1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
/* $OpenBSD: uvm_anon.c,v 1.37 2013/05/30 16:29:46 tedu Exp $ */
/* $NetBSD: uvm_anon.c,v 1.10 2000/11/25 06:27:59 chs Exp $ */
/*
*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles D. Cranor and
* Washington University.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* uvm_anon.c: uvm anon ops
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/kernel.h>
#include <uvm/uvm.h>
#include <uvm/uvm_swap.h>
struct pool uvm_anon_pool;
/*
* allocate anons
*/
void
uvm_anon_init(void)
{
pool_init(&uvm_anon_pool, sizeof(struct vm_anon), 0, 0, 0, "anonpl",
&pool_allocator_nointr);
pool_sethiwat(&uvm_anon_pool, uvmexp.free / 16);
}
/*
* allocate an anon
*/
struct vm_anon *
uvm_analloc(void)
{
struct vm_anon *anon;
anon = pool_get(&uvm_anon_pool, PR_NOWAIT);
if (anon) {
anon->an_ref = 1;
anon->an_page = NULL;
anon->an_swslot = 0;
}
return(anon);
}
/*
* uvm_anfree: free a single anon structure
*
* => caller must remove anon from its amap before calling (if it was in
* an amap).
* => we may lock the pageq's.
*/
void
uvm_anfree(struct vm_anon *anon)
{
struct vm_page *pg;
/*
* get page
*/
pg = anon->an_page;
/*
* if there is a resident page and it is loaned, then anon may not
* own it. call out to uvm_anon_lockpage() to ensure the real owner
* of the page has been identified and locked.
*/
if (pg && pg->loan_count)
pg = uvm_anon_lockloanpg(anon);
/*
* if we have a resident page, we must dispose of it before freeing
* the anon.
*/
if (pg) {
/*
* if the page is owned by a uobject, then we must
* kill the loan on the page rather than free it.
*/
if (pg->uobject) {
uvm_lock_pageq();
KASSERT(pg->loan_count > 0);
pg->loan_count--;
pg->uanon = NULL;
uvm_unlock_pageq();
} else {
/*
* page has no uobject, so we must be the owner of it.
*
* if page is busy then we just mark it as released
* (who ever has it busy must check for this when they
* wake up). if the page is not busy then we can
* free it now.
*/
if ((pg->pg_flags & PG_BUSY) != 0) {
/* tell them to dump it when done */
atomic_setbits_int(&pg->pg_flags, PG_RELEASED);
return;
}
pmap_page_protect(pg, VM_PROT_NONE);
uvm_lock_pageq(); /* lock out pagedaemon */
uvm_pagefree(pg); /* bye bye */
uvm_unlock_pageq(); /* free the daemon */
}
}
if (pg == NULL && anon->an_swslot != 0) {
/* this page is no longer only in swap. */
KASSERT(uvmexp.swpgonly > 0);
uvmexp.swpgonly--;
}
/*
* free any swap resources.
*/
uvm_anon_dropswap(anon);
/*
* now that we've stripped the data areas from the anon, free the anon
* itself!
*/
KASSERT(anon->an_page == NULL);
KASSERT(anon->an_swslot == 0);
pool_put(&uvm_anon_pool, anon);
}
/*
* uvm_anon_dropswap: release any swap resources from this anon.
*/
void
uvm_anon_dropswap(struct vm_anon *anon)
{
if (anon->an_swslot == 0)
return;
uvm_swap_free(anon->an_swslot, 1);
anon->an_swslot = 0;
}
/*
* uvm_anon_lockloanpg: given a locked anon, lock its resident page
*
* => on return:
* if there is a resident page:
* if it is ownerless, we take over as owner
* we return the resident page (it can change during
* this function)
* => note that the only time an anon has an ownerless resident page
* is if the page was loaned from a uvm_object and the uvm_object
* disowned it
* => this only needs to be called when you want to do an operation
* on an anon's resident page and that page has a non-zero loan
* count.
*/
struct vm_page *
uvm_anon_lockloanpg(struct vm_anon *anon)
{
struct vm_page *pg;
/*
* loop while we have a resident page that has a non-zero loan count.
* if we successfully get our lock, we will "break" the loop.
* note that the test for pg->loan_count is not protected -- this
* may produce false positive results. note that a false positive
* result may cause us to do more work than we need to, but it will
* not produce an incorrect result.
*/
while (((pg = anon->an_page) != NULL) && pg->loan_count != 0) {
/*
* if page is un-owned [i.e. the object dropped its ownership],
* then we can take over as owner!
*/
if (pg->uobject == NULL && (pg->pg_flags & PQ_ANON) == 0) {
uvm_lock_pageq();
atomic_setbits_int(&pg->pg_flags, PQ_ANON);
pg->loan_count--; /* ... and drop our loan */
uvm_unlock_pageq();
}
/*
* we did it! break the loop
*/
break;
}
return(pg);
}
/*
* fetch an anon's page.
*
* => returns TRUE if pagein was aborted due to lack of memory.
*/
boolean_t
uvm_anon_pagein(struct vm_anon *anon)
{
struct vm_page *pg;
struct uvm_object *uobj;
int rv;
rv = uvmfault_anonget(NULL, NULL, anon);
switch (rv) {
case VM_PAGER_OK:
break;
case VM_PAGER_ERROR:
case VM_PAGER_REFAULT:
/*
* nothing more to do on errors.
* VM_PAGER_REFAULT can only mean that the anon was freed,
* so again there's nothing to do.
*/
return FALSE;
default:
#ifdef DIAGNOSTIC
panic("anon_pagein: uvmfault_anonget -> %d", rv);
#else
return FALSE;
#endif
}
/*
* ok, we've got the page now.
* mark it as dirty, clear its swslot and un-busy it.
*/
pg = anon->an_page;
uobj = pg->uobject;
uvm_swap_free(anon->an_swslot, 1);
anon->an_swslot = 0;
atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
/*
* deactivate the page (to put it on a page queue)
*/
pmap_clear_reference(pg);
pmap_page_protect(pg, VM_PROT_NONE);
uvm_lock_pageq();
uvm_pagedeactivate(pg);
uvm_unlock_pageq();
return FALSE;
}
|