summaryrefslogtreecommitdiff
path: root/sys/net80211/ieee80211_ra.c
blob: b820976ebf2f25f26b7892eb8ebaff6bb750b2d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
/*	$OpenBSD: ieee80211_ra.c,v 1.5 2022/03/19 10:28:44 stsp Exp $	*/

/*
 * Copyright (c) 2021 Christian Ehrhardt <ehrhardt@genua.de>
 * Copyright (c) 2016, 2021 Stefan Sperling <stsp@openbsd.org>
 * Copyright (c) 2016 Theo Buehler <tb@openbsd.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/socket.h>

#include <net/if.h>
#include <net/if_media.h>

#include <netinet/in.h>
#include <netinet/if_ether.h>

#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_ra.h>

int	ieee80211_ra_next_intra_rate(struct ieee80211_ra_node *,
	    struct ieee80211_node *);
const struct ieee80211_ht_rateset * ieee80211_ra_next_rateset(
		    struct ieee80211_ra_node *, struct ieee80211_node *);
int	ieee80211_ra_best_mcs_in_rateset(struct ieee80211_ra_node *,
	    const struct ieee80211_ht_rateset *);
void	ieee80211_ra_probe_next_rateset(struct ieee80211_ra_node *,
	    struct ieee80211_node *, const struct ieee80211_ht_rateset *);
int	ieee80211_ra_next_mcs(struct ieee80211_ra_node *,
	    struct ieee80211_node *);
void	ieee80211_ra_probe_done(struct ieee80211_ra_node *);
int	ieee80211_ra_intra_mode_ra_finished(
	    struct ieee80211_ra_node *, struct ieee80211_node *);
void	ieee80211_ra_trigger_next_rateset(struct ieee80211_ra_node *,
	    struct ieee80211_node *);
int	ieee80211_ra_inter_mode_ra_finished(
	    struct ieee80211_ra_node *, struct ieee80211_node *);
int	ieee80211_ra_best_rate(struct ieee80211_ra_node *,
	    struct ieee80211_node *);
void	ieee80211_ra_probe_next_rate(struct ieee80211_ra_node *,
	    struct ieee80211_node *);
int	ieee80211_ra_valid_tx_mcs(struct ieee80211com *, int);
uint32_t ieee80211_ra_valid_rates(struct ieee80211com *,
	    struct ieee80211_node *);
int	ieee80211_ra_probe_valid(struct ieee80211_ra_goodput_stats *);

/* We use fixed point arithmetic with 64 bit integers. */
#define RA_FP_SHIFT	21
#define RA_FP_INT(x)	(x ## ULL << RA_FP_SHIFT) /* the integer x */
#define RA_FP_1	RA_FP_INT(1)

/* Multiply two fixed point numbers. */
#define RA_FP_MUL(a, b) \
	(((a) * (b)) >> RA_FP_SHIFT)

/* Divide two fixed point numbers. */
#define RA_FP_DIV(a, b) \
	(b == 0 ? (uint64_t)-1 : (((a) << RA_FP_SHIFT) / (b)))

#ifdef RA_DEBUG
#define DPRINTF(x)	do { if (ra_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x)	do { if (ra_debug >= (n)) printf x; } while (0)
int ra_debug = 0;
#else
#define DPRINTF(x)	do { ; } while (0)
#define DPRINTFN(n, x)	do { ; } while (0)
#endif

#ifdef RA_DEBUG
void
ra_fixedp_split(uint32_t *i, uint32_t *f, uint64_t fp)
{
	uint64_t tmp;

	/* integer part */
	*i = (fp >> RA_FP_SHIFT);

 	/* fractional part */
	tmp = (fp & ((uint64_t)-1 >> (64 - RA_FP_SHIFT)));
	tmp *= 100;
	*f = (uint32_t)(tmp >> RA_FP_SHIFT);
}

char *
ra_fp_sprintf(uint64_t fp)
{
	uint32_t i, f;
	static char buf[64];
	int ret;

	ra_fixedp_split(&i, &f, fp);
	ret = snprintf(buf, sizeof(buf), "%u.%02u", i, f);
	if (ret == -1 || ret >= sizeof(buf))
		return "ERR";

	return buf;
}
#endif /* RA_DEBUG */

const struct ieee80211_ht_rateset *
ieee80211_ra_get_ht_rateset(int mcs, int chan40, int sgi)
{
	const struct ieee80211_ht_rateset *rs;
	int i;

	for (i = 0; i < IEEE80211_HT_NUM_RATESETS; i++) {
		rs = &ieee80211_std_ratesets_11n[i];
		if (chan40 == rs->chan40 && sgi == rs->sgi &&
		    mcs >= rs->min_mcs && mcs <= rs->max_mcs)
			return rs;
	}

	panic("MCS %d is not part of any rateset", mcs);
}

int
ieee80211_ra_use_ht_sgi(struct ieee80211_node *ni)
{
	if ((ni->ni_chan->ic_flags & IEEE80211_CHAN_40MHZ) &&
	    ieee80211_node_supports_ht_chan40(ni)) {
		if (ni->ni_flags & IEEE80211_NODE_HT_SGI40)
			return 1;
	} else if (ni->ni_flags & IEEE80211_NODE_HT_SGI20)
		return 1;
	
	return 0;
}

/*
 * Update goodput statistics.
 */

uint64_t
ieee80211_ra_get_txrate(int mcs, int chan40, int sgi)
{
	const struct ieee80211_ht_rateset *rs;
	uint64_t txrate;

	rs = ieee80211_ra_get_ht_rateset(mcs, chan40, sgi);
	txrate = rs->rates[mcs - rs->min_mcs];
	txrate <<= RA_FP_SHIFT; /* convert to fixed-point */
	txrate *= 500; /* convert to kbit/s */
	txrate /= 1000; /* convert to mbit/s */

	return txrate;
}

/*
 * Rate selection.
 */

/* A rate's goodput has to be at least this much larger to be "better". */
#define IEEE80211_RA_RATE_THRESHOLD	(RA_FP_1 / 64) /* ~ 0.015 */

int
ieee80211_ra_next_lower_intra_rate(struct ieee80211_ra_node *rn,
    struct ieee80211_node *ni)
{
	const struct ieee80211_ht_rateset *rs;
	int i, next;

	rs = ieee80211_ra_get_ht_rateset(ni->ni_txmcs,
	    ieee80211_node_supports_ht_chan40(ni), ieee80211_ra_use_ht_sgi(ni));
	if (ni->ni_txmcs == rs->min_mcs)
		return rs->min_mcs;

	next = ni->ni_txmcs;
	for (i = rs->nrates - 1; i >= 0; i--) {
		if ((rn->valid_rates & (1 << (i + rs->min_mcs))) == 0)
			continue;
		if (i + rs->min_mcs < ni->ni_txmcs) {
			next = i + rs->min_mcs;
			break;
		}
	}

	return next;
}

int
ieee80211_ra_next_intra_rate(struct ieee80211_ra_node *rn,
    struct ieee80211_node *ni)
{
	const struct ieee80211_ht_rateset *rs;
	int i, next;

	rs = ieee80211_ra_get_ht_rateset(ni->ni_txmcs,
	    ieee80211_node_supports_ht_chan40(ni), ieee80211_ra_use_ht_sgi(ni));
	if (ni->ni_txmcs == rs->max_mcs)
		return rs->max_mcs;

	next = ni->ni_txmcs;
	for (i = 0; i < rs->nrates; i++) {
		if ((rn->valid_rates & (1 << (i + rs->min_mcs))) == 0)
			continue;
		if (i + rs->min_mcs > ni->ni_txmcs) {
			next = i + rs->min_mcs;
			break;
		}
	}

	return next;
}

const struct ieee80211_ht_rateset *
ieee80211_ra_next_rateset(struct ieee80211_ra_node *rn,
    struct ieee80211_node *ni)
{
	const struct ieee80211_ht_rateset *rs, *rsnext;
	int next;
	int chan40 = ieee80211_node_supports_ht_chan40(ni);
	int sgi = ieee80211_ra_use_ht_sgi(ni);
	int mcs = ni->ni_txmcs;

	rs = ieee80211_ra_get_ht_rateset(mcs, chan40, sgi);
	if (rn->probing & IEEE80211_RA_PROBING_UP) {
		if (rs->max_mcs == 7) {	/* MCS 0-7 */
			if (chan40)
				next = sgi ? IEEE80211_HT_RATESET_MIMO2_SGI40 :
				    IEEE80211_HT_RATESET_MIMO2_40;
			else
				next = sgi ? IEEE80211_HT_RATESET_MIMO2_SGI :
				    IEEE80211_HT_RATESET_MIMO2;
		} else if (rs->max_mcs == 15) {	/* MCS 8-15 */
			if (chan40)
				next = sgi ? IEEE80211_HT_RATESET_MIMO3_SGI40 :
				    IEEE80211_HT_RATESET_MIMO3_40;
			else
				next = sgi ? IEEE80211_HT_RATESET_MIMO3_SGI :
				    IEEE80211_HT_RATESET_MIMO3;
		} else if (rs->max_mcs == 23) {	/* MCS 16-23 */
			if (chan40)
				next = sgi ? IEEE80211_HT_RATESET_MIMO4_SGI40 :
				    IEEE80211_HT_RATESET_MIMO4_40;
			else
				next = sgi ? IEEE80211_HT_RATESET_MIMO4_SGI :
				    IEEE80211_HT_RATESET_MIMO4;
		} else				/* MCS 24-31 */
			return NULL;
	} else if (rn->probing & IEEE80211_RA_PROBING_DOWN) {
		if (rs->min_mcs == 24) {	/* MCS 24-31 */
			if (chan40)
				next = sgi ? IEEE80211_HT_RATESET_MIMO3_SGI40 :
				    IEEE80211_HT_RATESET_MIMO3_40;
			else
				next = sgi ? IEEE80211_HT_RATESET_MIMO3_SGI :
				    IEEE80211_HT_RATESET_MIMO3;
		} else if (rs->min_mcs == 16) {	/* MCS 16-23 */
			if (chan40)
				next = sgi ? IEEE80211_HT_RATESET_MIMO2_SGI40 :
				    IEEE80211_HT_RATESET_MIMO2_40;
			else
				next = sgi ? IEEE80211_HT_RATESET_MIMO2_SGI :
				    IEEE80211_HT_RATESET_MIMO2;
		} else if (rs->min_mcs == 8) {	/* MCS 8-15 */
			if (chan40)
				next = sgi ? IEEE80211_HT_RATESET_SISO_SGI40 :
				    IEEE80211_HT_RATESET_SISO_40;
			else
				next = sgi ? IEEE80211_HT_RATESET_SISO_SGI :
				    IEEE80211_HT_RATESET_SISO;
		} else				/* MCS 0-7 */
			return NULL;
	} else
		panic("%s: invalid probing mode %d", __func__, rn->probing);

	rsnext = &ieee80211_std_ratesets_11n[next];
	if ((rsnext->mcs_mask & rn->valid_rates) == 0)
		return NULL;

	return rsnext;
}

int
ieee80211_ra_best_mcs_in_rateset(struct ieee80211_ra_node *rn,
    const struct ieee80211_ht_rateset *rs)
{
	uint64_t gmax = 0;
	int i, best_mcs = rs->min_mcs;

	for (i = 0; i < rs->nrates; i++) {
		int mcs = rs->min_mcs + i;
		struct ieee80211_ra_goodput_stats *g = &rn->g[mcs];
		if (((1 << mcs) & rn->valid_rates) == 0)
			continue;
		if (g->measured > gmax + IEEE80211_RA_RATE_THRESHOLD) {
			gmax = g->measured;
			best_mcs = mcs;
		}
	}

	return best_mcs;
}

void
ieee80211_ra_probe_next_rateset(struct ieee80211_ra_node *rn,
    struct ieee80211_node *ni, const struct ieee80211_ht_rateset *rsnext)
{
	const struct ieee80211_ht_rateset *rs;
	struct ieee80211_ra_goodput_stats *g;
	int best_mcs, i;

	/* Find most recently measured best MCS from the current rateset. */
	rs = ieee80211_ra_get_ht_rateset(ni->ni_txmcs,
	    ieee80211_node_supports_ht_chan40(ni), ieee80211_ra_use_ht_sgi(ni));
	best_mcs = ieee80211_ra_best_mcs_in_rateset(rn, rs);

	/* Switch to the next rateset. */
	ni->ni_txmcs = rsnext->min_mcs;
	if ((rn->valid_rates & (1 << rsnext->min_mcs)) == 0)
		ni->ni_txmcs = ieee80211_ra_next_intra_rate(rn, ni);

	/* Select the lowest rate from the next rateset with loss-free
	 * goodput close to the current best measurement. */
	g = &rn->g[best_mcs];
	for (i = 0; i < rsnext->nrates; i++) {
		int mcs = rsnext->min_mcs + i;
		uint64_t txrate = rsnext->rates[i];

		if ((rn->valid_rates & (1 << mcs)) == 0)
			continue;

		txrate = txrate * 500; /* convert to kbit/s */
		txrate <<= RA_FP_SHIFT; /* convert to fixed-point */
		txrate /= 1000; /* convert to mbit/s */

		if (txrate > g->measured + IEEE80211_RA_RATE_THRESHOLD) {
			ni->ni_txmcs = mcs;
			break;
		}
	}
	/* If all rates are lower the maximum rate is the closest match. */
	if (i == rsnext->nrates)
		ni->ni_txmcs = rsnext->max_mcs;

	/* Add rates from the next rateset as candidates. */
	rn->candidate_rates |= (1 << ni->ni_txmcs);
	if (rn->probing & IEEE80211_RA_PROBING_UP) {
		rn->candidate_rates |=
		  (1 << ieee80211_ra_next_intra_rate(rn, ni));
	} else if (rn->probing & IEEE80211_RA_PROBING_DOWN) {
		rn->candidate_rates |=
		    (1 << ieee80211_ra_next_lower_intra_rate(rn, ni));
	} else
		panic("%s: invalid probing mode %d", __func__, rn->probing);
}

int
ieee80211_ra_next_mcs(struct ieee80211_ra_node *rn,
    struct ieee80211_node *ni)
{
	int next;

	if (rn->probing & IEEE80211_RA_PROBING_DOWN)
		next = ieee80211_ra_next_lower_intra_rate(rn, ni);
	else if (rn->probing & IEEE80211_RA_PROBING_UP)
		next = ieee80211_ra_next_intra_rate(rn, ni);
	else
		panic("%s: invalid probing mode %d", __func__, rn->probing);

	return next;
}

void
ieee80211_ra_probe_clear(struct ieee80211_ra_node *rn,
    struct ieee80211_node *ni)
{
	struct ieee80211_ra_goodput_stats *g = &rn->g[ni->ni_txmcs];

	g->nprobe_pkts = 0;
	g->nprobe_fail = 0;
}

void
ieee80211_ra_probe_done(struct ieee80211_ra_node *rn)
{
	rn->probing = IEEE80211_RA_NOT_PROBING;
	rn->probed_rates = 0;
	rn->valid_probes = 0;
	rn->candidate_rates = 0;
}

int
ieee80211_ra_intra_mode_ra_finished(struct ieee80211_ra_node *rn,
    struct ieee80211_node *ni)
{
	const struct ieee80211_ht_rateset *rs;
	struct ieee80211_ra_goodput_stats *g = &rn->g[ni->ni_txmcs];
	int next_mcs, best_mcs;
	uint64_t next_rate;
	int chan40 = ieee80211_node_supports_ht_chan40(ni);
	int sgi = ieee80211_ra_use_ht_sgi(ni);

	rn->probed_rates = (rn->probed_rates | (1 << ni->ni_txmcs));

	/* Check if the min/max MCS in this rateset has been probed. */
	rs = ieee80211_ra_get_ht_rateset(ni->ni_txmcs, chan40, sgi);
	if (rn->probing & IEEE80211_RA_PROBING_DOWN) {
		if (ni->ni_txmcs == rs->min_mcs ||
		    rn->probed_rates & (1 << rs->min_mcs)) {
			ieee80211_ra_trigger_next_rateset(rn, ni);
			return 1;
		}
	} else if (rn->probing & IEEE80211_RA_PROBING_UP) {
		if (ni->ni_txmcs == rs->max_mcs ||
		    rn->probed_rates & (1 << rs->max_mcs)) {
			ieee80211_ra_trigger_next_rateset(rn, ni);
			return 1;
		}
	}

	/*
	 * Check if the measured goodput is loss-free and better than the
	 * loss-free goodput of the candidate rate.
	 */
	next_mcs = ieee80211_ra_next_mcs(rn, ni);
	if (next_mcs == ni->ni_txmcs) {
		ieee80211_ra_trigger_next_rateset(rn, ni);
		return 1;
	}
	next_rate = ieee80211_ra_get_txrate(next_mcs, chan40, sgi);
	if (g->loss == 0 &&
	    g->measured >= next_rate + IEEE80211_RA_RATE_THRESHOLD) {
		ieee80211_ra_trigger_next_rateset(rn, ni);
		return 1;
	}

	/* Check if we had a better measurement at a previously probed MCS. */
	best_mcs = ieee80211_ra_best_mcs_in_rateset(rn, rs);
	if (best_mcs != ni->ni_txmcs && (rn->probed_rates & (1 << best_mcs))) {
		if ((rn->probing & IEEE80211_RA_PROBING_UP) &&
		    best_mcs < ni->ni_txmcs) {
			ieee80211_ra_trigger_next_rateset(rn, ni);
			return 1;
		}
		if ((rn->probing & IEEE80211_RA_PROBING_DOWN) &&
		    best_mcs > ni->ni_txmcs) {
			ieee80211_ra_trigger_next_rateset(rn, ni);
			return 1;
		}
	}

	/* Check if all rates in the set of candidate rates have been probed. */
	if ((rn->candidate_rates & rn->probed_rates) == rn->candidate_rates) {
		/* Remain in the current rateset until above checks trigger. */
		rn->probing &= ~IEEE80211_RA_PROBING_INTER;
		return 1;
	}

	return 0;
}

void
ieee80211_ra_trigger_next_rateset(struct ieee80211_ra_node *rn,
    struct ieee80211_node *ni)
{
	const struct ieee80211_ht_rateset *rsnext;

	rsnext = ieee80211_ra_next_rateset(rn, ni);
	if (rsnext) {
		ieee80211_ra_probe_next_rateset(rn, ni, rsnext);
		rn->probing |= IEEE80211_RA_PROBING_INTER;
	} else
		rn->probing &= ~IEEE80211_RA_PROBING_INTER;
}

int
ieee80211_ra_inter_mode_ra_finished(struct ieee80211_ra_node *rn,
    struct ieee80211_node *ni)
{
	return ((rn->probing & IEEE80211_RA_PROBING_INTER) == 0);
}

int
ieee80211_ra_best_rate(struct ieee80211_ra_node *rn,
    struct ieee80211_node *ni)
{
	int i, best = rn->best_mcs;
	uint64_t gmax = rn->g[rn->best_mcs].measured;

	for (i = 0; i < nitems(rn->g); i++) {
		struct ieee80211_ra_goodput_stats *g = &rn->g[i];
		if (((1 << i) & rn->valid_rates) == 0)
			continue;
		if (g->measured > gmax + IEEE80211_RA_RATE_THRESHOLD) {
			gmax = g->measured;
			best = i;
		}
	}

#ifdef RA_DEBUG
	if (rn->best_mcs != best) {
		DPRINTF(("MCS %d is best; MCS{cur|avg|loss}:", best));
		for (i = 0; i < IEEE80211_HT_RATESET_NUM_MCS; i++) {
			struct ieee80211_ra_goodput_stats *g = &rn->g[i];
			if ((rn->valid_rates & (1 << i)) == 0)
				continue;
			DPRINTF((" %d{%s|", i, ra_fp_sprintf(g->measured)));
			DPRINTF(("%s|", ra_fp_sprintf(g->average)));
			DPRINTF(("%s%%}", ra_fp_sprintf(g->loss)));
		}
		DPRINTF(("\n"));
	}
#endif
	return best;
}

void
ieee80211_ra_probe_next_rate(struct ieee80211_ra_node *rn,
    struct ieee80211_node *ni)
{
	/* Select the next rate to probe. */
	rn->probed_rates |= (1 << ni->ni_txmcs);
	ni->ni_txmcs = ieee80211_ra_next_mcs(rn, ni);
}

int
ieee80211_ra_valid_tx_mcs(struct ieee80211com *ic, int mcs)
{
	uint32_t ntxstreams = 1;
	static const int max_mcs[] = { 7, 15, 23, 31 };

	if ((ic->ic_tx_mcs_set & IEEE80211_TX_RX_MCS_NOT_EQUAL) == 0)
		return isset(ic->ic_sup_mcs, mcs);

	ntxstreams += ((ic->ic_tx_mcs_set & IEEE80211_TX_SPATIAL_STREAMS) >> 2);
	if (ntxstreams < 1 || ntxstreams > 4)
		panic("invalid number of Tx streams: %u", ntxstreams);
	return (mcs <= max_mcs[ntxstreams - 1] && isset(ic->ic_sup_mcs, mcs));
}

uint32_t
ieee80211_ra_valid_rates(struct ieee80211com *ic, struct ieee80211_node *ni)
{
	uint32_t valid_mcs = 0;
	int i;

	for (i = 0; i < IEEE80211_HT_RATESET_NUM_MCS; i++) {
		if (!isset(ni->ni_rxmcs, i))
			continue;
		if (!ieee80211_ra_valid_tx_mcs(ic, i))
			continue;
		valid_mcs |= (1 << i);
	}

	return valid_mcs;
}

int
ieee80211_ra_probe_valid(struct ieee80211_ra_goodput_stats *g)
{
	/* 128 packets make up a valid probe in any case. */
	if (g->nprobe_pkts >= 128)
		return 1;

	/* 8 packets with > 75% loss make a valid probe, too. */
	if (g->nprobe_pkts >= 8 &&
	    g->nprobe_pkts - g->nprobe_fail < g->nprobe_pkts / 4)
		return 1;

	return 0;
}

void
ieee80211_ra_add_stats_ht(struct ieee80211_ra_node *rn,
    struct ieee80211com *ic, struct ieee80211_node *ni,
    int mcs, uint32_t total, uint32_t fail)
{
	static const uint64_t alpha = RA_FP_1 / 8; /* 1/8 = 0.125 */
	static const uint64_t beta =  RA_FP_1 / 4; /* 1/4 = 0.25 */
	int s;
	struct ieee80211_ra_goodput_stats *g;
	uint64_t sfer, rate, delta;

	/*
	 * Ignore invalid values. These values may come from hardware
	 * so asserting valid values via panic is not appropriate.
	 */
	if (mcs < 0 || mcs >= IEEE80211_HT_RATESET_NUM_MCS)
		return;
	if (total == 0)
		return;

	s = splnet();

	g = &rn->g[mcs];
	g->nprobe_pkts += total;
	g->nprobe_fail += fail;

	if (!ieee80211_ra_probe_valid(g)) {
		splx(s);
		return;
	}
	rn->valid_probes |= 1U << mcs;

	if (g->nprobe_fail > g->nprobe_pkts) {
		DPRINTF(("%s fail %u > pkts %u\n",
		    ether_sprintf(ni->ni_macaddr),
		    g->nprobe_fail, g->nprobe_pkts));
		g->nprobe_fail = g->nprobe_pkts;
	}

	sfer = g->nprobe_fail << RA_FP_SHIFT;
	sfer /= g->nprobe_pkts;
	g->nprobe_fail = 0;
	g->nprobe_pkts = 0;

	rate = ieee80211_ra_get_txrate(mcs,
	    ieee80211_node_supports_ht_chan40(ni),
	    ieee80211_ra_use_ht_sgi(ni));

	g->loss = sfer * 100;
	g->measured = RA_FP_MUL(RA_FP_1 - sfer, rate);
	g->average = RA_FP_MUL(RA_FP_1 - alpha, g->average);
	g->average += RA_FP_MUL(alpha, g->measured);

	g->stddeviation = RA_FP_MUL(RA_FP_1 - beta, g->stddeviation);
	if (g->average > g->measured)
		delta = g->average - g->measured;
	else
		delta = g->measured - g->average;
	g->stddeviation += RA_FP_MUL(beta, delta);

	splx(s);
}

void
ieee80211_ra_choose(struct ieee80211_ra_node *rn, struct ieee80211com *ic,
    struct ieee80211_node *ni)
{
	struct ieee80211_ra_goodput_stats *g = &rn->g[ni->ni_txmcs];
	int s;
	int chan40 = ieee80211_node_supports_ht_chan40(ni);
	int sgi = ieee80211_ra_use_ht_sgi(ni);
	const struct ieee80211_ht_rateset *rs, *rsnext;

	s = splnet();

	if (rn->valid_rates == 0)
		rn->valid_rates = ieee80211_ra_valid_rates(ic, ni);

	if (rn->probing) {
		/* Probe another rate or settle at the best rate. */
		if (!(rn->valid_probes & (1UL << ni->ni_txmcs))) {
			splx(s);
			return;
		}
		ieee80211_ra_probe_clear(rn, ni);
		if (!ieee80211_ra_intra_mode_ra_finished(rn, ni)) {
			ieee80211_ra_probe_next_rate(rn, ni);
			DPRINTFN(3, ("probing MCS %d\n", ni->ni_txmcs));
		} else if (ieee80211_ra_inter_mode_ra_finished(rn, ni)) {
			rn->best_mcs = ieee80211_ra_best_rate(rn, ni);
			ni->ni_txmcs = rn->best_mcs;
			ieee80211_ra_probe_done(rn);
		}

		splx(s);
		return;
	} else {
		rn->valid_probes = 0;
	}

	rs = ieee80211_ra_get_ht_rateset(ni->ni_txmcs, chan40, sgi);
	if ((g->measured >> RA_FP_SHIFT) == 0LL ||
	    (g->average >= 3 * g->stddeviation &&
	    g->measured < g->average - 3 * g->stddeviation)) {
		/* Channel becomes bad. Probe downwards. */
		rn->probing = IEEE80211_RA_PROBING_DOWN;
		rn->probed_rates = 0;
		if (ni->ni_txmcs == rs->min_mcs) {
			rsnext = ieee80211_ra_next_rateset(rn, ni);
			if (rsnext) {
				ieee80211_ra_probe_next_rateset(rn, ni,
				    rsnext);
			} else {
				/* Cannot probe further down. */
				rn->probing = IEEE80211_RA_NOT_PROBING;
			}
		} else {
			ni->ni_txmcs = ieee80211_ra_next_mcs(rn, ni);
			rn->candidate_rates = (1 << ni->ni_txmcs);
		}
	} else if (g->loss < 2 * RA_FP_1 ||
	    g->measured > g->average + 3 * g->stddeviation) {
		/* Channel becomes good. */
		rn->probing = IEEE80211_RA_PROBING_UP;
		rn->probed_rates = 0;
		if (ni->ni_txmcs == rs->max_mcs) {
			rsnext = ieee80211_ra_next_rateset(rn, ni);
			if (rsnext) {
				ieee80211_ra_probe_next_rateset(rn, ni,
				    rsnext);
			} else {
				/* Cannot probe further up. */
				rn->probing = IEEE80211_RA_NOT_PROBING;
			}
		} else {
			ni->ni_txmcs = ieee80211_ra_next_mcs(rn, ni);
			rn->candidate_rates = (1 << ni->ni_txmcs);
		}
	} else {
		/* Remain at current rate. */
		rn->probing = IEEE80211_RA_NOT_PROBING;
		rn->probed_rates = 0;
		rn->candidate_rates = 0;
	}

	splx(s);

	if (rn->probing) {
		if (rn->probing & IEEE80211_RA_PROBING_UP)
			DPRINTFN(2, ("channel becomes good; probe up\n"));
		else
			DPRINTFN(2, ("channel becomes bad; probe down\n"));

		DPRINTFN(3, ("measured: %s Mbit/s\n",
		    ra_fp_sprintf(g->measured)));
		DPRINTFN(3, ("average: %s Mbit/s\n",
		    ra_fp_sprintf(g->average)));
		DPRINTFN(3, ("stddeviation: %s\n",
		    ra_fp_sprintf(g->stddeviation)));
		DPRINTFN(3, ("loss: %s%%\n", ra_fp_sprintf(g->loss)));
	}
}

void
ieee80211_ra_node_init(struct ieee80211_ra_node *rn)
{
	memset(rn, 0, sizeof(*rn));
}