1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
|
/* $OpenBSD: kern_synch.c,v 1.57 2004/06/20 03:00:16 art Exp $ */
/* $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */
/*-
* Copyright (c) 1982, 1986, 1990, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_synch.c 8.6 (Berkeley) 1/21/94
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/buf.h>
#include <sys/signalvar.h>
#include <sys/resourcevar.h>
#include <uvm/uvm_extern.h>
#include <sys/sched.h>
#include <sys/timeout.h>
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
#include <machine/cpu.h>
#ifndef __HAVE_CPUINFO
u_char curpriority; /* usrpri of curproc */
#endif
int lbolt; /* once a second sleep address */
#ifdef __HAVE_CPUINFO
int rrticks_init; /* # of hardclock ticks per roundrobin() */
#endif
int whichqs; /* Bit mask summary of non-empty Q's. */
struct prochd qs[NQS];
struct SIMPLELOCK sched_lock;
void scheduler_start(void);
#ifdef __HAVE_CPUINFO
void roundrobin(struct cpu_info *);
#else
void roundrobin(void *);
#endif
void schedcpu(void *);
void updatepri(struct proc *);
void endtsleep(void *);
void
scheduler_start()
{
#ifndef __HAVE_CPUINFO
static struct timeout roundrobin_to;
#endif
static struct timeout schedcpu_to;
/*
* We avoid polluting the global namespace by keeping the scheduler
* timeouts static in this function.
* We setup the timeouts here and kick schedcpu and roundrobin once to
* make them do their job.
*/
#ifndef __HAVE_CPUINFO
timeout_set(&roundrobin_to, roundrobin, &roundrobin_to);
#endif
timeout_set(&schedcpu_to, schedcpu, &schedcpu_to);
#ifdef __HAVE_CPUINFO
rrticks_init = hz / 10;
#else
roundrobin(&roundrobin_to);
#endif
schedcpu(&schedcpu_to);
}
/*
* Force switch among equal priority processes every 100ms.
*/
/* ARGSUSED */
#ifdef __HAVE_CPUINFO
void
roundrobin(struct cpu_info *ci)
{
struct schedstate_percpu *spc = &ci->ci_schedstate;
int s;
spc->spc_rrticks = rrticks_init;
if (curproc != NULL) {
s = splstatclock();
if (spc->spc_schedflags & SPCF_SEENRR) {
/*
* The process has already been through a roundrobin
* without switching and may be hogging the CPU.
* Indicate that the process should yield.
*/
spc->spc_schedflags |= SPCF_SHOULDYIELD;
} else {
spc->spc_schedflags |= SPCF_SEENRR;
}
splx(s);
}
need_resched(curcpu());
}
#else
void
roundrobin(void *arg)
{
struct timeout *to = (struct timeout *)arg;
struct proc *p = curproc;
int s;
if (p != NULL) {
s = splstatclock();
if (p->p_schedflags & PSCHED_SEENRR) {
/*
* The process has already been through a roundrobin
* without switching and may be hogging the CPU.
* Indicate that the process should yield.
*/
p->p_schedflags |= PSCHED_SHOULDYIELD;
} else {
p->p_schedflags |= PSCHED_SEENRR;
}
splx(s);
}
need_resched(0);
timeout_add(to, hz / 10);
}
#endif
/*
* Constants for digital decay and forget:
* 90% of (p_estcpu) usage in 5 * loadav time
* 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
* Note that, as ps(1) mentions, this can let percentages
* total over 100% (I've seen 137.9% for 3 processes).
*
* Note that hardclock updates p_estcpu and p_cpticks independently.
*
* We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
* That is, the system wants to compute a value of decay such
* that the following for loop:
* for (i = 0; i < (5 * loadavg); i++)
* p_estcpu *= decay;
* will compute
* p_estcpu *= 0.1;
* for all values of loadavg:
*
* Mathematically this loop can be expressed by saying:
* decay ** (5 * loadavg) ~= .1
*
* The system computes decay as:
* decay = (2 * loadavg) / (2 * loadavg + 1)
*
* We wish to prove that the system's computation of decay
* will always fulfill the equation:
* decay ** (5 * loadavg) ~= .1
*
* If we compute b as:
* b = 2 * loadavg
* then
* decay = b / (b + 1)
*
* We now need to prove two things:
* 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
* 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
*
* Facts:
* For x close to zero, exp(x) =~ 1 + x, since
* exp(x) = 0! + x**1/1! + x**2/2! + ... .
* therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
* For x close to zero, ln(1+x) =~ x, since
* ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
* therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
* ln(.1) =~ -2.30
*
* Proof of (1):
* Solve (factor)**(power) =~ .1 given power (5*loadav):
* solving for factor,
* ln(factor) =~ (-2.30/5*loadav), or
* factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
* exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
*
* Proof of (2):
* Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
* solving for power,
* power*ln(b/(b+1)) =~ -2.30, or
* power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
*
* Actual power values for the implemented algorithm are as follows:
* loadav: 1 2 3 4
* power: 5.68 10.32 14.94 19.55
*/
/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
#define loadfactor(loadav) (2 * (loadav))
#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
/*
* If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
* faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
* and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
*
* To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
* 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
*
* If you dont want to bother with the faster/more-accurate formula, you
* can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
* (more general) method of calculating the %age of CPU used by a process.
*/
#define CCPU_SHIFT 11
/*
* Recompute process priorities, every hz ticks.
*/
/* ARGSUSED */
void
schedcpu(arg)
void *arg;
{
struct timeout *to = (struct timeout *)arg;
fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
struct proc *p;
int s;
unsigned int newcpu;
int phz;
/*
* If we have a statistics clock, use that to calculate CPU
* time, otherwise revert to using the profiling clock (which,
* in turn, defaults to hz if there is no separate profiling
* clock available)
*/
phz = stathz ? stathz : profhz;
KASSERT(phz);
for (p = LIST_FIRST(&allproc); p != 0; p = LIST_NEXT(p, p_list)) {
/*
* Increment time in/out of memory and sleep time
* (if sleeping). We ignore overflow; with 16-bit int's
* (remember them?) overflow takes 45 days.
*/
p->p_swtime++;
if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
p->p_slptime++;
p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
/*
* If the process has slept the entire second,
* stop recalculating its priority until it wakes up.
*/
if (p->p_slptime > 1)
continue;
s = splstatclock(); /* prevent state changes */
/*
* p_pctcpu is only for ps.
*/
#if (FSHIFT >= CCPU_SHIFT)
p->p_pctcpu += (phz == 100)?
((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
100 * (((fixpt_t) p->p_cpticks)
<< (FSHIFT - CCPU_SHIFT)) / phz;
#else
p->p_pctcpu += ((FSCALE - ccpu) *
(p->p_cpticks * FSCALE / phz)) >> FSHIFT;
#endif
p->p_cpticks = 0;
newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu);
p->p_estcpu = newcpu;
splx(s);
SCHED_LOCK(s);
resetpriority(p);
if (p->p_priority >= PUSER) {
if ((p != curproc) &&
p->p_stat == SRUN &&
(p->p_flag & P_INMEM) &&
(p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
remrunqueue(p);
p->p_priority = p->p_usrpri;
setrunqueue(p);
} else
p->p_priority = p->p_usrpri;
}
SCHED_UNLOCK(s);
}
uvm_meter();
wakeup((caddr_t)&lbolt);
timeout_add(to, hz);
}
/*
* Recalculate the priority of a process after it has slept for a while.
* For all load averages >= 1 and max p_estcpu of 255, sleeping for at
* least six times the loadfactor will decay p_estcpu to zero.
*/
void
updatepri(p)
register struct proc *p;
{
register unsigned int newcpu = p->p_estcpu;
register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
SCHED_ASSERT_LOCKED();
if (p->p_slptime > 5 * loadfac)
p->p_estcpu = 0;
else {
p->p_slptime--; /* the first time was done in schedcpu */
while (newcpu && --p->p_slptime)
newcpu = (int) decay_cpu(loadfac, newcpu);
p->p_estcpu = newcpu;
}
resetpriority(p);
}
/*
* We're only looking at 7 bits of the address; everything is
* aligned to 4, lots of things are aligned to greater powers
* of 2. Shift right by 8, i.e. drop the bottom 256 worth.
*/
#define TABLESIZE 128
#define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
struct slpque {
struct proc *sq_head;
struct proc **sq_tailp;
} slpque[TABLESIZE];
/*
* During autoconfiguration or after a panic, a sleep will simply
* lower the priority briefly to allow interrupts, then return.
* The priority to be used (safepri) is machine-dependent, thus this
* value is initialized and maintained in the machine-dependent layers.
* This priority will typically be 0, or the lowest priority
* that is safe for use on the interrupt stack; it can be made
* higher to block network software interrupts after panics.
*/
int safepri;
/*
* General sleep call. Suspends the current process until a wakeup is
* performed on the specified identifier. The process will then be made
* runnable with the specified priority. Sleeps at most timo/hz seconds
* (0 means no timeout). If pri includes PCATCH flag, signals are checked
* before and after sleeping, else signals are not checked. Returns 0 if
* awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
* signal needs to be delivered, ERESTART is returned if the current system
* call should be restarted if possible, and EINTR is returned if the system
* call should be interrupted by the signal (return EINTR).
*
* The interlock is held until the scheduler_slock (XXX) is held. The
* interlock will be locked before returning back to the caller
* unless the PNORELOCK flag is specified, in which case the
* interlock will always be unlocked upon return.
*/
int
ltsleep(ident, priority, wmesg, timo, interlock)
void *ident;
int priority, timo;
const char *wmesg;
volatile struct simplelock *interlock;
{
struct proc *p = curproc;
struct slpque *qp;
int s, sig;
int catch = priority & PCATCH;
int relock = (priority & PNORELOCK) == 0;
if (cold || panicstr) {
/*
* After a panic, or during autoconfiguration,
* just give interrupts a chance, then just return;
* don't run any other procs or panic below,
* in case this is the idle process and already asleep.
*/
s = splhigh();
splx(safepri);
splx(s);
if (interlock != NULL && relock == 0)
simple_unlock(interlock);
return (0);
}
#ifdef KTRACE
if (KTRPOINT(p, KTR_CSW))
ktrcsw(p, 1, 0);
#endif
SCHED_LOCK(s);
#ifdef DIAGNOSTIC
if (ident == NULL || p->p_stat != SONPROC || p->p_back != NULL)
panic("tsleep");
#endif
p->p_wchan = ident;
p->p_wmesg = wmesg;
p->p_slptime = 0;
p->p_priority = priority & PRIMASK;
qp = &slpque[LOOKUP(ident)];
if (qp->sq_head == 0)
qp->sq_head = p;
else
*qp->sq_tailp = p;
*(qp->sq_tailp = &p->p_forw) = 0;
if (timo)
timeout_add(&p->p_sleep_to, timo);
/*
* We can now release the interlock; the scheduler_slock
* is held, so a thread can't get in to do wakeup() before
* we do the switch.
*
* XXX We leave the code block here, after inserting ourselves
* on the sleep queue, because we might want a more clever
* data structure for the sleep queues at some point.
*/
if (interlock != NULL)
simple_unlock(interlock);
/*
* We put ourselves on the sleep queue and start our timeout
* before calling CURSIG, as we could stop there, and a wakeup
* or a SIGCONT (or both) could occur while we were stopped.
* A SIGCONT would cause us to be marked as SSLEEP
* without resuming us, thus we must be ready for sleep
* when CURSIG is called. If the wakeup happens while we're
* stopped, p->p_wchan will be 0 upon return from CURSIG.
*/
if (catch) {
p->p_flag |= P_SINTR;
if ((sig = CURSIG(p)) != 0) {
if (p->p_wchan)
unsleep(p);
p->p_stat = SONPROC;
SCHED_UNLOCK(s);
goto resume;
}
if (p->p_wchan == 0) {
catch = 0;
SCHED_UNLOCK(s);
goto resume;
}
} else
sig = 0;
p->p_stat = SSLEEP;
p->p_stats->p_ru.ru_nvcsw++;
SCHED_ASSERT_LOCKED();
mi_switch();
#ifdef DDB
/* handy breakpoint location after process "wakes" */
__asm(".globl bpendtsleep\nbpendtsleep:");
#endif
SCHED_ASSERT_UNLOCKED();
/*
* Note! this splx belongs to the SCHED_LOCK(s) above, mi_switch
* releases the scheduler lock, but does not lower the spl.
*/
splx(s);
resume:
#ifdef __HAVE_CPUINFO
p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
#else
curpriority = p->p_usrpri;
#endif
p->p_flag &= ~P_SINTR;
if (p->p_flag & P_TIMEOUT) {
p->p_flag &= ~P_TIMEOUT;
if (sig == 0) {
#ifdef KTRACE
if (KTRPOINT(p, KTR_CSW))
ktrcsw(p, 0, 0);
#endif
if (interlock != NULL && relock)
simple_lock(interlock);
return (EWOULDBLOCK);
}
} else if (timo)
timeout_del(&p->p_sleep_to);
if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
#ifdef KTRACE
if (KTRPOINT(p, KTR_CSW))
ktrcsw(p, 0, 0);
#endif
if (interlock != NULL && relock)
simple_lock(interlock);
if (p->p_sigacts->ps_sigintr & sigmask(sig))
return (EINTR);
return (ERESTART);
}
#ifdef KTRACE
if (KTRPOINT(p, KTR_CSW))
ktrcsw(p, 0, 0);
#endif
if (interlock != NULL && relock)
simple_lock(interlock);
return (0);
}
/*
* Implement timeout for tsleep.
* If process hasn't been awakened (wchan non-zero),
* set timeout flag and undo the sleep. If proc
* is stopped, just unsleep so it will remain stopped.
*/
void
endtsleep(arg)
void *arg;
{
struct proc *p;
int s;
p = (struct proc *)arg;
SCHED_LOCK(s);
if (p->p_wchan) {
if (p->p_stat == SSLEEP)
setrunnable(p);
else
unsleep(p);
p->p_flag |= P_TIMEOUT;
}
SCHED_UNLOCK(s);
}
/*
* Remove a process from its wait queue
*/
void
unsleep(p)
register struct proc *p;
{
register struct slpque *qp;
register struct proc **hp;
#if 0
int s;
/*
* XXX we cannot do recursive SCHED_LOCKing yet. All callers lock
* anyhow.
*/
SCHED_LOCK(s);
#endif
if (p->p_wchan) {
hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
while (*hp != p)
hp = &(*hp)->p_forw;
*hp = p->p_forw;
if (qp->sq_tailp == &p->p_forw)
qp->sq_tailp = hp;
p->p_wchan = 0;
}
#if 0
SCHED_UNLOCK(s);
#endif
}
#if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
void
sched_unlock_idle(void)
{
SIMPLE_UNLOCK(&sched_lock);
}
void
sched_lock_idle(void)
{
SIMPLE_LOCK(&sched_lock);
}
#endif /* MULTIPROCESSOR || LOCKDEBUG */
/*
* Make all processes sleeping on the specified identifier runnable.
*/
void
wakeup_n(ident, n)
void *ident;
int n;
{
struct slpque *qp;
struct proc *p, **q;
int s;
SCHED_LOCK(s);
qp = &slpque[LOOKUP(ident)];
restart:
for (q = &qp->sq_head; (p = *q) != NULL; ) {
#ifdef DIAGNOSTIC
if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
panic("wakeup");
#endif
if (p->p_wchan == ident) {
--n;
p->p_wchan = 0;
*q = p->p_forw;
if (qp->sq_tailp == &p->p_forw)
qp->sq_tailp = q;
if (p->p_stat == SSLEEP) {
/* OPTIMIZED EXPANSION OF setrunnable(p); */
if (p->p_slptime > 1)
updatepri(p);
p->p_slptime = 0;
p->p_stat = SRUN;
/*
* Since curpriority is a user priority,
* p->p_priority is always better than
* curpriority on the last CPU on
* which it ran.
*
* XXXSMP See affinity comment in
* resched_proc().
*/
if ((p->p_flag & P_INMEM) != 0) {
setrunqueue(p);
#ifdef __HAVE_CPUINFO
KASSERT(p->p_cpu != NULL);
need_resched(p->p_cpu);
#else
need_resched(0);
#endif
} else {
wakeup((caddr_t)&proc0);
}
/* END INLINE EXPANSION */
if (n != 0)
goto restart;
else
break;
}
} else
q = &p->p_forw;
}
SCHED_UNLOCK(s);
}
void
wakeup(chan)
void *chan;
{
wakeup_n(chan, -1);
}
/*
* General yield call. Puts the current process back on its run queue and
* performs a voluntary context switch.
*/
void
yield()
{
struct proc *p = curproc;
int s;
SCHED_LOCK(s);
p->p_priority = p->p_usrpri;
setrunqueue(p);
p->p_stats->p_ru.ru_nvcsw++;
mi_switch();
SCHED_ASSERT_UNLOCKED();
splx(s);
}
/*
* General preemption call. Puts the current process back on its run queue
* and performs an involuntary context switch. If a process is supplied,
* we switch to that process. Otherwise, we use the normal process selection
* criteria.
*/
void
preempt(newp)
struct proc *newp;
{
struct proc *p = curproc;
int s;
/*
* XXX Switching to a specific process is not supported yet.
*/
if (newp != NULL)
panic("preempt: cpu_preempt not yet implemented");
SCHED_LOCK(s);
p->p_priority = p->p_usrpri;
p->p_stat = SRUN;
setrunqueue(p);
p->p_stats->p_ru.ru_nivcsw++;
mi_switch();
SCHED_ASSERT_UNLOCKED();
splx(s);
}
/*
* Must be called at splstatclock() or higher.
*/
void
mi_switch()
{
struct proc *p = curproc; /* XXX */
struct rlimit *rlim;
struct timeval tv;
#if defined(MULTIPROCESSOR)
int hold_count;
#endif
#ifdef __HAVE_CPUINFO
struct schedstate_percpu *spc = &p->p_cpu->ci_schedstate;
#endif
SCHED_ASSERT_LOCKED();
#if defined(MULTIPROCESSOR)
/*
* Release the kernel_lock, as we are about to yield the CPU.
* The scheduler lock is still held until cpu_switch()
* selects a new process and removes it from the run queue.
*/
if (p->p_flag & P_BIGLOCK)
#ifdef notyet
hold_count = spinlock_release_all(&kernel_lock);
#else
hold_count = __mp_release_all(&kernel_lock);
#endif
#endif
/*
* Compute the amount of time during which the current
* process was running, and add that to its total so far.
*/
microtime(&tv);
#ifdef __HAVE_CPUINFO
if (timercmp(&tv, &spc->spc_runtime, <)) {
#if 0
printf("time is not monotonic! "
"tv=%lu.%06lu, runtime=%lu.%06lu\n",
tv.tv_sec, tv.tv_usec, spc->spc_runtime.tv_sec,
spc->spc_runtime.tv_usec);
#endif
} else {
timersub(&tv, &spc->spc_runtime, &tv);
timeradd(&p->p_rtime, &tv, &p->p_rtime);
}
#else
if (timercmp(&tv, &runtime, <)) {
#if 0
printf("time is not monotonic! "
"tv=%lu.%06lu, runtime=%lu.%06lu\n",
tv.tv_sec, tv.tv_usec, runtime.tv_sec, runtime.tv_usec);
#endif
} else {
timersub(&tv, &runtime, &tv);
timeradd(&p->p_rtime, &tv, &p->p_rtime);
}
#endif
/*
* Check if the process exceeds its cpu resource allocation.
* If over max, kill it.
*/
rlim = &p->p_rlimit[RLIMIT_CPU];
if ((rlim_t)p->p_rtime.tv_sec >= rlim->rlim_cur) {
if ((rlim_t)p->p_rtime.tv_sec >= rlim->rlim_max) {
psignal(p, SIGKILL);
} else {
psignal(p, SIGXCPU);
if (rlim->rlim_cur < rlim->rlim_max)
rlim->rlim_cur += 5;
}
}
/*
* Process is about to yield the CPU; clear the appropriate
* scheduling flags.
*/
#ifdef __HAVE_CPUINFO
spc->spc_schedflags &= ~SPCF_SWITCHCLEAR;
#else
p->p_schedflags &= ~PSCHED_SWITCHCLEAR;
#endif
/*
* Pick a new current process and record its start time.
*/
uvmexp.swtch++;
cpu_switch(p);
/*
* Make sure that MD code released the scheduler lock before
* resuming us.
*/
SCHED_ASSERT_UNLOCKED();
/*
* We're running again; record our new start time. We might
* be running on a new CPU now, so don't use the cache'd
* schedstate_percpu pointer.
*/
#ifdef __HAVE_CPUINFO
KDASSERT(p->p_cpu != NULL);
KDASSERT(p->p_cpu == curcpu());
microtime(&p->p_cpu->ci_schedstate.spc_runtime);
#else
microtime(&runtime);
#endif
#if defined(MULTIPROCESSOR)
/*
* Reacquire the kernel_lock now. We do this after we've
* released the scheduler lock to avoid deadlock, and before
* we reacquire the interlock.
*/
if (p->p_flag & P_BIGLOCK)
#ifdef notyet
spinlock_acquire_count(&kernel_lock, hold_count);
#else
__mp_acquire_count(&kernel_lock, hold_count);
#endif
#endif
}
/*
* Initialize the (doubly-linked) run queues
* to be empty.
*/
void
rqinit()
{
register int i;
for (i = 0; i < NQS; i++)
qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
SIMPLE_LOCK_INIT(&sched_lock);
}
static __inline void
resched_proc(struct proc *p, u_char pri)
{
#ifdef __HAVE_CPUINFO
struct cpu_info *ci;
#endif
/*
* XXXSMP
* Since p->p_cpu persists across a context switch,
* this gives us *very weak* processor affinity, in
* that we notify the CPU on which the process last
* ran that it should try to switch.
*
* This does not guarantee that the process will run on
* that processor next, because another processor might
* grab it the next time it performs a context switch.
*
* This also does not handle the case where its last
* CPU is running a higher-priority process, but every
* other CPU is running a lower-priority process. There
* are ways to handle this situation, but they're not
* currently very pretty, and we also need to weigh the
* cost of moving a process from one CPU to another.
*
* XXXSMP
* There is also the issue of locking the other CPU's
* sched state, which we currently do not do.
*/
#ifdef __HAVE_CPUINFO
ci = (p->p_cpu != NULL) ? p->p_cpu : curcpu();
if (pri < ci->ci_schedstate.spc_curpriority)
need_resched(ci);
#else
if (pri < curpriority)
need_resched(0);
#endif
}
/*
* Change process state to be runnable,
* placing it on the run queue if it is in memory,
* and awakening the swapper if it isn't in memory.
*/
void
setrunnable(p)
register struct proc *p;
{
SCHED_ASSERT_LOCKED();
switch (p->p_stat) {
case 0:
case SRUN:
case SONPROC:
case SZOMB:
case SDEAD:
default:
panic("setrunnable");
case SSTOP:
/*
* If we're being traced (possibly because someone attached us
* while we were stopped), check for a signal from the debugger.
*/
if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
p->p_siglist |= sigmask(p->p_xstat);
case SSLEEP:
unsleep(p); /* e.g. when sending signals */
break;
case SIDL:
break;
}
p->p_stat = SRUN;
if (p->p_flag & P_INMEM)
setrunqueue(p);
if (p->p_slptime > 1)
updatepri(p);
p->p_slptime = 0;
if ((p->p_flag & P_INMEM) == 0)
wakeup((caddr_t)&proc0);
else
resched_proc(p, p->p_priority);
}
/*
* Compute the priority of a process when running in user mode.
* Arrange to reschedule if the resulting priority is better
* than that of the current process.
*/
void
resetpriority(p)
register struct proc *p;
{
register unsigned int newpriority;
SCHED_ASSERT_LOCKED();
newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
newpriority = min(newpriority, MAXPRI);
p->p_usrpri = newpriority;
resched_proc(p, p->p_usrpri);
}
/*
* We adjust the priority of the current process. The priority of a process
* gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
* is increased here. The formula for computing priorities (in kern_synch.c)
* will compute a different value each time p_estcpu increases. This can
* cause a switch, but unless the priority crosses a PPQ boundary the actual
* queue will not change. The cpu usage estimator ramps up quite quickly
* when the process is running (linearly), and decays away exponentially, at
* a rate which is proportionally slower when the system is busy. The basic
* principle is that the system will 90% forget that the process used a lot
* of CPU time in 5 * loadav seconds. This causes the system to favor
* processes which haven't run much recently, and to round-robin among other
* processes.
*/
void
schedclock(p)
struct proc *p;
{
int s;
p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
SCHED_LOCK(s);
resetpriority(p);
SCHED_UNLOCK(s);
if (p->p_priority >= PUSER)
p->p_priority = p->p_usrpri;
}
#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_interface.h>
#include <ddb/db_output.h>
void
db_show_all_procs(addr, haddr, count, modif)
db_expr_t addr;
int haddr;
db_expr_t count;
char *modif;
{
char *mode;
int doingzomb = 0;
struct proc *p, *pp;
if (modif[0] == 0)
modif[0] = 'n'; /* default == normal mode */
mode = "mawn";
while (*mode && *mode != modif[0])
mode++;
if (*mode == 0 || *mode == 'm') {
db_printf("usage: show all procs [/a] [/n] [/w]\n");
db_printf("\t/a == show process address info\n");
db_printf("\t/n == show normal process info [default]\n");
db_printf("\t/w == show process wait/emul info\n");
return;
}
p = LIST_FIRST(&allproc);
switch (*mode) {
case 'a':
db_printf(" PID %-10s %18s %18s %18s\n",
"COMMAND", "STRUCT PROC *", "UAREA *", "VMSPACE/VM_MAP");
break;
case 'n':
db_printf(" PID %5s %5s %5s S %10s %-9s %-16s\n",
"PPID", "PGRP", "UID", "FLAGS", "WAIT", "COMMAND");
break;
case 'w':
db_printf(" PID %-16s %-8s %18s %s\n",
"COMMAND", "EMUL", "WAIT-CHANNEL", "WAIT-MSG");
break;
}
while (p != 0) {
pp = p->p_pptr;
if (p->p_stat) {
db_printf("%c%5d ", p == curproc ? '*' : ' ',
p->p_pid);
switch (*mode) {
case 'a':
db_printf("%-10.10s %18p %18p %18p\n",
p->p_comm, p, p->p_addr, p->p_vmspace);
break;
case 'n':
db_printf("%5d %5d %5d %d %#10x "
"%-9.9s %-16s\n",
pp ? pp->p_pid : -1, p->p_pgrp->pg_id,
p->p_cred->p_ruid, p->p_stat, p->p_flag,
(p->p_wchan && p->p_wmesg) ?
p->p_wmesg : "", p->p_comm);
break;
case 'w':
db_printf("%-16s %-8s %18p %s\n", p->p_comm,
p->p_emul->e_name, p->p_wchan,
(p->p_wchan && p->p_wmesg) ?
p->p_wmesg : "");
break;
}
}
p = LIST_NEXT(p, p_list);
if (p == 0 && doingzomb == 0) {
doingzomb = 1;
p = LIST_FIRST(&zombproc);
}
}
}
#endif
|