summaryrefslogtreecommitdiff
path: root/sys/kern/kern_timeout.c
blob: acf752a8381c532f7b57d3b26fb221627c326289 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
/*	$OpenBSD: kern_timeout.c,v 1.83 2021/02/08 08:18:45 mpi Exp $	*/
/*
 * Copyright (c) 2001 Thomas Nordin <nordin@openbsd.org>
 * Copyright (c) 2000-2001 Artur Grabowski <art@openbsd.org>
 * All rights reserved. 
 *
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 *
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 2. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission. 
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kthread.h>
#include <sys/proc.h>
#include <sys/timeout.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/queue.h>			/* _Q_INVALIDATE */
#include <sys/sysctl.h>
#include <sys/witness.h>

#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_interface.h>
#include <ddb/db_sym.h>
#include <ddb/db_output.h>
#endif

#include "kcov.h"
#if NKCOV > 0
#include <sys/kcov.h>
#endif

/*
 * Locks used to protect global variables in this file:
 *
 *	I	immutable after initialization
 *	T	timeout_mutex
 */
struct mutex timeout_mutex = MUTEX_INITIALIZER(IPL_HIGH);

void *softclock_si;			/* [I] softclock() interrupt handle */
struct timeoutstat tostat;		/* [T] statistics and totals */

/*
 * Timeouts are kept in a hierarchical timing wheel. The to_time is the value
 * of the global variable "ticks" when the timeout should be called. There are
 * four levels with 256 buckets each.
 */
#define WHEELCOUNT 4
#define WHEELSIZE 256
#define WHEELMASK 255
#define WHEELBITS 8
#define BUCKETS (WHEELCOUNT * WHEELSIZE)

struct circq timeout_wheel[BUCKETS];	/* [T] Tick-based timeouts */
struct circq timeout_wheel_kc[BUCKETS];	/* [T] Clock-based timeouts */
struct circq timeout_new;		/* [T] New, unscheduled timeouts */
struct circq timeout_todo;		/* [T] Due or needs rescheduling */
struct circq timeout_proc;		/* [T] Due + needs process context */

time_t timeout_level_width[WHEELCOUNT];	/* [I] Wheel level width (seconds) */
struct timespec tick_ts;		/* [I] Length of a tick (1/hz secs) */

struct kclock {
	struct timespec kc_lastscan;	/* [T] Clock time at last wheel scan */
	struct timespec kc_late;	/* [T] Late if due prior */
	struct timespec kc_offset;	/* [T] Offset from primary kclock */
} timeout_kclock[KCLOCK_MAX];

#define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)

#define BUCKET(rel, abs)						\
    (timeout_wheel[							\
	((rel) <= (1 << (2*WHEELBITS)))					\
	    ? ((rel) <= (1 << WHEELBITS))				\
		? MASKWHEEL(0, (abs))					\
		: MASKWHEEL(1, (abs)) + WHEELSIZE			\
	    : ((rel) <= (1 << (3*WHEELBITS)))				\
		? MASKWHEEL(2, (abs)) + 2*WHEELSIZE			\
		: MASKWHEEL(3, (abs)) + 3*WHEELSIZE])

#define MOVEBUCKET(wheel, time)						\
    CIRCQ_CONCAT(&timeout_todo,						\
        &timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])

/*
 * Circular queue definitions.
 */

#define CIRCQ_INIT(elem) do {			\
	(elem)->next = (elem);			\
	(elem)->prev = (elem);			\
} while (0)

#define CIRCQ_INSERT_TAIL(list, elem) do {	\
	(elem)->prev = (list)->prev;		\
	(elem)->next = (list);			\
	(list)->prev->next = (elem);		\
	(list)->prev = (elem);			\
	tostat.tos_pending++;			\
} while (0)

#define CIRCQ_CONCAT(fst, snd) do {		\
	if (!CIRCQ_EMPTY(snd)) {		\
		(fst)->prev->next = (snd)->next;\
		(snd)->next->prev = (fst)->prev;\
		(snd)->prev->next = (fst);      \
		(fst)->prev = (snd)->prev;      \
		CIRCQ_INIT(snd);		\
	}					\
} while (0)

#define CIRCQ_REMOVE(elem) do {			\
	(elem)->next->prev = (elem)->prev;      \
	(elem)->prev->next = (elem)->next;      \
	_Q_INVALIDATE((elem)->prev);		\
	_Q_INVALIDATE((elem)->next);		\
	tostat.tos_pending--;			\
} while (0)

#define CIRCQ_FIRST(elem) ((elem)->next)

#define CIRCQ_EMPTY(elem) (CIRCQ_FIRST(elem) == (elem))

#define CIRCQ_FOREACH(elem, list)		\
	for ((elem) = CIRCQ_FIRST(list);	\
	    (elem) != (list);			\
	    (elem) = CIRCQ_FIRST(elem))

#ifdef WITNESS
struct lock_object timeout_sleeplock_obj = {
	.lo_name = "timeout",
	.lo_flags = LO_WITNESS | LO_INITIALIZED | LO_SLEEPABLE |
	    (LO_CLASS_RWLOCK << LO_CLASSSHIFT)
};
struct lock_object timeout_spinlock_obj = {
	.lo_name = "timeout",
	.lo_flags = LO_WITNESS | LO_INITIALIZED |
	    (LO_CLASS_MUTEX << LO_CLASSSHIFT)
};
struct lock_type timeout_sleeplock_type = {
	.lt_name = "timeout"
};
struct lock_type timeout_spinlock_type = {
	.lt_name = "timeout"
};
#define TIMEOUT_LOCK_OBJ(needsproc) \
	((needsproc) ? &timeout_sleeplock_obj : &timeout_spinlock_obj)
#endif

void kclock_nanotime(int, struct timespec *);
void softclock(void *);
void softclock_create_thread(void *);
void softclock_process_kclock_timeout(struct timeout *, int);
void softclock_process_tick_timeout(struct timeout *, int);
void softclock_thread(void *);
uint32_t timeout_bucket(const struct timeout *);
uint32_t timeout_maskwheel(uint32_t, const struct timespec *);
void timeout_run(struct timeout *);
void timeout_proc_barrier(void *);

/*
 * The first thing in a struct timeout is its struct circq, so we
 * can get back from a pointer to the latter to a pointer to the
 * whole timeout with just a cast.
 */
static inline struct timeout *
timeout_from_circq(struct circq *p)
{
	return ((struct timeout *)(p));
}

static inline void
timeout_sync_order(int needsproc)
{
	WITNESS_CHECKORDER(TIMEOUT_LOCK_OBJ(needsproc), LOP_NEWORDER, NULL);
}

static inline void
timeout_sync_enter(int needsproc)
{
	timeout_sync_order(needsproc);
	WITNESS_LOCK(TIMEOUT_LOCK_OBJ(needsproc), 0);
}

static inline void
timeout_sync_leave(int needsproc)
{
	WITNESS_UNLOCK(TIMEOUT_LOCK_OBJ(needsproc), 0);
}

/*
 * Some of the "math" in here is a bit tricky.
 *
 * We have to beware of wrapping ints.
 * We use the fact that any element added to the queue must be added with a
 * positive time. That means that any element `to' on the queue cannot be
 * scheduled to timeout further in time than INT_MAX, but to->to_time can
 * be positive or negative so comparing it with anything is dangerous.
 * The only way we can use the to->to_time value in any predictable way
 * is when we calculate how far in the future `to' will timeout -
 * "to->to_time - ticks". The result will always be positive for future
 * timeouts and 0 or negative for due timeouts.
 */

void
timeout_startup(void)
{
	int b, level;

	CIRCQ_INIT(&timeout_new);
	CIRCQ_INIT(&timeout_todo);
	CIRCQ_INIT(&timeout_proc);
	for (b = 0; b < nitems(timeout_wheel); b++)
		CIRCQ_INIT(&timeout_wheel[b]);
	for (b = 0; b < nitems(timeout_wheel_kc); b++)
		CIRCQ_INIT(&timeout_wheel_kc[b]);

	for (level = 0; level < nitems(timeout_level_width); level++)
		timeout_level_width[level] = 2 << (level * WHEELBITS);
	NSEC_TO_TIMESPEC(tick_nsec, &tick_ts);
}

void
timeout_proc_init(void)
{
	softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
	if (softclock_si == NULL)
		panic("%s: unable to register softclock interrupt", __func__);

	WITNESS_INIT(&timeout_sleeplock_obj, &timeout_sleeplock_type);
	WITNESS_INIT(&timeout_spinlock_obj, &timeout_spinlock_type);

	kthread_create_deferred(softclock_create_thread, NULL);
}

static inline void
_timeout_set(struct timeout *to, void (*fn)(void *), void *arg, int flags,
    int kclock)
{
	to->to_func = fn;
	to->to_arg = arg;
	to->to_flags = flags | TIMEOUT_INITIALIZED;
	to->to_kclock = kclock;
}

void
timeout_set(struct timeout *new, void (*fn)(void *), void *arg)
{
	_timeout_set(new, fn, arg, 0, KCLOCK_NONE);
}

void
timeout_set_flags(struct timeout *to, void (*fn)(void *), void *arg, int flags)
{
	_timeout_set(to, fn, arg, flags, KCLOCK_NONE);
}

void
timeout_set_proc(struct timeout *new, void (*fn)(void *), void *arg)
{
	_timeout_set(new, fn, arg, TIMEOUT_PROC, KCLOCK_NONE);
}

void
timeout_set_kclock(struct timeout *to, void (*fn)(void *), void *arg,
    int flags, int kclock)
{
	_timeout_set(to, fn, arg, flags | TIMEOUT_KCLOCK, kclock);
}

int
timeout_add(struct timeout *new, int to_ticks)
{
	int old_time;
	int ret = 1;

	KASSERT(ISSET(new->to_flags, TIMEOUT_INITIALIZED));
	KASSERT(!ISSET(new->to_flags, TIMEOUT_KCLOCK));
	KASSERT(new->to_kclock == KCLOCK_NONE);
	KASSERT(to_ticks >= 0);

	mtx_enter(&timeout_mutex);

	/* Initialize the time here, it won't change. */
	old_time = new->to_time;
	new->to_time = to_ticks + ticks;
	CLR(new->to_flags, TIMEOUT_TRIGGERED);

	/*
	 * If this timeout already is scheduled and now is moved
	 * earlier, reschedule it now. Otherwise leave it in place
	 * and let it be rescheduled later.
	 */
	if (ISSET(new->to_flags, TIMEOUT_ONQUEUE)) {
		if (new->to_time - ticks < old_time - ticks) {
			CIRCQ_REMOVE(&new->to_list);
			CIRCQ_INSERT_TAIL(&timeout_new, &new->to_list);
		}
		tostat.tos_readded++;
		ret = 0;
	} else {
		SET(new->to_flags, TIMEOUT_ONQUEUE);
		CIRCQ_INSERT_TAIL(&timeout_new, &new->to_list);
	}
#if NKCOV > 0
	new->to_process = curproc->p_p;
#endif
	tostat.tos_added++;
	mtx_leave(&timeout_mutex);

	return ret;
}

int
timeout_add_tv(struct timeout *to, const struct timeval *tv)
{
	uint64_t to_ticks;

	to_ticks = (uint64_t)hz * tv->tv_sec + tv->tv_usec / tick;
	if (to_ticks > INT_MAX)
		to_ticks = INT_MAX;
	if (to_ticks == 0 && tv->tv_usec > 0)
		to_ticks = 1;

	return timeout_add(to, (int)to_ticks);
}

int
timeout_add_sec(struct timeout *to, int secs)
{
	uint64_t to_ticks;

	to_ticks = (uint64_t)hz * secs;
	if (to_ticks > INT_MAX)
		to_ticks = INT_MAX;
	if (to_ticks == 0)
		to_ticks = 1;

	return timeout_add(to, (int)to_ticks);
}

int
timeout_add_msec(struct timeout *to, int msecs)
{
	uint64_t to_ticks;

	to_ticks = (uint64_t)msecs * 1000 / tick;
	if (to_ticks > INT_MAX)
		to_ticks = INT_MAX;
	if (to_ticks == 0 && msecs > 0)
		to_ticks = 1;

	return timeout_add(to, (int)to_ticks);
}

int
timeout_add_usec(struct timeout *to, int usecs)
{
	int to_ticks = usecs / tick;

	if (to_ticks == 0 && usecs > 0)
		to_ticks = 1;

	return timeout_add(to, to_ticks);
}

int
timeout_add_nsec(struct timeout *to, int nsecs)
{
	int to_ticks = nsecs / (tick * 1000);

	if (to_ticks == 0 && nsecs > 0)
		to_ticks = 1;

	return timeout_add(to, to_ticks);
}

int
timeout_at_ts(struct timeout *to, const struct timespec *abstime)
{
	struct timespec old_abstime;
	int ret = 1;

	mtx_enter(&timeout_mutex);

	KASSERT(ISSET(to->to_flags, TIMEOUT_INITIALIZED | TIMEOUT_KCLOCK));
	KASSERT(to->to_kclock != KCLOCK_NONE);

	old_abstime = to->to_abstime;
	to->to_abstime = *abstime;
	CLR(to->to_flags, TIMEOUT_TRIGGERED);

	if (ISSET(to->to_flags, TIMEOUT_ONQUEUE)) {
		if (timespeccmp(abstime, &old_abstime, <)) {
			CIRCQ_REMOVE(&to->to_list);
			CIRCQ_INSERT_TAIL(&timeout_new, &to->to_list);
		}
		tostat.tos_readded++;
		ret = 0;
	} else {
		SET(to->to_flags, TIMEOUT_ONQUEUE);
		CIRCQ_INSERT_TAIL(&timeout_new, &to->to_list);
	}
#if NKCOV > 0
	to->to_process = curproc->p_p;
#endif
	tostat.tos_added++;

	mtx_leave(&timeout_mutex);

	return ret;
}

int
timeout_in_nsec(struct timeout *to, uint64_t nsecs)
{
	struct timespec abstime, interval, now;

	kclock_nanotime(to->to_kclock, &now);
	NSEC_TO_TIMESPEC(nsecs, &interval);
	timespecadd(&now, &interval, &abstime);

	return timeout_at_ts(to, &abstime);
}

void
kclock_nanotime(int kclock, struct timespec *now)
{
	switch (kclock) {
	case KCLOCK_UPTIME:
		nanouptime(now);
		break;
	default:
		panic("invalid kclock: 0x%x", kclock);
	}
}

int
timeout_del(struct timeout *to)
{
	int ret = 0;

	mtx_enter(&timeout_mutex);
	if (ISSET(to->to_flags, TIMEOUT_ONQUEUE)) {
		CIRCQ_REMOVE(&to->to_list);
		CLR(to->to_flags, TIMEOUT_ONQUEUE);
		tostat.tos_cancelled++;
		ret = 1;
	}
	CLR(to->to_flags, TIMEOUT_TRIGGERED);
	tostat.tos_deleted++;
	mtx_leave(&timeout_mutex);

	return ret;
}

int
timeout_del_barrier(struct timeout *to)
{
	int removed;

	timeout_sync_order(ISSET(to->to_flags, TIMEOUT_PROC));

	removed = timeout_del(to);
	if (!removed)
		timeout_barrier(to);

	return removed;
}

void
timeout_barrier(struct timeout *to)
{
	int needsproc = ISSET(to->to_flags, TIMEOUT_PROC);

	timeout_sync_order(needsproc);

	if (!needsproc) {
		KERNEL_LOCK();
		splx(splsoftclock());
		KERNEL_UNLOCK();
	} else {
		struct cond c = COND_INITIALIZER();
		struct timeout barrier;

		timeout_set_proc(&barrier, timeout_proc_barrier, &c);
		barrier.to_process = curproc->p_p;

		mtx_enter(&timeout_mutex);
		SET(barrier.to_flags, TIMEOUT_ONQUEUE);
		CIRCQ_INSERT_TAIL(&timeout_proc, &barrier.to_list);
		mtx_leave(&timeout_mutex);

		wakeup_one(&timeout_proc);

		cond_wait(&c, "tmobar");
	}
}

void
timeout_proc_barrier(void *arg)
{
	struct cond *c = arg;

	cond_signal(c);
}

uint32_t
timeout_bucket(const struct timeout *to)
{
	struct kclock *kc = &timeout_kclock[to->to_kclock];
	struct timespec diff, shifted_abstime;
	uint32_t level;

	KASSERT(ISSET(to->to_flags, TIMEOUT_KCLOCK));
	KASSERT(timespeccmp(&kc->kc_lastscan, &to->to_abstime, <));

	timespecsub(&to->to_abstime, &kc->kc_lastscan, &diff);
	for (level = 0; level < nitems(timeout_level_width) - 1; level++) {
		if (diff.tv_sec < timeout_level_width[level])
			break;
	}
	timespecadd(&to->to_abstime, &kc->kc_offset, &shifted_abstime);
	return level * WHEELSIZE + timeout_maskwheel(level, &shifted_abstime);
}

/*
 * Hash the absolute time into a bucket on a given level of the wheel.
 *
 * The complete hash is 32 bits.  The upper 25 bits are seconds, the
 * lower 7 bits are nanoseconds.  tv_nsec is a positive value less
 * than one billion so we need to divide it to isolate the desired
 * bits.  We can't just shift it.
 *
 * The level is used to isolate an 8-bit portion of the hash.  The
 * resulting number indicates which bucket the absolute time belongs
 * in on the given level of the wheel.
 */
uint32_t
timeout_maskwheel(uint32_t level, const struct timespec *abstime)
{
	uint32_t hi, lo;

 	hi = abstime->tv_sec << 7;
	lo = abstime->tv_nsec / 7812500;

	return ((hi | lo) >> (level * WHEELBITS)) & WHEELMASK;
}

/*
 * This is called from hardclock() on the primary CPU at the start of
 * every tick.
 */
void
timeout_hardclock_update(void)
{
	struct timespec elapsed, now;
	struct kclock *kc;
	struct timespec *lastscan;
	int b, done, first, i, last, level, need_softclock, off;

	nanouptime(&now);
	lastscan = &timeout_kclock[KCLOCK_UPTIME].kc_lastscan;
	timespecsub(&now, lastscan, &elapsed);
	need_softclock = 1;

	mtx_enter(&timeout_mutex);

	MOVEBUCKET(0, ticks);
	if (MASKWHEEL(0, ticks) == 0) {
		MOVEBUCKET(1, ticks);
		if (MASKWHEEL(1, ticks) == 0) {
			MOVEBUCKET(2, ticks);
			if (MASKWHEEL(2, ticks) == 0)
				MOVEBUCKET(3, ticks);
		}
	}

	/*
	 * Dump the buckets that expired while we were away.
	 *
	 * If the elapsed time has exceeded a level's limit then we need
	 * to dump every bucket in the level.  We have necessarily completed
	 * a lap of that level, too, so we need to process buckets in the
	 * next level.
	 *
	 * Otherwise we need to compare indices: if the index of the first
	 * expired bucket is greater than that of the last then we have
	 * completed a lap of the level and need to process buckets in the
	 * next level.
	 */
	for (level = 0; level < nitems(timeout_level_width); level++) {
		first = timeout_maskwheel(level, lastscan);
		if (elapsed.tv_sec >= timeout_level_width[level]) {
			last = (first == 0) ? WHEELSIZE - 1 : first - 1;
			done = 0;
		} else {
			last = timeout_maskwheel(level, &now);
			done = first <= last;
		}
		off = level * WHEELSIZE;
		for (b = first;; b = (b + 1) % WHEELSIZE) {
			CIRCQ_CONCAT(&timeout_todo, &timeout_wheel_kc[off + b]);
			if (b == last)
				break;
		}
		if (done)
			break;
	}

	/*
	 * Update the cached state for each kclock.
	 */
	for (i = 0; i < nitems(timeout_kclock); i++) {
		kc = &timeout_kclock[i];
		timespecadd(&now, &kc->kc_offset, &kc->kc_lastscan);
		timespecsub(&kc->kc_lastscan, &tick_ts, &kc->kc_late);
	}

	if (CIRCQ_EMPTY(&timeout_new) && CIRCQ_EMPTY(&timeout_todo))
		need_softclock = 0;

	mtx_leave(&timeout_mutex);

	if (need_softclock)
		softintr_schedule(softclock_si);
}

void
timeout_run(struct timeout *to)
{
	void (*fn)(void *);
	void *arg;
	int needsproc;

	MUTEX_ASSERT_LOCKED(&timeout_mutex);

	CLR(to->to_flags, TIMEOUT_ONQUEUE);
	SET(to->to_flags, TIMEOUT_TRIGGERED);

	fn = to->to_func;
	arg = to->to_arg;
	needsproc = ISSET(to->to_flags, TIMEOUT_PROC);
#if NKCOV > 0
	struct process *kcov_process = to->to_process;
#endif

	mtx_leave(&timeout_mutex);
	timeout_sync_enter(needsproc);
#if NKCOV > 0
	kcov_remote_enter(KCOV_REMOTE_COMMON, kcov_process);
#endif
	fn(arg);
#if NKCOV > 0
	kcov_remote_leave(KCOV_REMOTE_COMMON, kcov_process);
#endif
	timeout_sync_leave(needsproc);
	mtx_enter(&timeout_mutex);
}

void
softclock_process_kclock_timeout(struct timeout *to, int new)
{
	struct kclock *kc = &timeout_kclock[to->to_kclock];
	
	if (timespeccmp(&to->to_abstime, &kc->kc_lastscan, >)) {
		tostat.tos_scheduled++;
		if (!new)
			tostat.tos_rescheduled++;
		CIRCQ_INSERT_TAIL(&timeout_wheel_kc[timeout_bucket(to)],
		    &to->to_list);
		return;
	}
	if (!new && timespeccmp(&to->to_abstime, &kc->kc_late, <=))
		tostat.tos_late++;
	if (ISSET(to->to_flags, TIMEOUT_PROC)) {
		CIRCQ_INSERT_TAIL(&timeout_proc, &to->to_list);
		return;
	}
	timeout_run(to);
	tostat.tos_run_softclock++;
}

void
softclock_process_tick_timeout(struct timeout *to, int new)
{
	int delta = to->to_time - ticks;

	if (delta > 0) {
		tostat.tos_scheduled++;
		if (!new)
			tostat.tos_rescheduled++;
		CIRCQ_INSERT_TAIL(&BUCKET(delta, to->to_time), &to->to_list);
		return;
	}
	if (!new && delta < 0)
		tostat.tos_late++;
	if (ISSET(to->to_flags, TIMEOUT_PROC)) {
		CIRCQ_INSERT_TAIL(&timeout_proc, &to->to_list);
		return;
	}
	timeout_run(to);
	tostat.tos_run_softclock++;
}

/*
 * Timeouts are processed here instead of timeout_hardclock_update()
 * to avoid doing any more work at IPL_CLOCK than absolutely necessary.
 * Down here at IPL_SOFTCLOCK other interrupts can be serviced promptly
 * so the system remains responsive even if there is a surge of timeouts.
 */
void
softclock(void *arg)
{
	struct timeout *first_new, *to;
	int needsproc, new;

	first_new = NULL;
	new = 0;

	mtx_enter(&timeout_mutex);
	if (!CIRCQ_EMPTY(&timeout_new))
		first_new = timeout_from_circq(CIRCQ_FIRST(&timeout_new));
	CIRCQ_CONCAT(&timeout_todo, &timeout_new);
	while (!CIRCQ_EMPTY(&timeout_todo)) {
		to = timeout_from_circq(CIRCQ_FIRST(&timeout_todo));
		CIRCQ_REMOVE(&to->to_list);
		if (to == first_new)
			new = 1;
		if (ISSET(to->to_flags, TIMEOUT_KCLOCK))
			softclock_process_kclock_timeout(to, new);
		else
			softclock_process_tick_timeout(to, new);
	}
	tostat.tos_softclocks++;
	needsproc = !CIRCQ_EMPTY(&timeout_proc);
	mtx_leave(&timeout_mutex);

	if (needsproc)
		wakeup(&timeout_proc);
}

void
softclock_create_thread(void *arg)
{
	if (kthread_create(softclock_thread, NULL, NULL, "softclock"))
		panic("fork softclock");
}

void
softclock_thread(void *arg)
{
	CPU_INFO_ITERATOR cii;
	struct cpu_info *ci;
	struct sleep_state sls;
	struct timeout *to;
	int s;

	KERNEL_ASSERT_LOCKED();

	/* Be conservative for the moment */
	CPU_INFO_FOREACH(cii, ci) {
		if (CPU_IS_PRIMARY(ci))
			break;
	}
	KASSERT(ci != NULL);
	sched_peg_curproc(ci);

	s = splsoftclock();
	for (;;) {
		sleep_setup(&sls, &timeout_proc, PSWP, "bored", 0);
		sleep_finish(&sls, CIRCQ_EMPTY(&timeout_proc));

		mtx_enter(&timeout_mutex);
		while (!CIRCQ_EMPTY(&timeout_proc)) {
			to = timeout_from_circq(CIRCQ_FIRST(&timeout_proc));
			CIRCQ_REMOVE(&to->to_list);
			timeout_run(to);
			tostat.tos_run_thread++;
		}
		tostat.tos_thread_wakeups++;
		mtx_leave(&timeout_mutex);
	}
	splx(s);
}

#ifndef SMALL_KERNEL
void
timeout_adjust_ticks(int adj)
{
	struct timeout *to;
	struct circq *p;
	int new_ticks, b;

	/* adjusting the monotonic clock backwards would be a Bad Thing */
	if (adj <= 0)
		return;

	mtx_enter(&timeout_mutex);
	new_ticks = ticks + adj;
	for (b = 0; b < nitems(timeout_wheel); b++) {
		p = CIRCQ_FIRST(&timeout_wheel[b]);
		while (p != &timeout_wheel[b]) {
			to = timeout_from_circq(p);
			p = CIRCQ_FIRST(p);

			/* when moving a timeout forward need to reinsert it */
			if (to->to_time - ticks < adj)
				to->to_time = new_ticks;
			CIRCQ_REMOVE(&to->to_list);
			CIRCQ_INSERT_TAIL(&timeout_todo, &to->to_list);
		}
	}
	ticks = new_ticks;
	mtx_leave(&timeout_mutex);
}
#endif

int
timeout_sysctl(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
{
	struct timeoutstat status;

	mtx_enter(&timeout_mutex);
	memcpy(&status, &tostat, sizeof(status));
	mtx_leave(&timeout_mutex);

	return sysctl_rdstruct(oldp, oldlenp, newp, &status, sizeof(status));
}

#ifdef DDB
const char *db_kclock(int);
void db_show_callout_bucket(struct circq *);
void db_show_timeout(struct timeout *, struct circq *);
const char *db_timespec(const struct timespec *);

const char *
db_kclock(int kclock)
{
	switch (kclock) {
	case KCLOCK_UPTIME:
		return "uptime";
	default:
		return "invalid";
	}
}

const char *
db_timespec(const struct timespec *ts)
{
	static char buf[32];
	struct timespec tmp, zero;

	if (ts->tv_sec >= 0) {
		snprintf(buf, sizeof(buf), "%lld.%09ld",
		    ts->tv_sec, ts->tv_nsec);
		return buf;
	}

	timespecclear(&zero);
	timespecsub(&zero, ts, &tmp);
	snprintf(buf, sizeof(buf), "-%lld.%09ld", tmp.tv_sec, tmp.tv_nsec);
	return buf;
}

void
db_show_callout_bucket(struct circq *bucket)
{
	struct circq *p;

	CIRCQ_FOREACH(p, bucket)
		db_show_timeout(timeout_from_circq(p), bucket);
}

void
db_show_timeout(struct timeout *to, struct circq *bucket)
{
	struct timespec remaining;
	struct kclock *kc;
	char buf[8];
	db_expr_t offset;
	struct circq *wheel;
	char *name, *where;
	int width = sizeof(long) * 2;

	db_find_sym_and_offset((vaddr_t)to->to_func, &name, &offset);
	name = name ? name : "?";
	if (bucket == &timeout_new)
		where = "new";
	else if (bucket == &timeout_todo)
		where = "softint";
	else if (bucket == &timeout_proc)
		where = "thread";
	else {
		if (ISSET(to->to_flags, TIMEOUT_KCLOCK))
			wheel = timeout_wheel_kc;
		else
			wheel = timeout_wheel;
		snprintf(buf, sizeof(buf), "%3ld/%1ld",
		    (bucket - wheel) % WHEELSIZE,
		    (bucket - wheel) / WHEELSIZE);
		where = buf;
	}
	if (ISSET(to->to_flags, TIMEOUT_KCLOCK)) {
		kc = &timeout_kclock[to->to_kclock];
		timespecsub(&to->to_abstime, &kc->kc_lastscan, &remaining);
		db_printf("%20s  %8s  %7s  0x%0*lx  %s\n",
		    db_timespec(&remaining), db_kclock(to->to_kclock), where,
		    width, (ulong)to->to_arg, name);
	} else {
		db_printf("%20d  %8s  %7s  0x%0*lx  %s\n",
		    to->to_time - ticks, "ticks", where,
		    width, (ulong)to->to_arg, name);
	}
}

void
db_show_callout(db_expr_t addr, int haddr, db_expr_t count, char *modif)
{
	struct kclock *kc;
	int width = sizeof(long) * 2 + 2;
	int b, i;

	db_printf("%20s  %8s\n", "lastscan", "clock");
	db_printf("%20d  %8s\n", ticks, "ticks");
	for (i = 0; i < nitems(timeout_kclock); i++) {
		kc = &timeout_kclock[i];
		db_printf("%20s  %8s\n",
		    db_timespec(&kc->kc_lastscan), db_kclock(i));
	}
	db_printf("\n");	
	db_printf("%20s  %8s  %7s  %*s  %s\n",
	    "remaining", "clock", "wheel", width, "arg", "func");
	db_show_callout_bucket(&timeout_new);
	db_show_callout_bucket(&timeout_todo);
	db_show_callout_bucket(&timeout_proc);
	for (b = 0; b < nitems(timeout_wheel); b++)
		db_show_callout_bucket(&timeout_wheel[b]);
	for (b = 0; b < nitems(timeout_wheel_kc); b++)
		db_show_callout_bucket(&timeout_wheel_kc[b]);
}
#endif