1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
|
/* $OpenBSD: ieee80211_mira.c,v 1.28 2020/04/11 13:47:53 stsp Exp $ */
/*
* Copyright (c) 2016 Stefan Sperling <stsp@openbsd.org>
* Copyright (c) 2016 Theo Buehler <tb@openbsd.org>
* Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_mira.h>
/* Allow for aggressive down probing when channel quality changes. */
#define MIRA_AGGRESSIVE_DOWNWARDS_PROBING
const struct ieee80211_ht_rateset * ieee80211_mira_get_rateset(int, int);
void ieee80211_mira_probe_timeout_up(void *);
void ieee80211_mira_probe_timeout_down(void *);
uint64_t ieee80211_mira_get_txrate(int, int);
uint16_t ieee80211_mira_legacy_txtime(uint32_t, int, struct ieee80211com *);
uint32_t ieee80211_mira_ht_txtime(uint32_t, int, int, int);
int ieee80211_mira_best_basic_rate(struct ieee80211_node *);
int ieee80211_mira_ack_rate(struct ieee80211_node *);
uint64_t ieee80211_mira_toverhead(struct ieee80211_mira_node *,
struct ieee80211com *, struct ieee80211_node *);
void ieee80211_mira_update_stats(struct ieee80211_mira_node *,
struct ieee80211com *, struct ieee80211_node *);
void ieee80211_mira_reset_goodput_stats(struct ieee80211_mira_node *);
void ieee80211_mira_reset_driver_stats(struct ieee80211_mira_node *);
int ieee80211_mira_next_lower_intra_rate(struct ieee80211_mira_node *,
struct ieee80211_node *);
int ieee80211_mira_next_intra_rate(struct ieee80211_mira_node *,
struct ieee80211_node *);
const struct ieee80211_ht_rateset * ieee80211_mira_next_rateset(
struct ieee80211_mira_node *, struct ieee80211_node *);
int ieee80211_mira_best_mcs_in_rateset(struct ieee80211_mira_node *,
const struct ieee80211_ht_rateset *);
void ieee80211_mira_probe_next_rateset(struct ieee80211_mira_node *,
struct ieee80211_node *, const struct ieee80211_ht_rateset *);
int ieee80211_mira_next_mcs(struct ieee80211_mira_node *,
struct ieee80211_node *);
int ieee80211_mira_prev_mcs(struct ieee80211_mira_node *,
struct ieee80211_node *);
int ieee80211_mira_probe_valid(struct ieee80211_mira_node *,
struct ieee80211_node *);
void ieee80211_mira_probe_done(struct ieee80211_mira_node *);
int ieee80211_mira_intra_mode_ra_finished(
struct ieee80211_mira_node *, struct ieee80211_node *);
void ieee80211_mira_trigger_next_rateset(struct ieee80211_mira_node *mn,
struct ieee80211_node *);
int ieee80211_mira_inter_mode_ra_finished(
struct ieee80211_mira_node *, struct ieee80211_node *);
int ieee80211_mira_best_rate(struct ieee80211_mira_node *,
struct ieee80211_node *);
void ieee80211_mira_update_probe_interval(
struct ieee80211_mira_goodput_stats *);
void ieee80211_mira_schedule_probe_timers(struct ieee80211_mira_node *,
struct ieee80211_node *);
int ieee80211_mira_check_probe_timers(struct ieee80211_mira_node *,
struct ieee80211_node *);
void ieee80211_mira_probe_next_rate(struct ieee80211_mira_node *,
struct ieee80211_node *);
int ieee80211_mira_valid_tx_mcs(struct ieee80211com *, int);
uint32_t ieee80211_mira_valid_rates(struct ieee80211com *,
struct ieee80211_node *);
uint32_t ieee80211_mira_mcs_below(struct ieee80211_mira_node *, int, int);
void ieee80211_mira_set_rts_threshold(struct ieee80211_mira_node *,
struct ieee80211com *, struct ieee80211_node *);
void ieee80211_mira_reset_collision_stats(struct ieee80211_mira_node *);
/* We use fixed point arithmetic with 64 bit integers. */
#define MIRA_FP_SHIFT 21
#define MIRA_FP_INT(x) (x ## ULL << MIRA_FP_SHIFT) /* the integer x */
#define MIRA_FP_1 MIRA_FP_INT(1)
/* Multiply two fixed point numbers. */
#define MIRA_FP_MUL(a, b) \
(((a) * (b)) >> MIRA_FP_SHIFT)
/* Divide two fixed point numbers. */
#define MIRA_FP_DIV(a, b) \
(b == 0 ? (uint64_t)-1 : (((a) << MIRA_FP_SHIFT) / (b)))
#ifdef MIRA_DEBUG
#define DPRINTF(x) do { if (mira_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (mira_debug >= (n)) printf x; } while (0)
int mira_debug = 0;
#else
#define DPRINTF(x) do { ; } while (0)
#define DPRINTFN(n, x) do { ; } while (0)
#endif
#ifdef MIRA_DEBUG
void
mira_fixedp_split(uint32_t *i, uint32_t *f, uint64_t fp)
{
uint64_t tmp;
/* integer part */
*i = (fp >> MIRA_FP_SHIFT);
/* fractional part */
tmp = (fp & ((uint64_t)-1 >> (64 - MIRA_FP_SHIFT)));
tmp *= 100;
*f = (uint32_t)(tmp >> MIRA_FP_SHIFT);
}
char *
mira_fp_sprintf(uint64_t fp)
{
uint32_t i, f;
static char buf[64];
int ret;
mira_fixedp_split(&i, &f, fp);
ret = snprintf(buf, sizeof(buf), "%u.%02u", i, f);
if (ret == -1 || ret >= sizeof(buf))
return "ERR";
return buf;
}
void
mira_print_driver_stats(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni) {
DPRINTF(("%s driver stats:\n", ether_sprintf(ni->ni_macaddr)));
DPRINTF(("mn->frames = %u\n", mn->frames));
DPRINTF(("mn->retries = %u\n", mn->retries));
DPRINTF(("mn->txfail = %u\n", mn->txfail));
DPRINTF(("mn->ampdu_size = %u\n", mn->ampdu_size));
DPRINTF(("mn->agglen = %u\n", mn->agglen));
}
#endif /* MIRA_DEBUG */
const struct ieee80211_ht_rateset *
ieee80211_mira_get_rateset(int mcs, int sgi)
{
const struct ieee80211_ht_rateset *rs;
int i;
for (i = 0; i < IEEE80211_HT_NUM_RATESETS; i++) {
rs = &ieee80211_std_ratesets_11n[i];
if (sgi != rs->sgi)
continue;
if (mcs >= rs->min_mcs && mcs <= rs->max_mcs)
return rs;
}
panic("MCS %d is not part of any rateset", mcs);
}
/*
* Probe timers.
*/
/* Constants related to timeouts for time-driven rate probing. */
#define IEEE80211_MIRA_PROBE_TIMEOUT_MIN 2 /* in msec */
#define IEEE80211_MIRA_PROBE_INTVAL_MAX (1 << 10) /* 2^10 */
void
ieee80211_mira_probe_timeout_up(void *arg)
{
struct ieee80211_mira_node *mn = arg;
int s;
s = splnet();
mn->probe_timer_expired[IEEE80211_MIRA_PROBE_TO_UP] = 1;
DPRINTFN(3, ("probe up timeout fired\n"));
splx(s);
}
void
ieee80211_mira_probe_timeout_down(void *arg)
{
struct ieee80211_mira_node *mn = arg;
int s;
s = splnet();
mn->probe_timer_expired[IEEE80211_MIRA_PROBE_TO_DOWN] = 1;
DPRINTFN(3, ("probe down timeout fired\n"));
splx(s);
}
/*
* Update goodput statistics.
*/
uint64_t
ieee80211_mira_get_txrate(int mcs, int sgi)
{
const struct ieee80211_ht_rateset *rs;
uint64_t txrate;
rs = ieee80211_mira_get_rateset(mcs, sgi);
txrate = rs->rates[mcs - rs->min_mcs];
txrate <<= MIRA_FP_SHIFT; /* convert to fixed-point */
txrate *= 500; /* convert to kbit/s */
txrate /= 1000; /* convert to mbit/s */
return txrate;
}
/* Based on rt2661_txtime in the ral(4) driver. */
uint16_t
ieee80211_mira_legacy_txtime(uint32_t len, int rate, struct ieee80211com *ic)
{
#define MIRA_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
uint16_t txtime;
if (MIRA_RATE_IS_OFDM(rate)) {
/* IEEE Std 802.11g-2003, pp. 44 */
txtime = (8 + 4 * len + 3 + rate - 1) / rate;
txtime = 16 + 4 + 4 * txtime + 6;
} else {
/* IEEE Std 802.11b-1999, pp. 28 */
txtime = (16 * len + rate - 1) / rate;
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
txtime += 72 + 24;
else
txtime += 144 + 48;
}
return txtime;
}
uint32_t
ieee80211_mira_ht_txtime(uint32_t len, int mcs, int is2ghz, int sgi)
{
const struct ieee80211_ht_rateset *rs;
/* XXX These constants should be macros in ieee80211.h instead. */
const uint32_t t_lstf = 8; /* usec legacy short training field */
const uint32_t t_lltf = 8; /* usec legacy long training field */
const uint32_t t_lsig = 4; /* usec legacy signal field */
const uint32_t t_htstf = 4; /* usec HT short training field */
const uint32_t t_ltstf = 4; /* usec HT long training field */
const uint32_t t_htsig = 8; /* usec HT signal field */
const uint32_t t_sym = 4; /* usec symbol interval */
const uint32_t t_syms = 3; /* usec symbol interval; XXX actually 3.6 */
uint32_t n_sym, n_dbps;
uint32_t t_plcp;
uint32_t t_data;
uint32_t txtime;
/*
* Calculate approximate frame Tx time in usec.
* See 802.11-2012, 20.4.3 "TXTIME calculation" and
* 20.3.11.1 "Equation (20-32)".
* XXX Assumes a 20MHz channel, HT-mixed frame format, no STBC.
*/
t_plcp = t_lstf + t_lltf + t_lsig + t_htstf + 4 * t_ltstf + t_htsig;
rs = ieee80211_mira_get_rateset(mcs, sgi);
n_dbps = rs->rates[mcs - rs->min_mcs] * 2;
n_sym = ((8 * len + 16 + 6) / n_dbps); /* "Equation (20-32)" */
if (sgi)
t_data = (t_syms * n_sym) / t_sym;
else
t_data = t_sym * n_sym;
txtime = t_plcp + t_data;
if (is2ghz)
txtime += 6; /* aSignalExtension */
return txtime;
}
int
ieee80211_mira_best_basic_rate(struct ieee80211_node *ni)
{
struct ieee80211_rateset *rs = &ni->ni_rates;
int i, best, rval;
/* Default to 1 Mbit/s on 2GHz and 6 Mbit/s on 5GHz. */
best = IEEE80211_IS_CHAN_2GHZ(ni->ni_chan) ? 2 : 12;
for (i = 0; i < rs->rs_nrates; i++) {
if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) == 0)
continue;
rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL);
if (rval > best)
best = rval;
}
return best;
}
/*
* See 802.11-2012, 9.7.6.5 "Rate selection for control response frames".
*/
int
ieee80211_mira_ack_rate(struct ieee80211_node *ni)
{
/*
* Assume the ACK was sent at a mandatory ERP OFDM rate.
* In the worst case, the driver has retried at non-HT rates,
* so for MCS 0 assume we didn't actually send an OFDM frame
* and ACKs arrived at a basic rate.
*/
if (ni->ni_txmcs == 0)
return ieee80211_mira_best_basic_rate(ni);
else if (ni->ni_txmcs == 1)
return 12; /* 6 Mbit/s */
else if (ni->ni_txmcs >= 2)
return 24; /* 12 Mbit/s */
else
return 48; /* 24 Mbit/s */
}
uint64_t
ieee80211_mira_toverhead(struct ieee80211_mira_node *mn,
struct ieee80211com *ic, struct ieee80211_node *ni)
{
/* XXX These should be macros in ieee80211.h. */
#define MIRA_RTSLEN IEEE80211_MIN_LEN
#define MIRA_CTSLEN (sizeof(struct ieee80211_frame_cts) + IEEE80211_CRC_LEN)
uint32_t overhead;
uint64_t toverhead;
int rate, rts;
enum ieee80211_htprot htprot;
int sgi = (ni->ni_flags & IEEE80211_NODE_HT_SGI20) ? 1 : 0;
overhead = ieee80211_mira_ht_txtime(0, ni->ni_txmcs,
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan), sgi);
htprot = (ic->ic_bss->ni_htop1 & IEEE80211_HTOP1_PROT_MASK);
if (htprot == IEEE80211_HTPROT_NONMEMBER ||
htprot == IEEE80211_HTPROT_NONHT_MIXED)
rts = 1;
else if (htprot == IEEE80211_HTPROT_20MHZ &&
(ic->ic_htcaps & IEEE80211_HTCAP_CBW20_40))
rts = 1;
else
rts = (mn->ampdu_size > ieee80211_mira_get_rts_threshold(mn,
ic, ni, mn->ampdu_size));
if (rts) {
/* Assume RTS/CTS were sent at a basic rate. */
rate = ieee80211_min_basic_rate(ic);
overhead += ieee80211_mira_legacy_txtime(MIRA_RTSLEN, rate, ic);
overhead += ieee80211_mira_legacy_txtime(MIRA_CTSLEN, rate, ic);
}
if (mn->agglen == 1) {
/* Single-frame transmissions must wait for an ACK frame. */
rate = ieee80211_mira_ack_rate(ni);
overhead += ieee80211_mira_legacy_txtime(IEEE80211_ACK_LEN,
rate, ic);
}
toverhead = overhead;
toverhead <<= MIRA_FP_SHIFT; /* convert to fixed-point */
toverhead /= 1000; /* convert to msec */
toverhead /= 1000; /* convert to sec */
#ifdef MIRA_DEBUG
if (mira_debug > 3) {
uint32_t txtime;
txtime = ieee80211_mira_ht_txtime(mn->ampdu_size, ni->ni_txmcs,
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan), sgi);
txtime += overhead - ieee80211_mira_ht_txtime(0, ni->ni_txmcs,
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan), sgi);
DPRINTFN(4, ("txtime: %u usec\n", txtime));
DPRINTFN(4, ("overhead: %u usec\n", overhead));
DPRINTFN(4, ("toverhead: %s\n", mira_fp_sprintf(toverhead)));
}
#endif
return toverhead;
}
void
ieee80211_mira_update_stats(struct ieee80211_mira_node *mn,
struct ieee80211com *ic, struct ieee80211_node *ni)
{
/* Magic numbers from MiRA paper. */
static const uint64_t alpha = MIRA_FP_1 / 8; /* 1/8 = 0.125 */
static const uint64_t beta = MIRA_FP_1 / 4; /* 1/4 = 0.25 */
uint64_t sfer, delta, toverhead;
uint64_t agglen = mn->agglen;
uint64_t ampdu_size = mn->ampdu_size * 8; /* convert to bits */
int sgi = (ni->ni_flags & IEEE80211_NODE_HT_SGI20) ? 1 : 0;
uint64_t rate = ieee80211_mira_get_txrate(ni->ni_txmcs, sgi);
struct ieee80211_mira_goodput_stats *g = &mn->g[ni->ni_txmcs];
g->nprobes += mn->agglen;
g->nprobe_bytes += mn->ampdu_size;
ampdu_size <<= MIRA_FP_SHIFT; /* convert to fixed-point */
agglen <<= MIRA_FP_SHIFT;
/* XXX range checks? */
ampdu_size = ampdu_size / 1000; /* kbit */
ampdu_size = ampdu_size / 1000; /* mbit */
/* Compute Sub-Frame Error Rate (see section 2.2 in MiRA paper). */
sfer = mn->frames * mn->txfail + mn->retries;
if ((sfer >> MIRA_FP_SHIFT) != 0) { /* bug in wifi driver */
if (ic->ic_if.if_flags & IFF_DEBUG) {
#ifdef DIAGNOSTIC
printf("%s: mira sfer overflow\n",
ether_sprintf(ni->ni_macaddr));
#endif
#ifdef MIRA_DEBUG
mira_print_driver_stats(mn, ni);
#endif
}
ieee80211_mira_probe_done(mn);
return;
}
sfer <<= MIRA_FP_SHIFT; /* convert to fixed-point */
sfer /= (mn->txfail + 1) * mn->frames;
if (sfer > MIRA_FP_1) { /* bug in wifi driver */
if (ic->ic_if.if_flags & IFF_DEBUG) {
#ifdef DIAGNOSTIC
printf("%s: mira sfer > 1\n",
ether_sprintf(ni->ni_macaddr));
#endif
#ifdef MIRA_DEBUG
mira_print_driver_stats(mn, ni);
#endif
}
sfer = MIRA_FP_1; /* round down */
}
/* Store current loss percentage SFER. */
g->loss = sfer * 100;
#ifdef MIRA_DEBUG
if (g->loss && ieee80211_mira_probe_valid(mn, ni))
DPRINTFN(2, ("frame error rate at MCS %d: %s%%\n",
ni->ni_txmcs, mira_fp_sprintf(g->loss)));
#endif
/*
* Update goodput statistics (see section 5.1.2 in MiRA paper).
* We use a slightly modified but equivalent calculation which
* is tuned towards our fixed-point number format.
*/
g->average_agg = MIRA_FP_MUL(MIRA_FP_1 - alpha, g->average_agg);
g->average_agg += MIRA_FP_MUL(alpha, agglen);
toverhead = ieee80211_mira_toverhead(mn, ic, ni);
toverhead = MIRA_FP_MUL(toverhead, rate);
g->measured = MIRA_FP_DIV(MIRA_FP_1 - sfer, MIRA_FP_1 +
MIRA_FP_DIV(toverhead, MIRA_FP_MUL(ampdu_size, g->average_agg)));
g->measured = MIRA_FP_MUL(g->measured, rate);
g->average = MIRA_FP_MUL(MIRA_FP_1 - alpha, g->average);
g->average += MIRA_FP_MUL(alpha, g->measured);
g->stddeviation = MIRA_FP_MUL(MIRA_FP_1 - beta, g->stddeviation);
if (g->average > g->measured)
delta = g->average - g->measured;
else
delta = g->measured - g->average;
g->stddeviation += MIRA_FP_MUL(beta, delta);
}
void
ieee80211_mira_reset_goodput_stats(struct ieee80211_mira_node *mn)
{
int i;
for (i = 0; i < nitems(mn->g); i++) {
struct ieee80211_mira_goodput_stats *g = &mn->g[i];
memset(g, 0, sizeof(*g));
g->average_agg = 1;
g->probe_interval = IEEE80211_MIRA_PROBE_TIMEOUT_MIN;
}
}
void
ieee80211_mira_reset_driver_stats(struct ieee80211_mira_node *mn)
{
mn->frames = 0;
mn->retries = 0;
mn->txfail = 0;
mn->ampdu_size = 0;
mn->agglen = 1;
}
/*
* Rate selection.
*/
/* A rate's goodput has to be at least this much larger to be "better". */
#define IEEE80211_MIRA_RATE_THRESHOLD (MIRA_FP_1 / 64) /* ~ 0.015 */
#define IEEE80211_MIRA_LOSS_THRESHOLD 10 /* in percent */
/* Number of (sub-)frames which render a probe valid. */
#define IEEE80211_MIRA_MIN_PROBE_FRAMES 4
/* Number of bytes which, alternatively, render a probe valid. */
#define IEEE80211_MIRA_MIN_PROBE_BYTES (2 * IEEE80211_MAX_LEN)
/* Number of Tx failures which, alternatively, render a probe valid. */
#define IEEE80211_MIRA_MAX_PROBE_TXFAIL 1
/* Number of Tx retries which, alternatively, render a probe valid. */
#define IEEE80211_MIRA_MAX_PROBE_RETRIES 4
int
ieee80211_mira_next_lower_intra_rate(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni)
{
const struct ieee80211_ht_rateset *rs;
int i, next;
int sgi = (ni->ni_flags & IEEE80211_NODE_HT_SGI20) ? 1 : 0;
rs = ieee80211_mira_get_rateset(ni->ni_txmcs, sgi);
if (ni->ni_txmcs == rs->min_mcs)
return rs->min_mcs;
next = ni->ni_txmcs;
for (i = rs->nrates - 1; i >= 0; i--) {
if ((mn->valid_rates & (1 << (i + rs->min_mcs))) == 0)
continue;
if (i + rs->min_mcs < ni->ni_txmcs) {
next = i + rs->min_mcs;
break;
}
}
return next;
}
int
ieee80211_mira_next_intra_rate(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni)
{
const struct ieee80211_ht_rateset *rs;
int i, next;
int sgi = (ni->ni_flags & IEEE80211_NODE_HT_SGI20) ? 1 : 0;
rs = ieee80211_mira_get_rateset(ni->ni_txmcs, sgi);
if (ni->ni_txmcs == rs->max_mcs)
return rs->max_mcs;
next = ni->ni_txmcs;
for (i = 0; i < rs->nrates; i++) {
if ((mn->valid_rates & (1 << (i + rs->min_mcs))) == 0)
continue;
if (i + rs->min_mcs > ni->ni_txmcs) {
next = i + rs->min_mcs;
break;
}
}
return next;
}
const struct ieee80211_ht_rateset *
ieee80211_mira_next_rateset(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni)
{
const struct ieee80211_ht_rateset *rs, *rsnext;
int next;
int mcs = ni->ni_txmcs;
int sgi = (ni->ni_flags & IEEE80211_NODE_HT_SGI20) ? 1 : 0;
rs = ieee80211_mira_get_rateset(mcs, sgi);
if (mn->probing & IEEE80211_MIRA_PROBING_UP) {
if (rs->max_mcs == 7) /* MCS 0-7 */
next = sgi ? IEEE80211_HT_RATESET_MIMO2_SGI :
IEEE80211_HT_RATESET_MIMO2;
else if (rs->max_mcs == 15) /* MCS 8-15 */
next = sgi ? IEEE80211_HT_RATESET_MIMO3_SGI :
IEEE80211_HT_RATESET_MIMO3;
else if (rs->max_mcs == 23) /* MCS 16-23 */
next = sgi ? IEEE80211_HT_RATESET_MIMO4_SGI :
IEEE80211_HT_RATESET_MIMO4;
else /* MCS 24-31 */
return NULL;
} else if (mn->probing & IEEE80211_MIRA_PROBING_DOWN) {
if (rs->min_mcs == 24) /* MCS 24-31 */
next = sgi ? IEEE80211_HT_RATESET_MIMO3_SGI :
IEEE80211_HT_RATESET_MIMO3;
else if (rs->min_mcs == 16) /* MCS 16-23 */
next = sgi ? IEEE80211_HT_RATESET_MIMO2_SGI :
IEEE80211_HT_RATESET_MIMO2;
else if (rs->min_mcs == 8) /* MCS 8-15 */
next = sgi ? IEEE80211_HT_RATESET_SISO_SGI :
IEEE80211_HT_RATESET_SISO;
else /* MCS 0-7 */
return NULL;
} else
panic("%s: invalid probing mode %d", __func__, mn->probing);
rsnext = &ieee80211_std_ratesets_11n[next];
if ((rsnext->mcs_mask & mn->valid_rates) == 0)
return NULL;
return rsnext;
}
int
ieee80211_mira_best_mcs_in_rateset(struct ieee80211_mira_node *mn,
const struct ieee80211_ht_rateset *rs)
{
uint64_t gmax = 0;
int i, best_mcs = rs->min_mcs;
for (i = 0; i < rs->nrates; i++) {
int mcs = rs->min_mcs + i;
struct ieee80211_mira_goodput_stats *g = &mn->g[mcs];
if (((1 << mcs) & mn->valid_rates) == 0)
continue;
if (g->measured > gmax + IEEE80211_MIRA_RATE_THRESHOLD) {
gmax = g->measured;
best_mcs = mcs;
}
}
return best_mcs;
}
void
ieee80211_mira_probe_next_rateset(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni, const struct ieee80211_ht_rateset *rsnext)
{
const struct ieee80211_ht_rateset *rs;
struct ieee80211_mira_goodput_stats *g;
int best_mcs, i;
int sgi = (ni->ni_flags & IEEE80211_NODE_HT_SGI20) ? 1 : 0;
/* Find most recently measured best MCS from the current rateset. */
rs = ieee80211_mira_get_rateset(ni->ni_txmcs, sgi);
best_mcs = ieee80211_mira_best_mcs_in_rateset(mn, rs);
/* Switch to the next rateset. */
ni->ni_txmcs = rsnext->min_mcs;
if ((mn->valid_rates & (1 << rsnext->min_mcs)) == 0)
ni->ni_txmcs = ieee80211_mira_next_intra_rate(mn, ni);
/* Select the lowest rate from the next rateset with loss-free
* goodput close to the current best measurement. */
g = &mn->g[best_mcs];
for (i = 0; i < rsnext->nrates; i++) {
int mcs = rsnext->min_mcs + i;
uint64_t txrate = rsnext->rates[i];
if ((mn->valid_rates & (1 << mcs)) == 0)
continue;
txrate = txrate * 500; /* convert to kbit/s */
txrate <<= MIRA_FP_SHIFT; /* convert to fixed-point */
txrate /= 1000; /* convert to mbit/s */
if (txrate > g->measured + IEEE80211_MIRA_RATE_THRESHOLD) {
ni->ni_txmcs = mcs;
break;
}
}
/* Add rates from the next rateset as candidates. */
mn->candidate_rates |= (1 << ni->ni_txmcs);
if (mn->probing & IEEE80211_MIRA_PROBING_UP) {
mn->candidate_rates |=
(1 << ieee80211_mira_next_intra_rate(mn, ni));
} else if (mn->probing & IEEE80211_MIRA_PROBING_DOWN) {
#ifdef MIRA_AGGRESSIVE_DOWNWARDS_PROBING
mn->candidate_rates |= ieee80211_mira_mcs_below(mn,
ni->ni_txmcs, sgi);
#else
mn->candidate_rates |=
(1 << ieee80211_mira_next_lower_intra_rate(mn, ni));
#endif
} else
panic("%s: invalid probing mode %d", __func__, mn->probing);
}
int
ieee80211_mira_next_mcs(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni)
{
int next;
if (mn->probing & IEEE80211_MIRA_PROBING_DOWN)
next = ieee80211_mira_next_lower_intra_rate(mn, ni);
else if (mn->probing & IEEE80211_MIRA_PROBING_UP)
next = ieee80211_mira_next_intra_rate(mn, ni);
else
panic("%s: invalid probing mode %d", __func__, mn->probing);
return next;
}
int
ieee80211_mira_prev_mcs(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni)
{
int next;
if (mn->probing & IEEE80211_MIRA_PROBING_DOWN)
next = ieee80211_mira_next_intra_rate(mn, ni);
else if (mn->probing & IEEE80211_MIRA_PROBING_UP)
next = ieee80211_mira_next_lower_intra_rate(mn, ni);
else
panic("%s: invalid probing mode %d", __func__, mn->probing);
return next;
}
int
ieee80211_mira_probe_valid(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni)
{
struct ieee80211_mira_goodput_stats *g = &mn->g[ni->ni_txmcs];
return (g->nprobes >= IEEE80211_MIRA_MIN_PROBE_FRAMES ||
g->nprobe_bytes >= IEEE80211_MIRA_MIN_PROBE_BYTES ||
mn->txfail >= IEEE80211_MIRA_MAX_PROBE_TXFAIL ||
mn->retries >= IEEE80211_MIRA_MAX_PROBE_RETRIES);
}
void
ieee80211_mira_probe_done(struct ieee80211_mira_node *mn)
{
int mcs;
/* Reset probe interval of the best rate. */
mn->g[mn->best_mcs].probe_interval = IEEE80211_MIRA_PROBE_TIMEOUT_MIN;
mn->g[mn->best_mcs].nprobes = 0;
mn->g[mn->best_mcs].nprobe_bytes = 0;
/* Update probing interval of other probed rates. */
for (mcs = 0; mcs < IEEE80211_HT_RATESET_NUM_MCS; mcs++) {
if (mcs != mn->best_mcs && (mn->probed_rates & (1 << mcs)))
ieee80211_mira_update_probe_interval(&mn->g[mcs]);
}
ieee80211_mira_cancel_timeouts(mn);
ieee80211_mira_reset_driver_stats(mn);
ieee80211_mira_reset_collision_stats(mn);
mn->probing = IEEE80211_MIRA_NOT_PROBING;
mn->probed_rates = 0;
mn->candidate_rates = 0;
}
int
ieee80211_mira_intra_mode_ra_finished(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni)
{
const struct ieee80211_ht_rateset *rs;
struct ieee80211_mira_goodput_stats *g = &mn->g[ni->ni_txmcs];
int next_mcs, best_mcs, probed_rates;
uint64_t next_rate;
int sgi = (ni->ni_flags & IEEE80211_NODE_HT_SGI20) ? 1 : 0;
if (!ieee80211_mira_probe_valid(mn, ni))
return 0;
probed_rates = (mn->probed_rates | (1 << ni->ni_txmcs));
/* Check if the min/max MCS in this rateset has been probed. */
rs = ieee80211_mira_get_rateset(ni->ni_txmcs, sgi);
if (mn->probing & IEEE80211_MIRA_PROBING_DOWN) {
if (ni->ni_txmcs == rs->min_mcs ||
probed_rates & (1 << rs->min_mcs)) {
ieee80211_mira_trigger_next_rateset(mn, ni);
return 1;
}
} else if (mn->probing & IEEE80211_MIRA_PROBING_UP) {
if (ni->ni_txmcs == rs->max_mcs ||
probed_rates & (1 << rs->max_mcs)) {
ieee80211_mira_trigger_next_rateset(mn, ni);
return 1;
}
}
/*
* Check if the measured goodput is loss-free and better than the
* loss-free goodput of the candidate rate.
*/
next_mcs = ieee80211_mira_next_mcs(mn, ni);
if (next_mcs == ni->ni_txmcs) {
ieee80211_mira_trigger_next_rateset(mn, ni);
return 1;
}
next_rate = ieee80211_mira_get_txrate(next_mcs, sgi);
if (g->loss == 0 &&
g->measured >= next_rate + IEEE80211_MIRA_RATE_THRESHOLD) {
ieee80211_mira_trigger_next_rateset(mn, ni);
return 1;
}
/* Check if we had a better measurement at a previously probed MCS. */
best_mcs = ieee80211_mira_best_mcs_in_rateset(mn, rs);
if (best_mcs != ni->ni_txmcs && (probed_rates & (1 << best_mcs))) {
if ((mn->probing & IEEE80211_MIRA_PROBING_UP) &&
best_mcs < ni->ni_txmcs) {
ieee80211_mira_trigger_next_rateset(mn, ni);
return 1;
}
if ((mn->probing & IEEE80211_MIRA_PROBING_DOWN) &&
best_mcs > ni->ni_txmcs) {
ieee80211_mira_trigger_next_rateset(mn, ni);
return 1;
}
}
/* Check if all rates in the set of candidate rates have been probed. */
if ((mn->candidate_rates & probed_rates) == mn->candidate_rates) {
/* Remain in the current rateset until above checks trigger. */
return 1;
}
return 0;
}
void
ieee80211_mira_trigger_next_rateset(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni)
{
const struct ieee80211_ht_rateset *rsnext;
rsnext = ieee80211_mira_next_rateset(mn, ni);
if (rsnext) {
ieee80211_mira_probe_next_rateset(mn, ni, rsnext);
mn->probing |= IEEE80211_MIRA_PROBING_INTER;
} else
mn->probing &= ~IEEE80211_MIRA_PROBING_INTER;
}
int
ieee80211_mira_inter_mode_ra_finished(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni)
{
return ((mn->probing & IEEE80211_MIRA_PROBING_INTER) == 0);
}
int
ieee80211_mira_best_rate(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni)
{
int i, best = 0;
uint64_t gmax = 0;
for (i = 0; i < nitems(mn->g); i++) {
struct ieee80211_mira_goodput_stats *g = &mn->g[i];
if (((1 << i) & mn->valid_rates) == 0)
continue;
if (g->measured > gmax + IEEE80211_MIRA_RATE_THRESHOLD) {
gmax = g->measured;
best = i;
}
}
#ifdef MIRA_DEBUG
if (mn->best_mcs != best) {
DPRINTF(("MCS %d is best; MCS{Mbps|probe interval}:", best));
for (i = 0; i < IEEE80211_HT_RATESET_NUM_MCS; i++) {
struct ieee80211_mira_goodput_stats *g = &mn->g[i];
if ((mn->valid_rates & (1 << i)) == 0)
continue;
DPRINTF((" %d{%s|%dms}", i,
mira_fp_sprintf(g->measured),
g->probe_interval));
}
DPRINTF(("\n"));
}
#endif
return best;
}
/* See section 5.1.1 (at "Adaptive probing interval") in MiRA paper. */
void
ieee80211_mira_update_probe_interval(struct ieee80211_mira_goodput_stats *g)
{
uint64_t lt;
int intval;
lt = g->loss / IEEE80211_MIRA_LOSS_THRESHOLD;
if (lt < MIRA_FP_1)
lt = MIRA_FP_1;
lt >>= MIRA_FP_SHIFT; /* round to integer */
intval = (1 << g->nprobes); /* 2^nprobes */
if (intval > IEEE80211_MIRA_PROBE_INTVAL_MAX)
intval = IEEE80211_MIRA_PROBE_INTVAL_MAX;
g->probe_interval = IEEE80211_MIRA_PROBE_TIMEOUT_MIN * intval * lt;
}
void
ieee80211_mira_schedule_probe_timers(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni)
{
struct ieee80211_mira_goodput_stats *g;
struct timeout *to;
int mcs;
mcs = ieee80211_mira_next_intra_rate(mn, ni);
to = &mn->probe_to[IEEE80211_MIRA_PROBE_TO_UP];
g = &mn->g[mcs];
if (mcs != ni->ni_txmcs && !timeout_pending(to) &&
!mn->probe_timer_expired[IEEE80211_MIRA_PROBE_TO_UP]) {
timeout_add_msec(to, g->probe_interval);
DPRINTFN(3, ("start probing up for node %s at MCS %d in at "
"least %d msec\n",
ether_sprintf(ni->ni_macaddr), mcs, g->probe_interval));
}
mcs = ieee80211_mira_next_lower_intra_rate(mn, ni);
to = &mn->probe_to[IEEE80211_MIRA_PROBE_TO_DOWN];
g = &mn->g[mcs];
if (mcs != ni->ni_txmcs && !timeout_pending(to) &&
!mn->probe_timer_expired[IEEE80211_MIRA_PROBE_TO_DOWN]) {
timeout_add_msec(to, g->probe_interval);
DPRINTFN(3, ("start probing down for node %s at MCS %d in at "
"least %d msec\n",
ether_sprintf(ni->ni_macaddr), mcs, g->probe_interval));
}
}
int
ieee80211_mira_check_probe_timers(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni)
{
int ret = 0, expired_timer = IEEE80211_MIRA_PROBE_TO_INVALID;
int mcs;
if (mn->probe_timer_expired[IEEE80211_MIRA_PROBE_TO_UP] &&
mn->probe_timer_expired[IEEE80211_MIRA_PROBE_TO_DOWN]) {
if (arc4random_uniform(2))
expired_timer = IEEE80211_MIRA_PROBE_TO_UP;
else
expired_timer = IEEE80211_MIRA_PROBE_TO_DOWN;
} else if (mn->probe_timer_expired[IEEE80211_MIRA_PROBE_TO_DOWN])
expired_timer = IEEE80211_MIRA_PROBE_TO_DOWN;
else if (mn->probe_timer_expired[IEEE80211_MIRA_PROBE_TO_UP])
expired_timer = IEEE80211_MIRA_PROBE_TO_UP;
if (expired_timer != IEEE80211_MIRA_PROBE_TO_INVALID)
mn->probe_timer_expired[expired_timer] = 0;
switch (expired_timer) {
case IEEE80211_MIRA_PROBE_TO_UP:
/* Do time-based upwards probing on next frame. */
DPRINTFN(2, ("probe timer expired: probe upwards\n"));
mn->probing = IEEE80211_MIRA_PROBING_UP;
mcs = ieee80211_mira_next_intra_rate(mn, ni);
mn->candidate_rates = (1 << mcs);
ret = 1;
break;
case IEEE80211_MIRA_PROBE_TO_DOWN:
/* Do time-based downwards probing on next frame. */
DPRINTFN(2, ("probe timer expired: probe downwards\n"));
mn->probing = IEEE80211_MIRA_PROBING_DOWN;
mcs = ieee80211_mira_next_lower_intra_rate(mn, ni);
mn->candidate_rates = (1 << mcs);
ret = 1;
break;
case IEEE80211_MIRA_PROBE_TO_INVALID:
default:
ret = 0;
break;
}
return ret;
}
void
ieee80211_mira_probe_next_rate(struct ieee80211_mira_node *mn,
struct ieee80211_node *ni)
{
/* Select the next rate to probe. */
mn->probed_rates |= (1 << ni->ni_txmcs);
ni->ni_txmcs = ieee80211_mira_next_mcs(mn, ni);
}
int
ieee80211_mira_valid_tx_mcs(struct ieee80211com *ic, int mcs)
{
uint32_t ntxstreams = 1;
static const int max_mcs[] = { 7, 15, 23, 31 };
if ((ic->ic_tx_mcs_set & IEEE80211_TX_RX_MCS_NOT_EQUAL) == 0)
return isset(ic->ic_sup_mcs, mcs);
ntxstreams += ((ic->ic_tx_mcs_set & IEEE80211_TX_SPATIAL_STREAMS) >> 2);
if (ntxstreams < 1 || ntxstreams > 4)
panic("invalid number of Tx streams: %u", ntxstreams);
return (mcs <= max_mcs[ntxstreams - 1] && isset(ic->ic_sup_mcs, mcs));
}
uint32_t
ieee80211_mira_valid_rates(struct ieee80211com *ic, struct ieee80211_node *ni)
{
uint32_t valid_mcs = 0;
int i;
for (i = 0; i < IEEE80211_HT_RATESET_NUM_MCS; i++) {
if (!isset(ni->ni_rxmcs, i))
continue;
if (!ieee80211_mira_valid_tx_mcs(ic, i))
continue;
valid_mcs |= (1 << i);
}
return valid_mcs;
}
uint32_t
ieee80211_mira_mcs_below(struct ieee80211_mira_node *mn, int mcs, int sgi)
{
const struct ieee80211_ht_rateset *rs;
uint32_t mcs_mask;
int i;
rs = ieee80211_mira_get_rateset(mcs, sgi);
mcs_mask = (1 << rs->min_mcs);
for (i = rs->min_mcs + 1; i < mcs; i++) {
if ((mn->valid_rates & (1 << i)) == 0)
continue;
mcs_mask |= (1 << i);
}
return mcs_mask;
}
/*
* Constants involved in detecting suspected frame collisions.
* See section 5.2 of MiRA paper
*/
#define MIRA_COLLISION_LOSS_PERCENTAGE 10 /* from MiRA paper */
#define MIRA_COLLISION_DETECTED 3 /* from MiRA paper */
/*
* XXX The paper's algorithm assumes aggregated frames. This is particularly
* important for the detection of consecutive frame collisions which indicate
* high competition for air time. Because we do not yet support Tx aggregation,
* we run the algorithm over the result of several frames instead.
* We also aggregate retries across all frames and act upon a percentage of
* retried frames, rather than acting on retries seen for one aggregated frame.
*
* The collision window size (number of frames sent) needs to be short to
* ensure our detection of consecutive collisions remains somewhat accurate.
* We really have no idea how much time passes between frames in the window!
* The good news is that users will only care about collision detection during
* a transmit burst anyway, and we have this case more or less covered.
*/
#define MIRA_COLLISION_MIN_FRAMES 6 /* XXX magic number */
#define MIRA_COLLISION_RETRY_PERCENTAGE 60 /* XXX magic number */
/* Set RTS threshold based on suspected collision from other STAs. */
void
ieee80211_mira_set_rts_threshold(struct ieee80211_mira_node *mn,
struct ieee80211com *ic, struct ieee80211_node *ni)
{
uint16_t rtsthreshold = mn->rts_threshold;
uint32_t loss, retry;
/* Update collision window stats. */
mn->ifwnd_frames += mn->frames;
mn->ifwnd_retries += mn->retries;
mn->ifwnd_txfail += mn->txfail;
if (mn->ifwnd_frames < MIRA_COLLISION_MIN_FRAMES)
return; /* not enough frames yet */
/* Check whether the loss pattern indicates frame collisions. */
loss = (mn->ifwnd_txfail * 100) / mn->ifwnd_frames;
retry = (mn->ifwnd_retries * 100) / mn->ifwnd_frames;
if (retry > MIRA_COLLISION_RETRY_PERCENTAGE &&
loss < MIRA_COLLISION_LOSS_PERCENTAGE) {
if (mn->ifwnd == 0) {
/* First frame collision confirmed. */
mn->ifwnd = MIRA_COLLISION_DETECTED;
} else if (mn->ifwnd == MIRA_COLLISION_DETECTED) {
/* Successive frame collision confirmed. Use RTS. */
rtsthreshold = IEEE80211_RTS_DEFAULT;
}
} else {
if (mn->ifwnd > 0)
mn->ifwnd--;
if (mn->ifwnd == 0)
rtsthreshold = IEEE80211_RTS_MAX;
}
mn->rts_threshold = rtsthreshold;
ieee80211_mira_reset_collision_stats(mn);
}
int
ieee80211_mira_get_rts_threshold(struct ieee80211_mira_node *mn,
struct ieee80211com *ic, struct ieee80211_node *ni, size_t framelen)
{
int rtsrate = ieee80211_min_basic_rate(ic);
uint64_t txtime, rtsoverhead;
/* Magic number from MiRA paper ("cost/benefit ratio"). */
static const uint64_t k = MIRA_FP_1 + (MIRA_FP_1 / 2); /* 1.5 */
if (mn->probing || mn->rts_threshold >= IEEE80211_RTS_MAX)
return IEEE80211_RTS_MAX;
/* Use RTS only if potential gains outweigh overhead. */
txtime = ieee80211_mira_ht_txtime(framelen, ni->ni_txmcs,
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan),
(ni->ni_flags & IEEE80211_NODE_HT_SGI20) ? 1 : 0);
rtsoverhead = ieee80211_mira_legacy_txtime(MIRA_RTSLEN, rtsrate, ic);
rtsoverhead += ieee80211_mira_legacy_txtime(MIRA_CTSLEN, rtsrate, ic);
/* convert to fixed-point */
txtime <<= MIRA_FP_SHIFT;
rtsoverhead <<= MIRA_FP_SHIFT;
if (txtime >= MIRA_FP_MUL(k, rtsoverhead))
return mn->rts_threshold;
return IEEE80211_RTS_MAX;
}
void
ieee80211_mira_reset_collision_stats(struct ieee80211_mira_node *mn)
{
mn->ifwnd_frames = 0;
mn->ifwnd_retries = 0;
mn->ifwnd_txfail = 0;
}
void
ieee80211_mira_choose(struct ieee80211_mira_node *mn, struct ieee80211com *ic,
struct ieee80211_node *ni)
{
struct ieee80211_mira_goodput_stats *g = &mn->g[ni->ni_txmcs];
int s;
int sgi = (ni->ni_flags & IEEE80211_NODE_HT_SGI20) ? 1 : 0;
const struct ieee80211_ht_rateset *rs;
s = splnet();
if (mn->valid_rates == 0)
mn->valid_rates = ieee80211_mira_valid_rates(ic, ni);
#ifdef MIRA_DEBUG
if (mira_debug >= 5)
mira_print_driver_stats(mn, ni);
#endif
ieee80211_mira_update_stats(mn, ic, ni);
if (mn->probing) {
/* Probe another rate or settle at the best rate. */
if (!ieee80211_mira_intra_mode_ra_finished(mn, ni)) {
if (ieee80211_mira_probe_valid(mn, ni)) {
ieee80211_mira_probe_next_rate(mn, ni);
ieee80211_mira_reset_driver_stats(mn);
}
DPRINTFN(4, ("probing MCS %d\n", ni->ni_txmcs));
} else if (ieee80211_mira_inter_mode_ra_finished(mn, ni)) {
mn->best_mcs = ieee80211_mira_best_rate(mn, ni);
ni->ni_txmcs = mn->best_mcs;
ieee80211_mira_probe_done(mn);
}
splx(s);
return;
} else {
ieee80211_mira_set_rts_threshold(mn, ic, ni);
ieee80211_mira_reset_driver_stats(mn);
ieee80211_mira_schedule_probe_timers(mn, ni);
}
if (ieee80211_mira_check_probe_timers(mn, ni)) {
/* Time-based probing has triggered. */
splx(s);
return;
}
/* Check if event-based probing should be triggered. */
rs = ieee80211_mira_get_rateset(ni->ni_txmcs, sgi);
if (g->measured < g->average - 2 * g->stddeviation &&
ni->ni_txmcs != rs->min_mcs) {
/* Channel becomes bad. Probe downwards. */
DPRINTFN(2, ("channel becomes bad; probe downwards\n"));
DPRINTFN(3, ("measured: %s Mbit/s\n",
mira_fp_sprintf(g->measured)));
DPRINTFN(3, ("average: %s Mbit/s\n",
mira_fp_sprintf(g->average)));
DPRINTFN(3, ("stddeviation: %s\n",
mira_fp_sprintf(g->stddeviation)));
mn->probing = IEEE80211_MIRA_PROBING_DOWN;
mn->probed_rates = 0;
#ifdef MIRA_AGGRESSIVE_DOWNWARDS_PROBING
/* Allow for probing all the way down within this rateset. */
mn->candidate_rates = ieee80211_mira_mcs_below(mn,
ni->ni_txmcs, sgi);
#else
/* Probe the lower candidate rate to see if it's any better. */
mn->candidate_rates =
(1 << ieee80211_mira_next_lower_intra_rate(mn, ni));
#endif
ieee80211_mira_cancel_timeouts(mn);
} else if (g->measured > g->average + 2 * g->stddeviation &&
ni->ni_txmcs != rs->max_mcs) {
/* Channel becomes good. */
DPRINTFN(2, ("channel becomes good; probe upwards\n"));
DPRINTFN(3, ("measured: %s Mbit/s\n",
mira_fp_sprintf(g->measured)));
DPRINTFN(3, ("average: %s Mbit/s\n",
mira_fp_sprintf(g->average)));
DPRINTFN(3, ("stddeviation: %s\n",
mira_fp_sprintf(g->stddeviation)));
mn->probing = IEEE80211_MIRA_PROBING_UP;
mn->probed_rates = 0;
/* Probe the upper candidate rate to see if it's any better. */
mn->candidate_rates =
(1 << ieee80211_mira_next_intra_rate(mn, ni));
ieee80211_mira_cancel_timeouts(mn);
} else {
/* Remain at current rate. */
mn->probing = IEEE80211_MIRA_NOT_PROBING;
mn->probed_rates = 0;
mn->candidate_rates = 0;
}
splx(s);
}
void
ieee80211_mira_node_init(struct ieee80211_mira_node *mn)
{
memset(mn, 0, sizeof(*mn));
mn->agglen = 1;
mn->rts_threshold = IEEE80211_RTS_MAX;
ieee80211_mira_reset_goodput_stats(mn);
ieee80211_mira_reset_collision_stats(mn);
timeout_set(&mn->probe_to[IEEE80211_MIRA_PROBE_TO_UP],
ieee80211_mira_probe_timeout_up, mn);
timeout_set(&mn->probe_to[IEEE80211_MIRA_PROBE_TO_DOWN],
ieee80211_mira_probe_timeout_down, mn);
}
void
ieee80211_mira_cancel_timeouts(struct ieee80211_mira_node *mn)
{
int t;
for (t = 0; t < nitems(mn->probe_to); t++)
timeout_del(&mn->probe_to[t]);
}
int
ieee80211_mira_is_probing(struct ieee80211_mira_node *mn)
{
return mn->probing != IEEE80211_MIRA_NOT_PROBING;
}
int
ieee80211_mira_get_best_mcs(struct ieee80211_mira_node *mn)
{
return mn->best_mcs;
}
|