
*/
uint64_t
nsec_advance(uint64_t *next, uint64_t period, uint64_t now)
{
uint64_t elapsed;
if (now < *next)
return 0;
if (now < *next + period) {
*next += period;
return 1;
}
elapsed = (now - *next) / period + 1;
*next += period * elapsed;
return elapsed;
}
int
sysctl_clockintr(int *name, u_int namelen, void *oldp, size_t *oldlenp,
void *newp, size_t newlen)
{
struct clockintr_stat sum = { 0 }, tmp;
struct clockintr_queue *cq;
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
u_int gen;
if (namelen != 1)
return ENOTDIR;
switch (name[0]) {
case KERN_CLOCKINTR_STATS:
CPU_INFO_FOREACH(cii, ci) {
cq = &ci->ci_queue;
if (!ISSET(cq->cq_flags, CL_CPU_INIT))
continue;
do {
gen = cq->cq_gen;
membar_consumer();
tmp = cq->cq_stat;
membar_consumer();
} while (gen == 0 || gen != cq->cq_gen);
sum.cs_dispatched += tmp.cs_dispatched;
sum.cs_early += tmp.cs_early;
sum.cs_earliness += tmp.cs_earliness;
sum.cs_lateness += tmp.cs_lateness;
sum.cs_prompt += tmp.cs_prompt;
sum.cs_run += tmp.cs_run;
}
return sysctl_rdstruct(oldp, oldlenp, newp, &sum, sizeof sum);
default:
break;
}
return EINVAL;
}
#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_interface.h>
#include <ddb/db_output.h>
#include <ddb/db_sym.h>
void db_show_clockintr(uint64_t, u_int, const char *);
void db_show_clockintr_cpu(struct cpu_info *);
void
db_show_all_clockintr(db_expr_t addr, int haddr, db_expr_t count, char *modif)
{
struct timespec now;
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
nanouptime(&now);
db_printf("%20s\n", "UPTIME");
db_printf("%10lld.%09ld\n", now.tv_sec, now.tv_nsec);
db_printf("\n");
db_printf("%20s %3s %s\n", "EXPIRATION", "CPU", "NAME");
CPU_INFO_FOREACH(cii, ci) {
if (ISSET(ci->ci_queue.cq_flags, CL_CPU_INIT))
db_show_clockintr_cpu(ci);
}
}
void
db_show_clockintr_cpu(struct cpu_info *ci)
{
struct clockintr_queue *cq = &ci->ci_queue;
u_int cpu = CPU_INFO_UNIT(ci);
db_show_clockintr(cq->cq_next_hardclock, cpu, "hardclock");
db_show_clockintr(cq->cq_next_statclock, cpu, "statclock");
if (ISSET(clockintr_flags, CL_SCHEDCLOCK))
db_show_clockintr(cq->cq_next_schedclock, cpu, "schedclock");
}
void
db_show_clockintr(uint64_t expiration, u_int cpu, const char *name)
{
struct timespec ts;
NSEC_TO_TIMESPEC(expiration, &ts);
db_printf("%10lld.%09ld %3u %s\n", ts.tv_sec, ts.tv_nsec, cpu, name);
}
#endif /* DDB */
#endif /*__HAVE_CLOCKINTR */
|