1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
|
/* $OpenBSD: vfs_bio.c,v 1.195 2019/12/30 22:17:14 beck Exp $ */
/* $NetBSD: vfs_bio.c,v 1.44 1996/06/11 11:15:36 pk Exp $ */
/*
* Copyright (c) 1994 Christopher G. Demetriou
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
*/
/*
* Some references:
* Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
* Leffler, et al.: The Design and Implementation of the 4.3BSD
* UNIX Operating System (Addison Welley, 1989)
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/resourcevar.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/specdev.h>
#include <uvm/uvm_extern.h>
/* XXX Should really be in buf.h, but for uvm_constraint_range.. */
int buf_realloc_pages(struct buf *, struct uvm_constraint_range *, int);
struct uvm_constraint_range high_constraint;
int fliphigh;
int nobuffers;
int needbuffer;
struct bio_ops bioops;
/* private bufcache functions */
void bufcache_init(void);
void bufcache_adjust(void);
struct buf *bufcache_gethighcleanbuf(void);
struct buf *bufcache_getdmacleanbuf(void);
/*
* Buffer pool for I/O buffers.
*/
struct pool bufpool;
struct bufhead bufhead = LIST_HEAD_INITIALIZER(bufhead);
void buf_put(struct buf *);
struct buf *bio_doread(struct vnode *, daddr_t, int, int);
struct buf *buf_get(struct vnode *, daddr_t, size_t);
void bread_cluster_callback(struct buf *);
int64_t bufcache_recover_dmapages(int discard, int64_t howmany);
struct bcachestats bcstats; /* counters */
long lodirtypages; /* dirty page count low water mark */
long hidirtypages; /* dirty page count high water mark */
long targetpages; /* target number of pages for cache size */
long buflowpages; /* smallest size cache allowed */
long bufhighpages; /* largest size cache allowed */
long bufbackpages; /* minimum number of pages we shrink when asked to */
vsize_t bufkvm;
struct proc *cleanerproc;
int bd_req; /* Sleep point for cleaner daemon. */
#define NUM_CACHES 2
#define DMA_CACHE 0
struct bufcache cleancache[NUM_CACHES];
struct bufqueue dirtyqueue;
void
buf_put(struct buf *bp)
{
splassert(IPL_BIO);
#ifdef DIAGNOSTIC
if (bp->b_pobj != NULL)
KASSERT(bp->b_bufsize > 0);
if (ISSET(bp->b_flags, B_DELWRI))
panic("buf_put: releasing dirty buffer");
if (bp->b_freelist.tqe_next != NOLIST &&
bp->b_freelist.tqe_next != (void *)-1)
panic("buf_put: still on the free list");
if (bp->b_vnbufs.le_next != NOLIST &&
bp->b_vnbufs.le_next != (void *)-1)
panic("buf_put: still on the vnode list");
if (!LIST_EMPTY(&bp->b_dep))
panic("buf_put: b_dep is not empty");
#endif
LIST_REMOVE(bp, b_list);
bcstats.numbufs--;
if (buf_dealloc_mem(bp) != 0)
return;
pool_put(&bufpool, bp);
}
/*
* Initialize buffers and hash links for buffers.
*/
void
bufinit(void)
{
u_int64_t dmapages;
u_int64_t highpages;
dmapages = uvm_pagecount(&dma_constraint);
/* take away a guess at how much of this the kernel will consume */
dmapages -= (atop(physmem) - atop(uvmexp.free));
/* See if we have memory above the dma accessible region. */
high_constraint.ucr_low = dma_constraint.ucr_high;
high_constraint.ucr_high = no_constraint.ucr_high;
if (high_constraint.ucr_low != high_constraint.ucr_high)
high_constraint.ucr_low++;
highpages = uvm_pagecount(&high_constraint);
/*
* Do we have any significant amount of high memory above
* the DMA region? if so enable moving buffers there, if not,
* don't bother.
*/
if (highpages > dmapages / 4)
fliphigh = 1;
else
fliphigh = 0;
/*
* If MD code doesn't say otherwise, use up to 10% of DMA'able
* memory for buffers.
*/
if (bufcachepercent == 0)
bufcachepercent = 10;
/*
* XXX these values and their same use in kern_sysctl
* need to move into buf.h
*/
KASSERT(bufcachepercent <= 90);
KASSERT(bufcachepercent >= 5);
if (bufpages == 0)
bufpages = dmapages * bufcachepercent / 100;
if (bufpages < BCACHE_MIN)
bufpages = BCACHE_MIN;
KASSERT(bufpages < dmapages);
bufhighpages = bufpages;
/*
* Set the base backoff level for the buffer cache. We will
* not allow uvm to steal back more than this number of pages.
*/
buflowpages = dmapages * 5 / 100;
if (buflowpages < BCACHE_MIN)
buflowpages = BCACHE_MIN;
/*
* set bufbackpages to 100 pages, or 10 percent of the low water mark
* if we don't have that many pages.
*/
bufbackpages = buflowpages * 10 / 100;
if (bufbackpages > 100)
bufbackpages = 100;
/*
* If the MD code does not say otherwise, reserve 10% of kva
* space for mapping buffers.
*/
if (bufkvm == 0)
bufkvm = VM_KERNEL_SPACE_SIZE / 10;
/*
* Don't use more than twice the amount of bufpages for mappings.
* It's twice since we map things sparsely.
*/
if (bufkvm > bufpages * PAGE_SIZE)
bufkvm = bufpages * PAGE_SIZE;
/*
* Round bufkvm to MAXPHYS because we allocate chunks of va space
* in MAXPHYS chunks.
*/
bufkvm &= ~(MAXPHYS - 1);
pool_init(&bufpool, sizeof(struct buf), 0, IPL_BIO, 0, "bufpl", NULL);
bufcache_init();
/*
* hmm - bufkvm is an argument because it's static, while
* bufpages is global because it can change while running.
*/
buf_mem_init(bufkvm);
/*
* Set the dirty page high water mark to be less than the low
* water mark for pages in the buffer cache. This ensures we
* can always back off by throwing away clean pages, and give
* ourselves a chance to write out the dirty pages eventually.
*/
hidirtypages = (buflowpages / 4) * 3;
lodirtypages = buflowpages / 2;
/*
* We are allowed to use up to the reserve.
*/
targetpages = bufpages - RESERVE_PAGES;
}
/*
* Change cachepct
*/
void
bufadjust(int newbufpages)
{
int s;
int64_t npages;
if (newbufpages < buflowpages)
newbufpages = buflowpages;
s = splbio();
bufpages = newbufpages;
/*
* We are allowed to use up to the reserve
*/
targetpages = bufpages - RESERVE_PAGES;
npages = bcstats.dmapages - targetpages;
/*
* Shrinking the cache happens here only if someone has manually
* adjusted bufcachepercent - or the pagedaemon has told us
* to give back memory *now* - so we give it all back.
*/
if (bcstats.dmapages > targetpages)
(void) bufcache_recover_dmapages(0, bcstats.dmapages - targetpages);
bufcache_adjust();
/*
* Wake up the cleaner if we have lots of dirty pages,
* or if we are getting low on buffer cache kva.
*/
if ((UNCLEAN_PAGES >= hidirtypages) ||
bcstats.kvaslots_avail <= 2 * RESERVE_SLOTS)
wakeup(&bd_req);
splx(s);
}
/*
* Make the buffer cache back off from cachepct.
*/
int
bufbackoff(struct uvm_constraint_range *range, long size)
{
/*
* Back off "size" buffer cache pages. Called by the page
* daemon to consume buffer cache pages rather than scanning.
*
* It returns 0 to the pagedaemon to indicate that it has
* succeeded in freeing enough pages. It returns -1 to
* indicate that it could not and the pagedaemon should take
* other measures.
*
*/
long pdelta, oldbufpages;
/*
* If we will accept high memory for this backoff
* try to steal it from the high memory buffer cache.
*/
if (range->ucr_high > dma_constraint.ucr_high) {
struct buf *bp;
int64_t start = bcstats.numbufpages, recovered = 0;
int s = splbio();
while ((recovered < size) &&
(bp = bufcache_gethighcleanbuf())) {
bufcache_take(bp);
if (bp->b_vp) {
RBT_REMOVE(buf_rb_bufs,
&bp->b_vp->v_bufs_tree, bp);
brelvp(bp);
}
buf_put(bp);
recovered = start - bcstats.numbufpages;
}
bufcache_adjust();
splx(s);
/* If we got enough, return success */
if (recovered >= size)
return 0;
/*
* If we needed only memory above DMA,
* return failure
*/
if (range->ucr_low > dma_constraint.ucr_high)
return -1;
/* Otherwise get the rest from DMA */
size -= recovered;
}
/*
* XXX Otherwise do the dma memory cache dance. this needs
* refactoring later to get rid of 'bufpages'
*/
/*
* Back off by at least bufbackpages. If the page daemon gave us
* a larger size, back off by that much.
*/
pdelta = (size > bufbackpages) ? size : bufbackpages;
if (bufpages <= buflowpages)
return(-1);
if (bufpages - pdelta < buflowpages)
pdelta = bufpages - buflowpages;
oldbufpages = bufpages;
bufadjust(bufpages - pdelta);
if (oldbufpages - bufpages < size)
return (-1); /* we did not free what we were asked */
else
return(0);
}
/*
* Opportunistically flip a buffer into high memory. Will move the buffer
* if memory is available without sleeping, and return 0, otherwise will
* fail and return -1 with the buffer unchanged.
*/
int
buf_flip_high(struct buf *bp)
{
int s;
int ret = -1;
KASSERT(ISSET(bp->b_flags, B_BC));
KASSERT(ISSET(bp->b_flags, B_DMA));
KASSERT(bp->cache == DMA_CACHE);
KASSERT(fliphigh);
/* Attempt to move the buffer to high memory if we can */
s = splbio();
if (buf_realloc_pages(bp, &high_constraint, UVM_PLA_NOWAIT) == 0) {
KASSERT(!ISSET(bp->b_flags, B_DMA));
bcstats.highflips++;
ret = 0;
} else
bcstats.highflops++;
splx(s);
return ret;
}
/*
* Flip a buffer to dma reachable memory, when we need it there for
* I/O. This can sleep since it will wait for memory allocation in the
* DMA reachable area since we have to have the buffer there to proceed.
*/
void
buf_flip_dma(struct buf *bp)
{
KASSERT(ISSET(bp->b_flags, B_BC));
KASSERT(ISSET(bp->b_flags, B_BUSY));
KASSERT(bp->cache < NUM_CACHES);
if (!ISSET(bp->b_flags, B_DMA)) {
int s = splbio();
/* move buf to dma reachable memory */
(void) buf_realloc_pages(bp, &dma_constraint, UVM_PLA_WAITOK);
KASSERT(ISSET(bp->b_flags, B_DMA));
bcstats.dmaflips++;
splx(s);
}
if (bp->cache > DMA_CACHE) {
CLR(bp->b_flags, B_COLD);
CLR(bp->b_flags, B_WARM);
bp->cache = DMA_CACHE;
}
}
struct buf *
bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
{
struct buf *bp;
struct mount *mp;
bp = getblk(vp, blkno, size, 0, INFSLP);
/*
* If buffer does not have valid data, start a read.
* Note that if buffer is B_INVAL, getblk() won't return it.
* Therefore, it's valid if its I/O has completed or been delayed.
*/
if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
SET(bp->b_flags, B_READ | async);
bcstats.pendingreads++;
bcstats.numreads++;
VOP_STRATEGY(bp);
/* Pay for the read. */
curproc->p_ru.ru_inblock++; /* XXX */
} else if (async) {
brelse(bp);
}
mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount;
/*
* Collect statistics on synchronous and asynchronous reads.
* Reads from block devices are charged to their associated
* filesystem (if any).
*/
if (mp != NULL) {
if (async == 0)
mp->mnt_stat.f_syncreads++;
else
mp->mnt_stat.f_asyncreads++;
}
return (bp);
}
/*
* Read a disk block.
* This algorithm described in Bach (p.54).
*/
int
bread(struct vnode *vp, daddr_t blkno, int size, struct buf **bpp)
{
struct buf *bp;
/* Get buffer for block. */
bp = *bpp = bio_doread(vp, blkno, size, 0);
/* Wait for the read to complete, and return result. */
return (biowait(bp));
}
/*
* Read-ahead multiple disk blocks. The first is sync, the rest async.
* Trivial modification to the breada algorithm presented in Bach (p.55).
*/
int
breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t rablks[],
int rasizes[], int nrablks, struct buf **bpp)
{
struct buf *bp;
int i;
bp = *bpp = bio_doread(vp, blkno, size, 0);
/*
* For each of the read-ahead blocks, start a read, if necessary.
*/
for (i = 0; i < nrablks; i++) {
/* If it's in the cache, just go on to next one. */
if (incore(vp, rablks[i]))
continue;
/* Get a buffer for the read-ahead block */
(void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
}
/* Otherwise, we had to start a read for it; wait until it's valid. */
return (biowait(bp));
}
/*
* Called from interrupt context.
*/
void
bread_cluster_callback(struct buf *bp)
{
struct buf **xbpp = bp->b_saveaddr;
int i;
if (xbpp[1] != NULL) {
size_t newsize = xbpp[1]->b_bufsize;
/*
* Shrink this buffer's mapping to only cover its part of
* the total I/O.
*/
buf_fix_mapping(bp, newsize);
bp->b_bcount = newsize;
}
/* Invalidate read-ahead buffers if read short */
if (bp->b_resid > 0) {
for (i = 1; xbpp[i] != NULL; i++)
continue;
for (i = i - 1; i != 0; i--) {
if (xbpp[i]->b_bufsize <= bp->b_resid) {
bp->b_resid -= xbpp[i]->b_bufsize;
SET(xbpp[i]->b_flags, B_INVAL);
} else if (bp->b_resid > 0) {
bp->b_resid = 0;
SET(xbpp[i]->b_flags, B_INVAL);
} else
break;
}
}
for (i = 1; xbpp[i] != NULL; i++) {
if (ISSET(bp->b_flags, B_ERROR))
SET(xbpp[i]->b_flags, B_INVAL | B_ERROR);
/*
* Move the pages from the master buffer's uvm object
* into the individual buffer's uvm objects.
*/
struct uvm_object *newobj = &xbpp[i]->b_uobj;
struct uvm_object *oldobj = &bp->b_uobj;
int page;
uvm_objinit(newobj, NULL, 1);
for (page = 0; page < atop(xbpp[i]->b_bufsize); page++) {
struct vm_page *pg = uvm_pagelookup(oldobj,
xbpp[i]->b_poffs + ptoa(page));
KASSERT(pg != NULL);
KASSERT(pg->wire_count = 1);
uvm_pagerealloc(pg, newobj, xbpp[i]->b_poffs + ptoa(page));
}
xbpp[i]->b_pobj = newobj;
biodone(xbpp[i]);
}
free(xbpp, M_TEMP, (i + 1) * sizeof(*xbpp));
if (ISSET(bp->b_flags, B_ASYNC)) {
brelse(bp);
} else {
CLR(bp->b_flags, B_WANTED);
wakeup(bp);
}
}
/*
* Read-ahead multiple disk blocks, but make sure only one (big) I/O
* request is sent to the disk.
* XXX This should probably be dropped and breadn should instead be optimized
* XXX to do fewer I/O requests.
*/
int
bread_cluster(struct vnode *vp, daddr_t blkno, int size, struct buf **rbpp)
{
struct buf *bp, **xbpp;
int howmany, maxra, i, inc;
daddr_t sblkno;
*rbpp = bio_doread(vp, blkno, size, 0);
/*
* If the buffer is in the cache skip any I/O operation.
*/
if (ISSET((*rbpp)->b_flags, B_CACHE))
goto out;
if (size != round_page(size))
goto out;
if (VOP_BMAP(vp, blkno + 1, NULL, &sblkno, &maxra))
goto out;
maxra++;
if (sblkno == -1 || maxra < 2)
goto out;
howmany = MAXPHYS / size;
if (howmany > maxra)
howmany = maxra;
xbpp = mallocarray(howmany + 1, sizeof(*xbpp), M_TEMP, M_NOWAIT);
if (xbpp == NULL)
goto out;
for (i = howmany - 1; i >= 0; i--) {
size_t sz;
/*
* First buffer allocates big enough size to cover what
* all the other buffers need.
*/
sz = i == 0 ? howmany * size : 0;
xbpp[i] = buf_get(vp, blkno + i + 1, sz);
if (xbpp[i] == NULL) {
for (++i; i < howmany; i++) {
SET(xbpp[i]->b_flags, B_INVAL);
brelse(xbpp[i]);
}
free(xbpp, M_TEMP, (howmany + 1) * sizeof(*xbpp));
goto out;
}
}
bp = xbpp[0];
xbpp[howmany] = NULL;
inc = btodb(size);
for (i = 1; i < howmany; i++) {
bcstats.pendingreads++;
bcstats.numreads++;
/*
* We set B_DMA here because bp above will be B_DMA,
* and we are playing buffer slice-n-dice games from
* the memory allocated in bp.
*/
SET(xbpp[i]->b_flags, B_DMA | B_READ | B_ASYNC);
xbpp[i]->b_blkno = sblkno + (i * inc);
xbpp[i]->b_bufsize = xbpp[i]->b_bcount = size;
xbpp[i]->b_data = NULL;
xbpp[i]->b_pobj = bp->b_pobj;
xbpp[i]->b_poffs = bp->b_poffs + (i * size);
}
KASSERT(bp->b_lblkno == blkno + 1);
KASSERT(bp->b_vp == vp);
bp->b_blkno = sblkno;
SET(bp->b_flags, B_READ | B_ASYNC | B_CALL);
bp->b_saveaddr = (void *)xbpp;
bp->b_iodone = bread_cluster_callback;
bcstats.pendingreads++;
bcstats.numreads++;
VOP_STRATEGY(bp);
curproc->p_ru.ru_inblock++;
out:
return (biowait(*rbpp));
}
/*
* Block write. Described in Bach (p.56)
*/
int
bwrite(struct buf *bp)
{
int rv, async, wasdelayed, s;
struct vnode *vp;
struct mount *mp;
vp = bp->b_vp;
if (vp != NULL)
mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount;
else
mp = NULL;
/*
* Remember buffer type, to switch on it later. If the write was
* synchronous, but the file system was mounted with MNT_ASYNC,
* convert it to a delayed write.
* XXX note that this relies on delayed tape writes being converted
* to async, not sync writes (which is safe, but ugly).
*/
async = ISSET(bp->b_flags, B_ASYNC);
if (!async && mp && ISSET(mp->mnt_flag, MNT_ASYNC)) {
bdwrite(bp);
return (0);
}
/*
* Collect statistics on synchronous and asynchronous writes.
* Writes to block devices are charged to their associated
* filesystem (if any).
*/
if (mp != NULL) {
if (async)
mp->mnt_stat.f_asyncwrites++;
else
mp->mnt_stat.f_syncwrites++;
}
bcstats.pendingwrites++;
bcstats.numwrites++;
wasdelayed = ISSET(bp->b_flags, B_DELWRI);
CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
s = splbio();
/*
* If not synchronous, pay for the I/O operation and make
* sure the buf is on the correct vnode queue. We have
* to do this now, because if we don't, the vnode may not
* be properly notified that its I/O has completed.
*/
if (wasdelayed) {
reassignbuf(bp);
} else
curproc->p_ru.ru_oublock++;
/* Initiate disk write. Make sure the appropriate party is charged. */
bp->b_vp->v_numoutput++;
splx(s);
buf_flip_dma(bp);
SET(bp->b_flags, B_WRITEINPROG);
VOP_STRATEGY(bp);
/*
* If the queue is above the high water mark, wait till
* the number of outstanding write bufs drops below the low
* water mark.
*/
if (bp->b_bq)
bufq_wait(bp->b_bq);
if (async)
return (0);
/*
* If I/O was synchronous, wait for it to complete.
*/
rv = biowait(bp);
/* Release the buffer. */
brelse(bp);
return (rv);
}
/*
* Delayed write.
*
* The buffer is marked dirty, but is not queued for I/O.
* This routine should be used when the buffer is expected
* to be modified again soon, typically a small write that
* partially fills a buffer.
*
* NB: magnetic tapes cannot be delayed; they must be
* written in the order that the writes are requested.
*
* Described in Leffler, et al. (pp. 208-213).
*/
void
bdwrite(struct buf *bp)
{
int s;
/*
* If the block hasn't been seen before:
* (1) Mark it as having been seen,
* (2) Charge for the write.
* (3) Make sure it's on its vnode's correct block list,
* (4) If a buffer is rewritten, move it to end of dirty list
*/
if (!ISSET(bp->b_flags, B_DELWRI)) {
SET(bp->b_flags, B_DELWRI);
s = splbio();
buf_flip_dma(bp);
reassignbuf(bp);
splx(s);
curproc->p_ru.ru_oublock++; /* XXX */
}
/* The "write" is done, so mark and release the buffer. */
CLR(bp->b_flags, B_NEEDCOMMIT);
SET(bp->b_flags, B_DONE);
brelse(bp);
}
/*
* Asynchronous block write; just an asynchronous bwrite().
*/
void
bawrite(struct buf *bp)
{
SET(bp->b_flags, B_ASYNC);
VOP_BWRITE(bp);
}
/*
* Must be called at splbio()
*/
void
buf_dirty(struct buf *bp)
{
splassert(IPL_BIO);
#ifdef DIAGNOSTIC
if (!ISSET(bp->b_flags, B_BUSY))
panic("Trying to dirty buffer on freelist!");
#endif
if (ISSET(bp->b_flags, B_DELWRI) == 0) {
SET(bp->b_flags, B_DELWRI);
buf_flip_dma(bp);
reassignbuf(bp);
}
}
/*
* Must be called at splbio()
*/
void
buf_undirty(struct buf *bp)
{
splassert(IPL_BIO);
#ifdef DIAGNOSTIC
if (!ISSET(bp->b_flags, B_BUSY))
panic("Trying to undirty buffer on freelist!");
#endif
if (ISSET(bp->b_flags, B_DELWRI)) {
CLR(bp->b_flags, B_DELWRI);
reassignbuf(bp);
}
}
/*
* Release a buffer on to the free lists.
* Described in Bach (p. 46).
*/
void
brelse(struct buf *bp)
{
int s;
s = splbio();
if (bp->b_data != NULL)
KASSERT(bp->b_bufsize > 0);
/*
* softdep is basically incompatible with not cacheing buffers
* that have dependencies, so this buffer must be cached
*/
if (LIST_FIRST(&bp->b_dep) != NULL)
CLR(bp->b_flags, B_NOCACHE);
/*
* Determine which queue the buffer should be on, then put it there.
*/
/* If it's not cacheable, or an error, mark it invalid. */
if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
SET(bp->b_flags, B_INVAL);
/* If it's a write error, also mark the vnode as damaged. */
if (ISSET(bp->b_flags, B_ERROR) && !ISSET(bp->b_flags, B_READ)) {
if (bp->b_vp && bp->b_vp->v_type == VREG)
SET(bp->b_vp->v_bioflag, VBIOERROR);
}
if (ISSET(bp->b_flags, B_INVAL)) {
/*
* If the buffer is invalid, free it now rather than leaving
* it in a queue and wasting memory.
*/
if (LIST_FIRST(&bp->b_dep) != NULL)
buf_deallocate(bp);
if (ISSET(bp->b_flags, B_DELWRI)) {
CLR(bp->b_flags, B_DELWRI);
}
if (bp->b_vp) {
RBT_REMOVE(buf_rb_bufs, &bp->b_vp->v_bufs_tree, bp);
brelvp(bp);
}
bp->b_vp = NULL;
/*
* Wake up any processes waiting for _this_ buffer to
* become free. They are not allowed to grab it
* since it will be freed. But the only sleeper is
* getblk and it will restart the operation after
* sleep.
*/
if (ISSET(bp->b_flags, B_WANTED)) {
CLR(bp->b_flags, B_WANTED);
wakeup(bp);
}
buf_put(bp);
} else {
/*
* It has valid data. Put it on the end of the appropriate
* queue, so that it'll stick around for as long as possible.
*/
bufcache_release(bp);
/* Unlock the buffer. */
CLR(bp->b_flags, (B_AGE | B_ASYNC | B_NOCACHE | B_DEFERRED));
buf_release(bp);
/* Wake up any processes waiting for _this_ buffer to
* become free. */
if (ISSET(bp->b_flags, B_WANTED)) {
CLR(bp->b_flags, B_WANTED);
wakeup(bp);
}
}
/* Wake up syncer and cleaner processes waiting for buffers. */
if (nobuffers) {
nobuffers = 0;
wakeup(&nobuffers);
}
/* Wake up any processes waiting for any buffer to become free. */
if (needbuffer && bcstats.dmapages < targetpages &&
bcstats.kvaslots_avail > RESERVE_SLOTS) {
needbuffer = 0;
wakeup(&needbuffer);
}
splx(s);
}
/*
* Determine if a block is in the cache. Just look on what would be its hash
* chain. If it's there, return a pointer to it, unless it's marked invalid.
*/
struct buf *
incore(struct vnode *vp, daddr_t blkno)
{
struct buf *bp;
struct buf b;
int s;
s = splbio();
/* Search buf lookup tree */
b.b_lblkno = blkno;
bp = RBT_FIND(buf_rb_bufs, &vp->v_bufs_tree, &b);
if (bp != NULL && ISSET(bp->b_flags, B_INVAL))
bp = NULL;
splx(s);
return (bp);
}
/*
* Get a block of requested size that is associated with
* a given vnode and block offset. If it is found in the
* block cache, mark it as having been found, make it busy
* and return it. Otherwise, return an empty block of the
* correct size. It is up to the caller to ensure that the
* cached blocks be of the correct size.
*/
struct buf *
getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag,
uint64_t slptimeo)
{
struct buf *bp;
struct buf b;
int s, error;
/*
* XXX
* The following is an inlined version of 'incore()', but with
* the 'invalid' test moved to after the 'busy' test. It's
* necessary because there are some cases in which the NFS
* code sets B_INVAL prior to writing data to the server, but
* in which the buffers actually contain valid data. In this
* case, we can't allow the system to allocate a new buffer for
* the block until the write is finished.
*/
start:
s = splbio();
b.b_lblkno = blkno;
bp = RBT_FIND(buf_rb_bufs, &vp->v_bufs_tree, &b);
if (bp != NULL) {
if (ISSET(bp->b_flags, B_BUSY)) {
SET(bp->b_flags, B_WANTED);
error = tsleep_nsec(bp, slpflag | (PRIBIO + 1),
"getblk", slptimeo);
splx(s);
if (error)
return (NULL);
goto start;
}
if (!ISSET(bp->b_flags, B_INVAL)) {
bcstats.cachehits++;
SET(bp->b_flags, B_CACHE);
bufcache_take(bp);
buf_acquire(bp);
splx(s);
return (bp);
}
}
splx(s);
if ((bp = buf_get(vp, blkno, size)) == NULL)
goto start;
return (bp);
}
/*
* Get an empty, disassociated buffer of given size.
*/
struct buf *
geteblk(size_t size)
{
struct buf *bp;
while ((bp = buf_get(NULL, 0, size)) == NULL)
continue;
return (bp);
}
/*
* Allocate a buffer.
* If vp is given, put it into the buffer cache for that vnode.
* If size != 0, allocate memory and call buf_map().
* If there is already a buffer for the given vnode/blkno, return NULL.
*/
struct buf *
buf_get(struct vnode *vp, daddr_t blkno, size_t size)
{
struct buf *bp;
int poolwait = size == 0 ? PR_NOWAIT : PR_WAITOK;
int npages;
int s;
s = splbio();
if (size) {
/*
* Wake up the cleaner if we have lots of dirty pages,
* or if we are getting low on buffer cache kva.
*/
if (UNCLEAN_PAGES >= hidirtypages ||
bcstats.kvaslots_avail <= 2 * RESERVE_SLOTS)
wakeup(&bd_req);
npages = atop(round_page(size));
/*
* if our cache has been previously shrunk,
* allow it to grow again with use up to
* bufhighpages (cachepercent)
*/
if (bufpages < bufhighpages)
bufadjust(bufhighpages);
/*
* If we would go over the page target with our
* new allocation, free enough buffers first
* to stay at the target with our new allocation.
*/
if (bcstats.dmapages + npages > targetpages) {
(void) bufcache_recover_dmapages(0, npages);
bufcache_adjust();
}
/*
* If we get here, we tried to free the world down
* above, and couldn't get down - Wake the cleaner
* and wait for it to push some buffers out.
*/
if ((bcstats.dmapages + npages > targetpages ||
bcstats.kvaslots_avail <= RESERVE_SLOTS) &&
curproc != syncerproc && curproc != cleanerproc) {
wakeup(&bd_req);
needbuffer++;
tsleep_nsec(&needbuffer, PRIBIO, "needbuffer", INFSLP);
splx(s);
return (NULL);
}
if (bcstats.dmapages + npages > bufpages) {
/* cleaner or syncer */
nobuffers = 1;
tsleep_nsec(&nobuffers, PRIBIO, "nobuffers", INFSLP);
splx(s);
return (NULL);
}
}
bp = pool_get(&bufpool, poolwait|PR_ZERO);
if (bp == NULL) {
splx(s);
return (NULL);
}
bp->b_freelist.tqe_next = NOLIST;
bp->b_dev = NODEV;
LIST_INIT(&bp->b_dep);
bp->b_bcount = size;
buf_acquire_nomap(bp);
if (vp != NULL) {
/*
* We insert the buffer into the hash with B_BUSY set
* while we allocate pages for it. This way any getblk
* that happens while we allocate pages will wait for
* this buffer instead of starting its own buf_get.
*
* But first, we check if someone beat us to it.
*/
if (incore(vp, blkno)) {
pool_put(&bufpool, bp);
splx(s);
return (NULL);
}
bp->b_blkno = bp->b_lblkno = blkno;
bgetvp(vp, bp);
if (RBT_INSERT(buf_rb_bufs, &vp->v_bufs_tree, bp))
panic("buf_get: dup lblk vp %p bp %p", vp, bp);
} else {
bp->b_vnbufs.le_next = NOLIST;
SET(bp->b_flags, B_INVAL);
bp->b_vp = NULL;
}
LIST_INSERT_HEAD(&bufhead, bp, b_list);
bcstats.numbufs++;
if (size) {
buf_alloc_pages(bp, round_page(size));
KASSERT(ISSET(bp->b_flags, B_DMA));
buf_map(bp);
}
SET(bp->b_flags, B_BC);
splx(s);
return (bp);
}
/*
* Buffer cleaning daemon.
*/
void
buf_daemon(void *arg)
{
struct buf *bp = NULL;
int s, pushed = 0;
s = splbio();
for (;;) {
if (bp == NULL || (pushed >= 16 &&
UNCLEAN_PAGES < hidirtypages &&
bcstats.kvaslots_avail > 2 * RESERVE_SLOTS)){
pushed = 0;
/*
* Wake up anyone who was waiting for buffers
* to be released.
*/
if (needbuffer) {
needbuffer = 0;
wakeup(&needbuffer);
}
tsleep_nsec(&bd_req, PRIBIO - 7, "cleaner", INFSLP);
}
while ((bp = bufcache_getdirtybuf())) {
if (UNCLEAN_PAGES < lodirtypages &&
bcstats.kvaslots_avail > 2 * RESERVE_SLOTS &&
pushed >= 16)
break;
bufcache_take(bp);
buf_acquire(bp);
splx(s);
if (ISSET(bp->b_flags, B_INVAL)) {
brelse(bp);
s = splbio();
continue;
}
#ifdef DIAGNOSTIC
if (!ISSET(bp->b_flags, B_DELWRI))
panic("Clean buffer on dirty queue");
#endif
if (LIST_FIRST(&bp->b_dep) != NULL &&
!ISSET(bp->b_flags, B_DEFERRED) &&
buf_countdeps(bp, 0, 0)) {
SET(bp->b_flags, B_DEFERRED);
s = splbio();
bufcache_release(bp);
buf_release(bp);
continue;
}
bawrite(bp);
pushed++;
sched_pause(yield);
s = splbio();
}
}
}
/*
* Wait for operations on the buffer to complete.
* When they do, extract and return the I/O's error value.
*/
int
biowait(struct buf *bp)
{
int s;
KASSERT(!(bp->b_flags & B_ASYNC));
s = splbio();
while (!ISSET(bp->b_flags, B_DONE))
tsleep_nsec(bp, PRIBIO + 1, "biowait", INFSLP);
splx(s);
/* check for interruption of I/O (e.g. via NFS), then errors. */
if (ISSET(bp->b_flags, B_EINTR)) {
CLR(bp->b_flags, B_EINTR);
return (EINTR);
}
if (ISSET(bp->b_flags, B_ERROR))
return (bp->b_error ? bp->b_error : EIO);
else
return (0);
}
/*
* Mark I/O complete on a buffer.
*
* If a callback has been requested, e.g. the pageout
* daemon, do so. Otherwise, awaken waiting processes.
*
* [ Leffler, et al., says on p.247:
* "This routine wakes up the blocked process, frees the buffer
* for an asynchronous write, or, for a request by the pagedaemon
* process, invokes a procedure specified in the buffer structure" ]
*
* In real life, the pagedaemon (or other system processes) wants
* to do async stuff to, and doesn't want the buffer brelse()'d.
* (for swap pager, that puts swap buffers on the free lists (!!!),
* for the vn device, that puts malloc'd buffers on the free lists!)
*
* Must be called at splbio().
*/
void
biodone(struct buf *bp)
{
splassert(IPL_BIO);
if (ISSET(bp->b_flags, B_DONE))
panic("biodone already");
SET(bp->b_flags, B_DONE); /* note that it's done */
if (bp->b_bq)
bufq_done(bp->b_bq, bp);
if (LIST_FIRST(&bp->b_dep) != NULL)
buf_complete(bp);
if (!ISSET(bp->b_flags, B_READ)) {
CLR(bp->b_flags, B_WRITEINPROG);
vwakeup(bp->b_vp);
}
if (bcstats.numbufs &&
(!(ISSET(bp->b_flags, B_RAW) || ISSET(bp->b_flags, B_PHYS)))) {
if (!ISSET(bp->b_flags, B_READ)) {
bcstats.pendingwrites--;
} else
bcstats.pendingreads--;
}
if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */
CLR(bp->b_flags, B_CALL); /* but note callout done */
(*bp->b_iodone)(bp);
} else {
if (ISSET(bp->b_flags, B_ASYNC)) {/* if async, release it */
brelse(bp);
} else { /* or just wakeup the buffer */
CLR(bp->b_flags, B_WANTED);
wakeup(bp);
}
}
}
#ifdef DDB
void bcstats_print(int (*)(const char *, ...)
__attribute__((__format__(__kprintf__,1,2))));
/*
* bcstats_print: ddb hook to print interesting buffer cache counters
*/
void
bcstats_print(
int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
{
(*pr)("Current Buffer Cache status:\n");
(*pr)("numbufs %lld busymapped %lld, delwri %lld\n",
bcstats.numbufs, bcstats.busymapped, bcstats.delwribufs);
(*pr)("kvaslots %lld avail kva slots %lld\n",
bcstats.kvaslots, bcstats.kvaslots_avail);
(*pr)("bufpages %lld, dmapages %lld, dirtypages %lld\n",
bcstats.numbufpages, bcstats.dmapages, bcstats.numdirtypages);
(*pr)("pendingreads %lld, pendingwrites %lld\n",
bcstats.pendingreads, bcstats.pendingwrites);
(*pr)("highflips %lld, highflops %lld, dmaflips %lld\n",
bcstats.highflips, bcstats.highflops, bcstats.dmaflips);
}
#endif
void
buf_adjcnt(struct buf *bp, long ncount)
{
KASSERT(ncount <= bp->b_bufsize);
bp->b_bcount = ncount;
}
/* bufcache freelist code below */
/*
* Copyright (c) 2014 Ted Unangst <tedu@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* The code below implements a variant of the 2Q buffer cache algorithm by
* Johnson and Shasha.
*
* General Outline
* We divide the buffer cache into three working sets: current, previous,
* and long term. Each list is itself LRU and buffers get promoted and moved
* around between them. A buffer starts its life in the current working set.
* As time passes and newer buffers push it out, it will turn into the previous
* working set and is subject to recycling. But if it's accessed again from
* the previous working set, that's an indication that it's actually in the
* long term working set, so we promote it there. The separation of current
* and previous working sets prevents us from promoting a buffer that's only
* temporarily hot to the long term cache.
*
* The objective is to provide scan resistance by making the long term
* working set ineligible for immediate recycling, even as the current
* working set is rapidly turned over.
*
* Implementation
* The code below identifies the current, previous, and long term sets as
* hotqueue, coldqueue, and warmqueue. The hot and warm queues are capped at
* 1/3 of the total clean pages, after which point they start pushing their
* oldest buffers into coldqueue.
* A buf always starts out with neither WARM or COLD flags set (implying HOT).
* When released, it will be returned to the tail of the hotqueue list.
* When the hotqueue gets too large, the oldest hot buf will be moved to the
* coldqueue, with the B_COLD flag set. When a cold buf is released, we set
* the B_WARM flag and put it onto the warmqueue. Warm bufs are also
* directly returned to the end of the warmqueue. As with the hotqueue, when
* the warmqueue grows too large, B_WARM bufs are moved onto the coldqueue.
*
* Note that this design does still support large working sets, greater
* than the cap of hotqueue or warmqueue would imply. The coldqueue is still
* cached and has no maximum length. The hot and warm queues form a Y feeding
* into the coldqueue. Moving bufs between queues is constant time, so this
* design decays to one long warm->cold queue.
*
* In the 2Q paper, hotqueue and coldqueue are A1in and A1out. The warmqueue
* is Am. We always cache pages, as opposed to pointers to pages for A1.
*
* This implementation adds support for multiple 2q caches.
*
* If we have more than one 2q cache, as bufs fall off the cold queue
* for recyclying, bufs that have been warm before (which retain the
* B_WARM flag in addition to B_COLD) can be put into the hot queue of
* a second level 2Q cache. buffers which are only B_COLD are
* recycled. Bufs falling off the last cache's cold queue are always
* recycled.
*
*/
/*
* this function is called when a hot or warm queue may have exceeded its
* size limit. it will move a buf to the coldqueue.
*/
int chillbufs(struct
bufcache *cache, struct bufqueue *queue, int64_t *queuepages);
void
bufcache_init(void)
{
int i;
for (i=0; i < NUM_CACHES; i++) {
TAILQ_INIT(&cleancache[i].hotqueue);
TAILQ_INIT(&cleancache[i].coldqueue);
TAILQ_INIT(&cleancache[i].warmqueue);
}
TAILQ_INIT(&dirtyqueue);
}
/*
* if the buffer caches have shrunk, we may need to rebalance our queues.
*/
void
bufcache_adjust(void)
{
int i;
for (i=0; i < NUM_CACHES; i++) {
while (chillbufs(&cleancache[i], &cleancache[i].warmqueue,
&cleancache[i].warmbufpages) ||
chillbufs(&cleancache[i], &cleancache[i].hotqueue,
&cleancache[i].hotbufpages))
continue;
}
}
/*
* Get a clean buffer from the cache. if "discard" is set do not promote
* previously warm buffers as normal, because we are tossing everything
* away such as in a hibernation
*/
struct buf *
bufcache_getcleanbuf(int cachenum, int discard)
{
struct buf *bp = NULL;
struct bufcache *cache = &cleancache[cachenum];
struct bufqueue * queue;
splassert(IPL_BIO);
/* try cold queue */
while ((bp = TAILQ_FIRST(&cache->coldqueue)) ||
(bp = TAILQ_FIRST(&cache->warmqueue)) ||
(bp = TAILQ_FIRST(&cache->hotqueue))) {
if ((!discard) && cachenum < NUM_CACHES - 1) {
int64_t pages = atop(bp->b_bufsize);
struct bufcache *newcache;
KASSERT(bp->cache == cachenum);
/*
* If this buffer was warm before, move it to
* the hot queue in the next cache
*/
if (fliphigh) {
/*
* If we are in the DMA cache, try to flip the
* buffer up high to move it on to the other
* caches. if we can't move the buffer to high
* memory without sleeping, we give it up and
* return it rather than fight for more memory
* against non buffer cache competitors.
*/
SET(bp->b_flags, B_BUSY);
if (bp->cache == 0 && buf_flip_high(bp) == -1) {
CLR(bp->b_flags, B_BUSY);
return bp;
}
CLR(bp->b_flags, B_BUSY);
}
/* Move the buffer to the hot queue in the next cache */
if (ISSET(bp->b_flags, B_COLD)) {
queue = &cache->coldqueue;
} else if (ISSET(bp->b_flags, B_WARM)) {
queue = &cache->warmqueue;
cache->warmbufpages -= pages;
} else {
queue = &cache->hotqueue;
cache->hotbufpages -= pages;
}
TAILQ_REMOVE(queue, bp, b_freelist);
cache->cachepages -= pages;
CLR(bp->b_flags, B_WARM);
CLR(bp->b_flags, B_COLD);
bp->cache++;
newcache= &cleancache[bp->cache];
newcache->cachepages += pages;
newcache->hotbufpages += pages;
chillbufs(newcache, &newcache->hotqueue,
&newcache->hotbufpages);
TAILQ_INSERT_TAIL(&newcache->hotqueue, bp, b_freelist);
}
else
/* Victim selected, give it up */
return bp;
}
return bp;
}
void
discard_buffer(struct buf *bp) {
bufcache_take(bp);
if (bp->b_vp) {
RBT_REMOVE(buf_rb_bufs,
&bp->b_vp->v_bufs_tree, bp);
brelvp(bp);
}
buf_put(bp);
}
int64_t
bufcache_recover_dmapages(int discard, int64_t howmany)
{
struct buf *bp = NULL;
struct bufcache *cache = &cleancache[DMA_CACHE];
struct bufqueue * queue;
int64_t recovered = 0;
splassert(IPL_BIO);
while ((recovered < howmany) &&
((bp = TAILQ_FIRST(&cache->coldqueue)) ||
(bp = TAILQ_FIRST(&cache->warmqueue)) ||
(bp = TAILQ_FIRST(&cache->hotqueue)))) {
if (!discard && DMA_CACHE < NUM_CACHES - 1) {
int64_t pages = atop(bp->b_bufsize);
struct bufcache *newcache;
KASSERT(bp->cache == DMA_CACHE);
/*
* If this buffer was warm before, move it to
* the hot queue in the next cache
*/
/*
* One way or another, the pages for this
* buffer are leaving DMA memory
*/
recovered += pages;
if (fliphigh) {
/*
* If we are in the DMA cache, try to flip the
* buffer up high to move it on to the other
* caches. if we can't move the buffer to high
* memory without sleeping, we give it up
* now rather than fight for more memory
* against non buffer cache competitors.
*/
SET(bp->b_flags, B_BUSY);
if (bp->cache == 0 && buf_flip_high(bp) == -1) {
CLR(bp->b_flags, B_BUSY);
discard_buffer(bp);
} else {
CLR(bp->b_flags, B_BUSY);
/*
* Move the buffer to the hot queue in
* the next cache
*/
if (ISSET(bp->b_flags, B_COLD)) {
queue = &cache->coldqueue;
} else if (ISSET(bp->b_flags, B_WARM)) {
queue = &cache->warmqueue;
cache->warmbufpages -= pages;
} else {
queue = &cache->hotqueue;
cache->hotbufpages -= pages;
}
TAILQ_REMOVE(queue, bp, b_freelist);
cache->cachepages -= pages;
CLR(bp->b_flags, B_WARM);
CLR(bp->b_flags, B_COLD);
bp->cache++;
newcache= &cleancache[bp->cache];
newcache->cachepages += pages;
newcache->hotbufpages += pages;
chillbufs(newcache, &newcache->hotqueue,
&newcache->hotbufpages);
TAILQ_INSERT_TAIL(&newcache->hotqueue,
bp, b_freelist);
}
} else
discard_buffer(bp);
} else
discard_buffer(bp);
}
return recovered;
}
struct buf *
bufcache_getcleanbuf_range(int start, int end, int discard)
{
int i, j = start, q = end;
struct buf *bp = NULL;
/*
* XXX in theory we could promote warm buffers into a previous queue
* so in the pathological case of where we go through all the caches
* without getting a buffer we have to start at the beginning again.
*/
while (j <= q) {
for (i = q; i >= j; i--)
if ((bp = bufcache_getcleanbuf(i, discard)))
return(bp);
j++;
}
return bp;
}
struct buf *
bufcache_gethighcleanbuf(void)
{
if (!fliphigh)
return NULL;
return bufcache_getcleanbuf_range(DMA_CACHE + 1, NUM_CACHES - 1, 0);
}
struct buf *
bufcache_getdmacleanbuf(void)
{
if (fliphigh)
return bufcache_getcleanbuf_range(DMA_CACHE, DMA_CACHE, 0);
return bufcache_getcleanbuf_range(DMA_CACHE, NUM_CACHES - 1, 0);
}
struct buf *
bufcache_getdirtybuf(void)
{
return TAILQ_FIRST(&dirtyqueue);
}
void
bufcache_take(struct buf *bp)
{
struct bufqueue *queue;
int64_t pages;
splassert(IPL_BIO);
KASSERT(ISSET(bp->b_flags, B_BC));
KASSERT(bp->cache >= DMA_CACHE);
KASSERT((bp->cache < NUM_CACHES));
pages = atop(bp->b_bufsize);
struct bufcache *cache = &cleancache[bp->cache];
if (!ISSET(bp->b_flags, B_DELWRI)) {
if (ISSET(bp->b_flags, B_COLD)) {
queue = &cache->coldqueue;
} else if (ISSET(bp->b_flags, B_WARM)) {
queue = &cache->warmqueue;
cache->warmbufpages -= pages;
} else {
queue = &cache->hotqueue;
cache->hotbufpages -= pages;
}
bcstats.numcleanpages -= pages;
cache->cachepages -= pages;
} else {
queue = &dirtyqueue;
bcstats.numdirtypages -= pages;
bcstats.delwribufs--;
}
TAILQ_REMOVE(queue, bp, b_freelist);
}
/* move buffers from a hot or warm queue to a cold queue in a cache */
int
chillbufs(struct bufcache *cache, struct bufqueue *queue, int64_t *queuepages)
{
struct buf *bp;
int64_t limit, pages;
/*
* We limit the hot queue to be small, with a max of 4096 pages.
* We limit the warm queue to half the cache size.
*
* We impose a minimum size of 96 to prevent too much "wobbling".
*/
if (queue == &cache->hotqueue)
limit = min(cache->cachepages / 20, 4096);
else if (queue == &cache->warmqueue)
limit = (cache->cachepages / 2);
else
panic("chillbufs: invalid queue");
if (*queuepages > 96 && *queuepages > limit) {
bp = TAILQ_FIRST(queue);
if (!bp)
panic("inconsistent bufpage counts");
pages = atop(bp->b_bufsize);
*queuepages -= pages;
TAILQ_REMOVE(queue, bp, b_freelist);
/* we do not clear B_WARM */
SET(bp->b_flags, B_COLD);
TAILQ_INSERT_TAIL(&cache->coldqueue, bp, b_freelist);
return 1;
}
return 0;
}
void
bufcache_release(struct buf *bp)
{
struct bufqueue *queue;
int64_t pages;
struct bufcache *cache = &cleancache[bp->cache];
pages = atop(bp->b_bufsize);
KASSERT(ISSET(bp->b_flags, B_BC));
if (fliphigh) {
if (ISSET(bp->b_flags, B_DMA) && bp->cache > 0)
panic("B_DMA buffer release from cache %d",
bp->cache);
else if ((!ISSET(bp->b_flags, B_DMA)) && bp->cache == 0)
panic("Non B_DMA buffer release from cache %d",
bp->cache);
}
if (!ISSET(bp->b_flags, B_DELWRI)) {
int64_t *queuepages;
if (ISSET(bp->b_flags, B_WARM | B_COLD)) {
SET(bp->b_flags, B_WARM);
CLR(bp->b_flags, B_COLD);
queue = &cache->warmqueue;
queuepages = &cache->warmbufpages;
} else {
queue = &cache->hotqueue;
queuepages = &cache->hotbufpages;
}
*queuepages += pages;
bcstats.numcleanpages += pages;
cache->cachepages += pages;
chillbufs(cache, queue, queuepages);
} else {
queue = &dirtyqueue;
bcstats.numdirtypages += pages;
bcstats.delwribufs++;
}
TAILQ_INSERT_TAIL(queue, bp, b_freelist);
}
#ifdef HIBERNATE
/*
* Nuke the buffer cache from orbit when hibernating. We do not want to save
* any clean cache pages to swap and read them back. the original disk files
* are just as good.
*/
void
hibernate_suspend_bufcache(void)
{
struct buf *bp;
int s;
s = splbio();
/* Chuck away all the cache pages.. discard bufs, do not promote */
while ((bp = bufcache_getcleanbuf_range(DMA_CACHE, NUM_CACHES - 1, 1))) {
bufcache_take(bp);
if (bp->b_vp) {
RBT_REMOVE(buf_rb_bufs, &bp->b_vp->v_bufs_tree, bp);
brelvp(bp);
}
buf_put(bp);
}
splx(s);
}
void
hibernate_resume_bufcache(void)
{
/* XXX Nothing needed here for now */
}
#endif /* HIBERNATE */
|