1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
|
/* $OpenBSD: ieee80211_crypto_tkip.c,v 1.29 2017/06/03 11:58:10 tb Exp $ */
/*-
* Copyright (c) 2008 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* This code implements the Temporal Key Integrity Protocol (TKIP) defined
* in IEEE Std 802.11-2007 section 8.3.2.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/endian.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_crypto.h>
#include <crypto/arc4.h>
#include <crypto/michael.h>
typedef u_int8_t byte; /* 8-bit byte (octet) */
typedef u_int16_t u16b; /* 16-bit unsigned word */
typedef u_int32_t u32b; /* 32-bit unsigned word */
static void Phase1(u16b *, const byte *, const byte *, u32b);
static void Phase2(byte *, const byte *, const u16b *, u16b);
/* TKIP software crypto context */
struct ieee80211_tkip_ctx {
struct rc4_ctx rc4;
const u_int8_t *txmic;
const u_int8_t *rxmic;
u_int16_t txttak[5];
u_int16_t rxttak[5];
u_int8_t txttak_ok;
u_int8_t rxttak_ok;
};
/*
* Initialize software crypto context. This function can be overridden
* by drivers doing hardware crypto.
*/
int
ieee80211_tkip_set_key(struct ieee80211com *ic, struct ieee80211_key *k)
{
struct ieee80211_tkip_ctx *ctx;
ctx = malloc(sizeof(*ctx), M_DEVBUF, M_NOWAIT | M_ZERO);
if (ctx == NULL)
return ENOMEM;
/*
* Use bits 128-191 as the Michael key for AA->SPA and bits
* 192-255 as the Michael key for SPA->AA.
*/
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
ctx->txmic = &k->k_key[16];
ctx->rxmic = &k->k_key[24];
} else
#endif
{
ctx->rxmic = &k->k_key[16];
ctx->txmic = &k->k_key[24];
}
k->k_priv = ctx;
return 0;
}
void
ieee80211_tkip_delete_key(struct ieee80211com *ic, struct ieee80211_key *k)
{
if (k->k_priv != NULL) {
explicit_bzero(k->k_priv, sizeof(struct ieee80211_tkip_ctx));
free(k->k_priv, M_DEVBUF, sizeof(struct ieee80211_tkip_ctx));
}
k->k_priv = NULL;
}
/* pseudo-header used for TKIP MIC computation */
struct ieee80211_tkip_frame {
u_int8_t i_da[IEEE80211_ADDR_LEN];
u_int8_t i_sa[IEEE80211_ADDR_LEN];
u_int8_t i_pri;
u_int8_t i_pad[3];
} __packed;
/*
* Compute TKIP MIC over an mbuf chain starting "off" bytes from the
* beginning. This function should be kept independant from the software
* TKIP crypto code so that drivers doing hardware crypto but not MIC can
* call it without a software crypto context.
*/
void
ieee80211_tkip_mic(struct mbuf *m0, int off, const u_int8_t *key,
u_int8_t mic[IEEE80211_TKIP_MICLEN])
{
const struct ieee80211_frame *wh;
struct ieee80211_tkip_frame wht;
MICHAEL_CTX ctx; /* small enough */
struct mbuf *m;
caddr_t pos;
int len;
/* assumes 802.11 header is contiguous */
wh = mtod(m0, struct ieee80211_frame *);
/* construct pseudo-header for TKIP MIC computation */
switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
case IEEE80211_FC1_DIR_NODS:
IEEE80211_ADDR_COPY(wht.i_da, wh->i_addr1);
IEEE80211_ADDR_COPY(wht.i_sa, wh->i_addr2);
break;
case IEEE80211_FC1_DIR_TODS:
IEEE80211_ADDR_COPY(wht.i_da, wh->i_addr3);
IEEE80211_ADDR_COPY(wht.i_sa, wh->i_addr2);
break;
case IEEE80211_FC1_DIR_FROMDS:
IEEE80211_ADDR_COPY(wht.i_da, wh->i_addr1);
IEEE80211_ADDR_COPY(wht.i_sa, wh->i_addr3);
break;
case IEEE80211_FC1_DIR_DSTODS:
IEEE80211_ADDR_COPY(wht.i_da, wh->i_addr3);
IEEE80211_ADDR_COPY(wht.i_sa,
((const struct ieee80211_frame_addr4 *)wh)->i_addr4);
break;
}
if (ieee80211_has_qos(wh))
wht.i_pri = ieee80211_get_qos(wh) & IEEE80211_QOS_TID;
else
wht.i_pri = 0;
wht.i_pad[0] = wht.i_pad[1] = wht.i_pad[2] = 0;
michael_init(&ctx);
michael_key(key, &ctx);
michael_update(&ctx, (caddr_t)&wht, sizeof(wht));
m = m0;
/* assumes the first "off" bytes are contiguous */
pos = mtod(m, caddr_t) + off;
len = m->m_len - off;
for (;;) {
michael_update(&ctx, pos, len);
if ((m = m->m_next) == NULL)
break;
pos = mtod(m, caddr_t);
len = m->m_len;
}
michael_final(mic, &ctx);
}
/* shortcuts */
#define IEEE80211_TKIP_TAILLEN \
(IEEE80211_TKIP_MICLEN + IEEE80211_WEP_CRCLEN)
#define IEEE80211_TKIP_OVHD \
(IEEE80211_TKIP_HDRLEN + IEEE80211_TKIP_TAILLEN)
struct mbuf *
ieee80211_tkip_encrypt(struct ieee80211com *ic, struct mbuf *m0,
struct ieee80211_key *k)
{
struct ieee80211_tkip_ctx *ctx = k->k_priv;
u_int16_t wepseed[8]; /* needs to be 16-bit aligned for Phase2 */
const struct ieee80211_frame *wh;
u_int8_t *ivp, *mic, *icvp;
struct mbuf *n0, *m, *n;
u_int32_t crc;
int left, moff, noff, len, hdrlen;
MGET(n0, M_DONTWAIT, m0->m_type);
if (n0 == NULL)
goto nospace;
if (m_dup_pkthdr(n0, m0, M_DONTWAIT))
goto nospace;
n0->m_pkthdr.len += IEEE80211_TKIP_HDRLEN;
n0->m_len = MHLEN;
if (n0->m_pkthdr.len >= MINCLSIZE - IEEE80211_TKIP_TAILLEN) {
MCLGET(n0, M_DONTWAIT);
if (n0->m_flags & M_EXT)
n0->m_len = n0->m_ext.ext_size;
}
if (n0->m_len > n0->m_pkthdr.len)
n0->m_len = n0->m_pkthdr.len;
/* copy 802.11 header */
wh = mtod(m0, struct ieee80211_frame *);
hdrlen = ieee80211_get_hdrlen(wh);
memcpy(mtod(n0, caddr_t), wh, hdrlen);
k->k_tsc++; /* increment the 48-bit TSC */
/* construct TKIP header */
ivp = mtod(n0, u_int8_t *) + hdrlen;
ivp[0] = k->k_tsc >> 8; /* TSC1 */
/* WEP Seed = (TSC1 | 0x20) & 0x7f (see 8.3.2.2) */
ivp[1] = (ivp[0] | 0x20) & 0x7f;
ivp[2] = k->k_tsc; /* TSC0 */
ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV; /* KeyID | ExtIV */
ivp[4] = k->k_tsc >> 16; /* TSC2 */
ivp[5] = k->k_tsc >> 24; /* TSC3 */
ivp[6] = k->k_tsc >> 32; /* TSC4 */
ivp[7] = k->k_tsc >> 40; /* TSC5 */
/* compute WEP seed */
if (!ctx->txttak_ok || (k->k_tsc & 0xffff) == 0) {
Phase1(ctx->txttak, k->k_key, wh->i_addr2, k->k_tsc >> 16);
ctx->txttak_ok = 1;
}
Phase2((u_int8_t *)wepseed, k->k_key, ctx->txttak, k->k_tsc & 0xffff);
rc4_keysetup(&ctx->rc4, (u_int8_t *)wepseed, 16);
explicit_bzero(wepseed, sizeof(wepseed));
/* encrypt frame body and compute WEP ICV */
m = m0;
n = n0;
moff = hdrlen;
noff = hdrlen + IEEE80211_TKIP_HDRLEN;
left = m0->m_pkthdr.len - moff;
crc = ~0;
while (left > 0) {
if (moff == m->m_len) {
/* nothing left to copy from m */
m = m->m_next;
moff = 0;
}
if (noff == n->m_len) {
/* n is full and there's more data to copy */
MGET(n->m_next, M_DONTWAIT, n->m_type);
if (n->m_next == NULL)
goto nospace;
n = n->m_next;
n->m_len = MLEN;
if (left >= MINCLSIZE - IEEE80211_TKIP_TAILLEN) {
MCLGET(n, M_DONTWAIT);
if (n->m_flags & M_EXT)
n->m_len = n->m_ext.ext_size;
}
if (n->m_len > left)
n->m_len = left;
noff = 0;
}
len = min(m->m_len - moff, n->m_len - noff);
crc = ether_crc32_le_update(crc, mtod(m, caddr_t) + moff, len);
rc4_crypt(&ctx->rc4, mtod(m, caddr_t) + moff,
mtod(n, caddr_t) + noff, len);
moff += len;
noff += len;
left -= len;
}
/* reserve trailing space for TKIP MIC and WEP ICV */
if (M_TRAILINGSPACE(n) < IEEE80211_TKIP_TAILLEN) {
MGET(n->m_next, M_DONTWAIT, n->m_type);
if (n->m_next == NULL)
goto nospace;
n = n->m_next;
n->m_len = 0;
}
/* compute TKIP MIC over clear text */
mic = mtod(n, caddr_t) + n->m_len;
ieee80211_tkip_mic(m0, hdrlen, ctx->txmic, mic);
crc = ether_crc32_le_update(crc, mic, IEEE80211_TKIP_MICLEN);
rc4_crypt(&ctx->rc4, mic, mic, IEEE80211_TKIP_MICLEN);
n->m_len += IEEE80211_TKIP_MICLEN;
/* finalize WEP ICV */
icvp = mtod(n, caddr_t) + n->m_len;
crc = ~crc;
icvp[0] = crc;
icvp[1] = crc >> 8;
icvp[2] = crc >> 16;
icvp[3] = crc >> 24;
rc4_crypt(&ctx->rc4, icvp, icvp, IEEE80211_WEP_CRCLEN);
n->m_len += IEEE80211_WEP_CRCLEN;
n0->m_pkthdr.len += IEEE80211_TKIP_TAILLEN;
m_freem(m0);
return n0;
nospace:
ic->ic_stats.is_tx_nombuf++;
m_freem(m0);
m_freem(n0);
return NULL;
}
struct mbuf *
ieee80211_tkip_decrypt(struct ieee80211com *ic, struct mbuf *m0,
struct ieee80211_key *k)
{
struct ieee80211_tkip_ctx *ctx = k->k_priv;
struct ieee80211_frame *wh;
u_int16_t wepseed[8]; /* needs to be 16-bit aligned for Phase2 */
u_int8_t buf[IEEE80211_TKIP_MICLEN + IEEE80211_WEP_CRCLEN];
u_int8_t mic[IEEE80211_TKIP_MICLEN];
u_int64_t tsc, *prsc;
u_int32_t crc, crc0;
u_int8_t *ivp, *mic0;
u_int8_t tid;
struct mbuf *n0, *m, *n;
int hdrlen, left, moff, noff, len;
wh = mtod(m0, struct ieee80211_frame *);
hdrlen = ieee80211_get_hdrlen(wh);
if (m0->m_pkthdr.len < hdrlen + IEEE80211_TKIP_OVHD) {
m_freem(m0);
return NULL;
}
ivp = (u_int8_t *)wh + hdrlen;
/* check that ExtIV bit is set */
if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
m_freem(m0);
return NULL;
}
/* retrieve last seen packet number for this frame priority */
tid = ieee80211_has_qos(wh) ?
ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
prsc = &k->k_rsc[tid];
/* extract the 48-bit TSC from the TKIP header */
tsc = (u_int64_t)ivp[2] |
(u_int64_t)ivp[0] << 8 |
(u_int64_t)ivp[4] << 16 |
(u_int64_t)ivp[5] << 24 |
(u_int64_t)ivp[6] << 32 |
(u_int64_t)ivp[7] << 40;
if (tsc <= *prsc) {
/* replayed frame, discard */
ic->ic_stats.is_tkip_replays++;
m_freem(m0);
return NULL;
}
MGET(n0, M_DONTWAIT, m0->m_type);
if (n0 == NULL)
goto nospace;
if (m_dup_pkthdr(n0, m0, M_DONTWAIT))
goto nospace;
n0->m_pkthdr.len -= IEEE80211_TKIP_OVHD;
n0->m_len = MHLEN;
if (n0->m_pkthdr.len >= MINCLSIZE) {
MCLGET(n0, M_DONTWAIT);
if (n0->m_flags & M_EXT)
n0->m_len = n0->m_ext.ext_size;
}
if (n0->m_len > n0->m_pkthdr.len)
n0->m_len = n0->m_pkthdr.len;
/* copy 802.11 header and clear protected bit */
memcpy(mtod(n0, caddr_t), wh, hdrlen);
wh = mtod(n0, struct ieee80211_frame *);
wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
/* compute WEP seed */
if (!ctx->rxttak_ok || (tsc >> 16) != (*prsc >> 16)) {
ctx->rxttak_ok = 0; /* invalidate cached TTAK (if any) */
Phase1(ctx->rxttak, k->k_key, wh->i_addr2, tsc >> 16);
}
Phase2((u_int8_t *)wepseed, k->k_key, ctx->rxttak, tsc & 0xffff);
rc4_keysetup(&ctx->rc4, (u_int8_t *)wepseed, 16);
explicit_bzero(wepseed, sizeof(wepseed));
/* decrypt frame body and compute WEP ICV */
m = m0;
n = n0;
moff = hdrlen + IEEE80211_TKIP_HDRLEN;
noff = hdrlen;
left = n0->m_pkthdr.len - noff;
crc = ~0;
while (left > 0) {
if (moff == m->m_len) {
/* nothing left to copy from m */
m = m->m_next;
moff = 0;
}
if (noff == n->m_len) {
/* n is full and there's more data to copy */
MGET(n->m_next, M_DONTWAIT, n->m_type);
if (n->m_next == NULL)
goto nospace;
n = n->m_next;
n->m_len = MLEN;
if (left >= MINCLSIZE) {
MCLGET(n, M_DONTWAIT);
if (n->m_flags & M_EXT)
n->m_len = n->m_ext.ext_size;
}
if (n->m_len > left)
n->m_len = left;
noff = 0;
}
len = min(m->m_len - moff, n->m_len - noff);
rc4_crypt(&ctx->rc4, mtod(m, caddr_t) + moff,
mtod(n, caddr_t) + noff, len);
crc = ether_crc32_le_update(crc, mtod(n, caddr_t) + noff, len);
moff += len;
noff += len;
left -= len;
}
/* extract and decrypt TKIP MIC and WEP ICV from m0's tail */
m_copydata(m, moff, IEEE80211_TKIP_TAILLEN, buf);
rc4_crypt(&ctx->rc4, buf, buf, IEEE80211_TKIP_TAILLEN);
/* include TKIP MIC in WEP ICV */
mic0 = buf;
crc = ether_crc32_le_update(crc, mic0, IEEE80211_TKIP_MICLEN);
crc = ~crc;
/* decrypt ICV and compare it with calculated ICV */
crc0 = *(u_int32_t *)(buf + IEEE80211_TKIP_MICLEN);
if (crc != letoh32(crc0)) {
ic->ic_stats.is_tkip_icv_errs++;
m_freem(m0);
m_freem(n0);
return NULL;
}
/* compute TKIP MIC over decrypted message */
ieee80211_tkip_mic(n0, hdrlen, ctx->rxmic, mic);
/* check that it matches the MIC in received frame */
if (timingsafe_bcmp(mic0, mic, IEEE80211_TKIP_MICLEN) != 0) {
m_freem(m0);
m_freem(n0);
ic->ic_stats.is_rx_locmicfail++;
ieee80211_michael_mic_failure(ic, tsc);
return NULL;
}
/* update last seen packet number (MIC is validated) */
*prsc = tsc;
/* mark cached TTAK as valid */
ctx->rxttak_ok = 1;
m_freem(m0);
return n0;
nospace:
ic->ic_stats.is_rx_nombuf++;
m_freem(m0);
m_freem(n0);
return NULL;
}
#ifndef IEEE80211_STA_ONLY
/*
* This function is called in HostAP mode to deauthenticate all STAs using
* TKIP as their pairwise or group cipher (as part of TKIP countermeasures).
*/
static void
ieee80211_tkip_deauth(void *arg, struct ieee80211_node *ni)
{
struct ieee80211com *ic = arg;
if (ni->ni_state == IEEE80211_STA_ASSOC &&
(ic->ic_bss->ni_rsngroupcipher == IEEE80211_CIPHER_TKIP ||
ni->ni_rsncipher == IEEE80211_CIPHER_TKIP)) {
/* deauthenticate STA */
IEEE80211_SEND_MGMT(ic, ni, IEEE80211_FC0_SUBTYPE_DEAUTH,
IEEE80211_REASON_MIC_FAILURE);
ieee80211_node_leave(ic, ni);
}
}
void
ieee80211_michael_mic_failure_timeout(void *arg)
{
struct ieee80211com *ic = arg;
/* Disable TKIP countermeasures. */
ic->ic_flags &= ~IEEE80211_F_COUNTERM;
}
#endif /* IEEE80211_STA_ONLY */
/*
* This function can be called by the software TKIP crypto code or by the
* drivers when their hardware crypto engines detect a Michael MIC failure.
*/
void
ieee80211_michael_mic_failure(struct ieee80211com *ic, u_int64_t tsc)
{
extern int ticks;
#ifndef IEEE80211_STA_ONLY
int sec;
#endif
if (ic->ic_flags & IEEE80211_F_COUNTERM)
return; /* countermeasures already active */
log(LOG_WARNING, "%s: Michael MIC failure\n", ic->ic_if.if_xname);
/*
* NB. do not send Michael MIC Failure reports as recommended since
* these may be used as an oracle to verify CRC guesses as described
* in Beck, M. and Tews S. "Practical attacks against WEP and WPA"
* http://dl.aircrack-ng.org/breakingwepandwpa.pdf
*/
/*
* Activate TKIP countermeasures (see 802.11-2012 11.4.2.4) if less than
* 60 seconds have passed since the most recent previous MIC failure.
*/
if (ic->ic_tkip_micfail == 0 ||
ticks - (ic->ic_tkip_micfail + 60 * hz) >= 0) {
ic->ic_tkip_micfail = ticks;
ic->ic_tkip_micfail_last_tsc = tsc;
return;
}
switch (ic->ic_opmode) {
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_HOSTAP:
/* refuse new TKIP associations for at least 60 seconds */
ic->ic_flags |= IEEE80211_F_COUNTERM;
sec = 60 + arc4random_uniform(30);
log(LOG_WARNING, "%s: HostAP will be disabled for %d seconds "
"as a countermeasure against TKIP key cracking attempts\n",
ic->ic_if.if_xname, sec);
timeout_add_sec(&ic->ic_tkip_micfail_timeout, sec);
/* deauthenticate all currently associated STAs using TKIP */
ieee80211_iterate_nodes(ic, ieee80211_tkip_deauth, ic);
/* schedule a GTK change */
timeout_add_sec(&ic->ic_rsn_timeout, 1);
break;
#endif
case IEEE80211_M_STA:
/*
* Notify the AP of MIC failures: send two Michael
* MIC Failure Report frames back-to-back to trigger
* countermeasures at the AP end.
*/
(void)ieee80211_send_eapol_key_req(ic, ic->ic_bss,
EAPOL_KEY_KEYMIC | EAPOL_KEY_ERROR | EAPOL_KEY_SECURE,
ic->ic_tkip_micfail_last_tsc);
(void)ieee80211_send_eapol_key_req(ic, ic->ic_bss,
EAPOL_KEY_KEYMIC | EAPOL_KEY_ERROR | EAPOL_KEY_SECURE,
tsc);
/* deauthenticate from the AP.. */
IEEE80211_SEND_MGMT(ic, ic->ic_bss,
IEEE80211_FC0_SUBTYPE_DEAUTH,
IEEE80211_REASON_MIC_FAILURE);
/* ..and find another one */
(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
break;
default:
break;
}
ic->ic_tkip_micfail = ticks;
ic->ic_tkip_micfail_last_tsc = tsc;
}
/***********************************************************************
Contents: Generate IEEE 802.11 per-frame RC4 key hash test vectors
Date: April 19, 2002
Notes:
This code is written for pedagogical purposes, NOT for performance.
************************************************************************/
/* macros for extraction/creation of byte/u16b values */
#define RotR1(v16) ((((v16) >> 1) & 0x7FFF) ^ (((v16) & 1) << 15))
#define Lo8(v16) ((byte)( (v16) & 0x00FF))
#define Hi8(v16) ((byte)(((v16) >> 8) & 0x00FF))
#define Lo16(v32) ((u16b)( (v32) & 0xFFFF))
#define Hi16(v32) ((u16b)(((v32) >>16) & 0xFFFF))
#define Mk16(hi,lo) ((lo) ^ (((u16b)(hi)) << 8))
/* select the Nth 16-bit word of the Temporal Key byte array TK[] */
#define TK16(N) Mk16(TK[2 * (N) + 1], TK[2 * (N)])
/* S-box lookup: 16 bits --> 16 bits */
#define _S_(v16) (Sbox[Lo8(v16)] ^ swap16(Sbox[Hi8(v16)]))
/* fixed algorithm "parameters" */
#define PHASE1_LOOP_CNT 8 /* this needs to be "big enough" */
#define TA_SIZE 6 /* 48-bit transmitter address */
#define TK_SIZE 16 /* 128-bit Temporal Key */
#define P1K_SIZE 10 /* 80-bit Phase1 key */
#define RC4_KEY_SIZE 16 /* 128-bit RC4KEY (104 bits unknown) */
/* 2-byte by 2-byte subset of the full AES S-box table */
static const u16b Sbox[256]= /* Sbox for hash */
{
0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A
};
/*
**********************************************************************
* Routine: Phase 1 -- generate P1K, given TA, TK, IV32
*
* Inputs:
* TK[] = Temporal Key [128 bits]
* TA[] = transmitter's MAC address [ 48 bits]
* IV32 = upper 32 bits of IV [ 32 bits]
* Output:
* P1K[] = Phase 1 key [ 80 bits]
*
* Note:
* This function only needs to be called every 2**16 frames,
* although in theory it could be called every frame.
*
**********************************************************************
*/
static void
Phase1(u16b *P1K, const byte *TK, const byte *TA, u32b IV32)
{
int i;
/* Initialize the 80 bits of P1K[] from IV32 and TA[0..5] */
P1K[0] = Lo16(IV32);
P1K[1] = Hi16(IV32);
P1K[2] = Mk16(TA[1], TA[0]); /* use TA[] as little-endian */
P1K[3] = Mk16(TA[3], TA[2]);
P1K[4] = Mk16(TA[5], TA[4]);
/* Now compute an unbalanced Feistel cipher with 80-bit block */
/* size on the 80-bit block P1K[], using the 128-bit key TK[] */
for (i = 0; i < PHASE1_LOOP_CNT; i++) {
/* Each add operation here is mod 2**16 */
P1K[0] += _S_(P1K[4] ^ TK16((i & 1) + 0));
P1K[1] += _S_(P1K[0] ^ TK16((i & 1) + 2));
P1K[2] += _S_(P1K[1] ^ TK16((i & 1) + 4));
P1K[3] += _S_(P1K[2] ^ TK16((i & 1) + 6));
P1K[4] += _S_(P1K[3] ^ TK16((i & 1) + 0));
P1K[4] += i; /* avoid "slide attacks" */
}
}
/*
**********************************************************************
* Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16
*
* Inputs:
* TK[] = Temporal Key [128 bits]
* P1K[] = Phase 1 output key [ 80 bits]
* IV16 = low 16 bits of IV counter [ 16 bits]
* Output:
* RC4KEY[] = the key used to encrypt the frame [128 bits]
*
* Note:
* The value {TA,IV32,IV16} for Phase1/Phase2 must be unique
* across all frames using the same key TK value. Then, for a
* given value of TK[], this TKIP48 construction guarantees that
* the final RC4KEY value is unique across all frames.
*
**********************************************************************
*/
static void
Phase2(byte *RC4KEY, const byte *TK, const u16b *P1K, u16b IV16)
{
u16b *PPK; /* temporary key for mixing */
int i;
/*
* Suggested implementation optimization: if PPK[] is "overlaid"
* appropriately on RC4KEY[], there is no need for the final for
* loop that copies the PPK[] result into RC4KEY[].
*/
PPK = (u16b *)&RC4KEY[4];
/* all adds in the PPK[] equations below are mod 2**16 */
for (i = 0; i < 5; i++)
PPK[i] = P1K[i]; /* first, copy P1K to PPK */
PPK[5] = P1K[4] + IV16; /* next, add in IV16 */
/* Bijective non-linear mixing of the 96 bits of PPK[0..5] */
PPK[0] += _S_(PPK[5] ^ TK16(0)); /* Mix key in each "round" */
PPK[1] += _S_(PPK[0] ^ TK16(1));
PPK[2] += _S_(PPK[1] ^ TK16(2));
PPK[3] += _S_(PPK[2] ^ TK16(3));
PPK[4] += _S_(PPK[3] ^ TK16(4));
PPK[5] += _S_(PPK[4] ^ TK16(5)); /* Total # S-box lookups == 6 */
/* Final sweep: bijective, linear. Rotates kill LSB correlations */
PPK[0] += RotR1(PPK[5] ^ TK16(6));
PPK[1] += RotR1(PPK[0] ^ TK16(7)); /* Use all of TK[] in Phase2 */
PPK[2] += RotR1(PPK[1]);
PPK[3] += RotR1(PPK[2]);
PPK[4] += RotR1(PPK[3]);
PPK[5] += RotR1(PPK[4]);
/* At this point, for a given key TK[0..15], the 96-bit output */
/* value PPK[0..5] is guaranteed to be unique, as a function */
/* of the 96-bit "input" value {TA,IV32,IV16}. That is, P1K */
/* is now a keyed permutation of {TA,IV32,IV16}. */
/* Set RC4KEY[0..3], which includes cleartext portion of RC4 key */
RC4KEY[0] = Hi8(IV16); /* RC4KEY[0..2] is the WEP IV */
RC4KEY[1] =(Hi8(IV16) | 0x20) & 0x7F; /* Help avoid FMS weak keys */
RC4KEY[2] = Lo8(IV16);
RC4KEY[3] = Lo8((PPK[5] ^ TK16(0)) >> 1);
#if BYTE_ORDER == BIG_ENDIAN
/* Copy 96 bits of PPK[0..5] to RC4KEY[4..15] (little-endian) */
for (i = 0; i < 6; i++)
PPK[i] = swap16(PPK[i]);
#endif
}
|