summaryrefslogtreecommitdiff
path: root/sys/uvm/uvm_pdaemon.c
blob: 3a5f7be6038d1b6ff44067f24dc110448b0a96a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
/*	$OpenBSD: uvm_pdaemon.c,v 1.119 2024/11/03 08:02:15 mpi Exp $	*/
/*	$NetBSD: uvm_pdaemon.c,v 1.23 2000/08/20 10:24:14 bjh21 Exp $	*/

/*
 * Copyright (c) 1997 Charles D. Cranor and Washington University.
 * Copyright (c) 1991, 1993, The Regents of the University of California.
 *
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * The Mach Operating System project at Carnegie-Mellon University.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
 *
 *
 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*
 * uvm_pdaemon.c: the page daemon
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/mount.h>
#include <sys/atomic.h>

#ifdef HIBERNATE
#include <sys/hibernate.h>
#endif

#include <uvm/uvm.h>

#include "drm.h"

#if NDRM > 0
extern unsigned long drmbackoff(long);
#endif

/*
 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
 * in a pass thru the inactive list when swap is full.  the value should be
 * "small"... if it's too large we'll cycle the active pages thru the inactive
 * queue too quickly to for them to be referenced and avoid being freed.
 */

#define UVMPD_NUMDIRTYREACTS 16


/*
 * local prototypes
 */

struct rwlock	*uvmpd_trylockowner(struct vm_page *);
void		uvmpd_scan(struct uvm_pmalloc *, int, int,
		    struct uvm_constraint_range *);
int		uvmpd_scan_inactive(struct uvm_pmalloc *,
		    struct uvm_constraint_range *);
void		uvmpd_tune(void);
void		uvmpd_drop(struct pglist *);
int		uvmpd_dropswap(struct vm_page *);

/*
 * uvm_wait: wait (sleep) for the page daemon to free some pages
 *
 * => should be called with all locks released
 * => should _not_ be called by the page daemon (to avoid deadlock)
 */

void
uvm_wait(const char *wmsg)
{
	uint64_t timo = INFSLP;

#ifdef DIAGNOSTIC
	if (curproc == &proc0)
		panic("%s: cannot sleep for memory during boot", __func__);
#endif

	/*
	 * check for page daemon going to sleep (waiting for itself)
	 */
	if (curproc == uvm.pagedaemon_proc) {
		printf("uvm_wait emergency bufbackoff\n");
		if (bufbackoff(NULL, 4) == 0)
			return;
		/*
		 * now we have a problem: the pagedaemon wants to go to
		 * sleep until it frees more memory.   but how can it
		 * free more memory if it is asleep?  that is a deadlock.
		 * we have two options:
		 *  [1] panic now
		 *  [2] put a timeout on the sleep, thus causing the
		 *      pagedaemon to only pause (rather than sleep forever)
		 *
		 * note that option [2] will only help us if we get lucky
		 * and some other process on the system breaks the deadlock
		 * by exiting or freeing memory (thus allowing the pagedaemon
		 * to continue).  for now we panic if DEBUG is defined,
		 * otherwise we hope for the best with option [2] (better
		 * yet, this should never happen in the first place!).
		 */

		printf("pagedaemon: deadlock detected!\n");
		timo = MSEC_TO_NSEC(125);	/* set timeout */
#if defined(DEBUG)
		/* DEBUG: panic so we can debug it */
		panic("pagedaemon deadlock");
#endif
	}

	uvm_lock_fpageq();
	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
	msleep_nsec(&uvmexp.free, &uvm.fpageqlock, PVM | PNORELOCK, wmsg, timo);
}

/*
 * uvmpd_tune: tune paging parameters
 */
void
uvmpd_tune(void)
{
	int val;

	val = uvmexp.npages / 30;

	/* XXX:  what are these values good for? */
	val = max(val, (16*1024) >> PAGE_SHIFT);

	/* Make sure there's always a user page free. */
	if (val < uvmexp.reserve_kernel + 1)
		val = uvmexp.reserve_kernel + 1;
	uvmexp.freemin = val;

	/* Calculate free target. */
	val = (uvmexp.freemin * 4) / 3;
	if (val <= uvmexp.freemin)
		val = uvmexp.freemin + 1;
	uvmexp.freetarg = val;

	uvmexp.wiredmax = uvmexp.npages / 3;
}

/*
 * Indicate to the page daemon that a nowait call failed and it should
 * recover at least some memory in the most restricted region (assumed
 * to be dma_constraint).
 */
volatile int uvm_nowait_failed;

/*
 * uvm_pageout: the main loop for the pagedaemon
 */
void
uvm_pageout(void *arg)
{
	struct uvm_constraint_range constraint;
	struct uvm_pmalloc *pma;
	int shortage, inactive_shortage;

	/* ensure correct priority and set paging parameters... */
	uvm.pagedaemon_proc = curproc;
	(void) spl0();
	uvmpd_tune();

	for (;;) {
		long size;

		uvm_lock_fpageq();
		if (!uvm_nowait_failed && TAILQ_EMPTY(&uvm.pmr_control.allocs)) {
			msleep_nsec(&uvm.pagedaemon, &uvm.fpageqlock, PVM,
			    "pgdaemon", INFSLP);
			uvmexp.pdwoke++;
		}

		if ((pma = TAILQ_FIRST(&uvm.pmr_control.allocs)) != NULL) {
			pma->pm_flags |= UVM_PMA_BUSY;
			constraint = pma->pm_constraint;
		} else {
			if (uvm_nowait_failed) {
				/*
				 * XXX realistically, this is what our
				 * nowait callers probably care about
				 */
				constraint = dma_constraint;
				uvm_nowait_failed = 0;
			} else
				constraint = no_constraint;
		}
		shortage = uvmexp.freetarg - uvmexp.free + BUFPAGES_DEFICIT;
		uvm_unlock_fpageq();

		/*
		 * now lock page queues and recompute inactive count
		 */
		uvm_lock_pageq();
		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
		if (uvmexp.inactarg <= uvmexp.freetarg) {
			uvmexp.inactarg = uvmexp.freetarg + 1;
		}
		uvm_unlock_pageq();

		/* Reclaim pages from the buffer cache if possible. */
		size = 0;
		if (pma != NULL)
			size += pma->pm_size >> PAGE_SHIFT;
		if (shortage > 0)
			size += shortage;
		if (size == 0)
			size = 16; /* XXX */

		(void) bufbackoff(&constraint, size * 2);
#if NDRM > 0
		drmbackoff(size * 2);
#endif
		uvm_pmr_cache_drain();

		/*
		 * scan if needed
		 */
		uvm_lock_pageq();
		shortage = uvmexp.freetarg - uvmexp.free + BUFPAGES_DEFICIT;
		inactive_shortage =
			uvmexp.inactarg - uvmexp.inactive - BUFPAGES_INACT;
		if (pma != NULL || (shortage > 0) || (inactive_shortage > 0)) {
			uvmpd_scan(pma, shortage, inactive_shortage,
			    &constraint);
		}

		/*
		 * if there's any free memory to be had,
		 * wake up any waiters.
		 */
		uvm_lock_fpageq();
		if (uvmexp.free > uvmexp.reserve_kernel ||
		    uvmexp.paging == 0) {
			wakeup(&uvmexp.free);
		}

		if (pma != NULL) {
			/* 
			 * XXX If UVM_PMA_FREED isn't set, no pages
			 * were freed.  Should we set UVM_PMA_FAIL in
			 * that case?
			 */
			pma->pm_flags &= ~UVM_PMA_BUSY;
			if (pma->pm_flags & UVM_PMA_FREED) {
				pma->pm_flags &= ~UVM_PMA_LINKED;
				TAILQ_REMOVE(&uvm.pmr_control.allocs, pma,
				    pmq);
				wakeup(pma);
			}
		}
		uvm_unlock_fpageq();

		/*
		 * scan done.  unlock page queues (the only lock we are holding)
		 */
		uvm_unlock_pageq();

		sched_pause(yield);
	}
	/*NOTREACHED*/
}


/*
 * uvm_aiodone_daemon:  main loop for the aiodone daemon.
 */
void
uvm_aiodone_daemon(void *arg)
{
	int s, free;
	struct buf *bp, *nbp;

	uvm.aiodoned_proc = curproc;

	for (;;) {
		/*
		 * Check for done aio structures. If we've got structures to
		 * process, do so. Otherwise sleep while avoiding races.
		 */
		mtx_enter(&uvm.aiodoned_lock);
		while ((bp = TAILQ_FIRST(&uvm.aio_done)) == NULL)
			msleep_nsec(&uvm.aiodoned, &uvm.aiodoned_lock,
			    PVM, "aiodoned", INFSLP);
		/* Take the list for ourselves. */
		TAILQ_INIT(&uvm.aio_done);
		mtx_leave(&uvm.aiodoned_lock);

		/* process each i/o that's done. */
		free = uvmexp.free;
		while (bp != NULL) {
			if (bp->b_flags & B_PDAEMON) {
				uvmexp.paging -= bp->b_bufsize >> PAGE_SHIFT;
			}
			nbp = TAILQ_NEXT(bp, b_freelist);
			s = splbio();	/* b_iodone must by called at splbio */
			(*bp->b_iodone)(bp);
			splx(s);
			bp = nbp;

			sched_pause(yield);
		}
		uvm_lock_fpageq();
		wakeup(free <= uvmexp.reserve_kernel ? &uvm.pagedaemon :
		    &uvmexp.free);
		uvm_unlock_fpageq();
	}
}

/*
 * uvmpd_trylockowner: trylock the page's owner.
 *
 * => return the locked rwlock on success.  otherwise, return NULL.
 */
struct rwlock *
uvmpd_trylockowner(struct vm_page *pg)
{

	struct uvm_object *uobj = pg->uobject;
	struct rwlock *slock;

	if (uobj != NULL) {
		slock = uobj->vmobjlock;
	} else {
		struct vm_anon *anon = pg->uanon;

		KASSERT(anon != NULL);
		slock = anon->an_lock;
	}

	if (rw_enter(slock, RW_WRITE|RW_NOSLEEP)) {
		return NULL;
	}

	return slock;
}

/*
 * uvmpd_dropswap: free any swap allocated to this page.
 *
 * => called with owner locked.
 * => return 1 if a page had an associated slot.
 */
int
uvmpd_dropswap(struct vm_page *pg)
{
	struct vm_anon *anon = pg->uanon;
	int slot, result = 0;

	if ((pg->pg_flags & PQ_ANON) && anon->an_swslot) {
		uvm_swap_free(anon->an_swslot, 1);
		anon->an_swslot = 0;
		result = 1;
	} else if (pg->pg_flags & PQ_AOBJ) {
		slot = uao_dropswap(pg->uobject, pg->offset >> PAGE_SHIFT);
		if (slot)
			result = 1;
	}

	return result;
}

/*
 * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
 *
 * => called with page queues locked
 * => we work on meeting our free target by converting inactive pages
 *    into free pages.
 * => we handle the building of swap-backed clusters
 * => we return TRUE if we are exiting because we met our target
 */
int
uvmpd_scan_inactive(struct uvm_pmalloc *pma,
    struct uvm_constraint_range *constraint)
{
	struct pglist *pglst = &uvm.page_inactive;
	int free, result, freed = 0;
	struct vm_page *p, *nextpg;
	struct uvm_object *uobj;
	struct vm_page *pps[SWCLUSTPAGES], **ppsp;
	int npages;
	struct vm_page *swpps[SWCLUSTPAGES]; 	/* XXX: see below */
	struct rwlock *slock;
	int swnpages, swcpages;				/* XXX: see below */
	int swslot;
	struct vm_anon *anon;
	boolean_t swap_backed;
	vaddr_t start;
	int dirtyreacts;
	paddr_t paddr;

	/*
	 * swslot is non-zero if we are building a swap cluster.  we want
	 * to stay in the loop while we have a page to scan or we have
	 * a swap-cluster to build.
	 */
	swslot = 0;
	swnpages = swcpages = 0;
	dirtyreacts = 0;
	p = NULL;

	/* Start with the first page on the list that fit in `constraint' */
	TAILQ_FOREACH(p, pglst, pageq) {
		paddr = atop(VM_PAGE_TO_PHYS(p));
		if (paddr >= constraint->ucr_low &&
		    paddr < constraint->ucr_high)
			break;
	}

	for (; p != NULL || swslot != 0; p = nextpg) {
		/*
		 * note that p can be NULL iff we have traversed the whole
		 * list and need to do one final swap-backed clustered pageout.
		 */
		uobj = NULL;
		anon = NULL;
		if (p) {
			/*
			 * see if we've met our target
			 */
			free = uvmexp.free - BUFPAGES_DEFICIT;
			if (((pma == NULL || (pma->pm_flags & UVM_PMA_FREED)) &&
			    (free + uvmexp.paging >= uvmexp.freetarg)) ||
			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
				if (swslot == 0) {
					/* exit now if no swap-i/o pending */
					break;
				}

				/* set p to null to signal final swap i/o */
				p = NULL;
				nextpg = NULL;
			}
		}
		if (p) {	/* if (we have a new page to consider) */
			/*
			 * we are below target and have a new page to consider.
			 */
			uvmexp.pdscans++;
			nextpg = TAILQ_NEXT(p, pageq);

			anon = p->uanon;
			uobj = p->uobject;

			/*
			 * first we attempt to lock the object that this page
			 * belongs to.  if our attempt fails we skip on to
			 * the next page (no harm done).  it is important to
			 * "try" locking the object as we are locking in the
			 * wrong order (pageq -> object) and we don't want to
			 * deadlock.
			 */
			slock = uvmpd_trylockowner(p);
			if (slock == NULL) {
				continue;
			}

			/*
			 * move referenced pages back to active queue
			 * and skip to next page.
			 */
			if (pmap_is_referenced(p)) {
				uvm_pageactivate(p);
				rw_exit(slock);
				uvmexp.pdreact++;
				continue;
			}

			if (p->pg_flags & PG_BUSY) {
				rw_exit(slock);
				uvmexp.pdbusy++;
				continue;
			}

			/* does the page belong to an object? */
			if (uobj != NULL) {
				uvmexp.pdobscan++;
			} else {
				KASSERT(anon != NULL);
				uvmexp.pdanscan++;
			}

			/*
			 * we now have the page queues locked.
			 * the page is not busy.   if the page is clean we
			 * can free it now and continue.
			 */
			if (p->pg_flags & PG_CLEAN) {
				if (p->pg_flags & PQ_SWAPBACKED) {
					/* this page now lives only in swap */
					atomic_inc_int(&uvmexp.swpgonly);
				}

				/* zap all mappings with pmap_page_protect... */
				pmap_page_protect(p, PROT_NONE);
				uvm_pagefree(p);
				freed++;

				if (anon) {

					/*
					 * an anonymous page can only be clean
					 * if it has backing store assigned.
					 */

					KASSERT(anon->an_swslot != 0);

					/* remove from object */
					anon->an_page = NULL;
				}
				rw_exit(slock);
				continue;
			}

			/*
			 * this page is dirty, skip it if we'll have met our
			 * free target when all the current pageouts complete.
			 */
			if ((pma == NULL || (pma->pm_flags & UVM_PMA_FREED)) &&
			    (free + uvmexp.paging > uvmexp.freetarg)) {
				rw_exit(slock);
				continue;
			}

			/*
			 * this page is dirty, but we can't page it out
			 * since all pages in swap are only in swap.
			 * reactivate it so that we eventually cycle
			 * all pages thru the inactive queue.
			 */
			if ((p->pg_flags & PQ_SWAPBACKED) && uvm_swapisfull()) {
				dirtyreacts++;
				uvm_pageactivate(p);
				rw_exit(slock);
				continue;
			}

			/*
			 * if the page is swap-backed and dirty and swap space
			 * is full, free any swap allocated to the page
			 * so that other pages can be paged out.
			 */
			if ((p->pg_flags & PQ_SWAPBACKED) && uvm_swapisfilled())
				uvmpd_dropswap(p);

			/*
			 * the page we are looking at is dirty.   we must
			 * clean it before it can be freed.  to do this we
			 * first mark the page busy so that no one else will
			 * touch the page.   we write protect all the mappings
			 * of the page so that no one touches it while it is
			 * in I/O.
			 */

			swap_backed = ((p->pg_flags & PQ_SWAPBACKED) != 0);
			atomic_setbits_int(&p->pg_flags, PG_BUSY);
			UVM_PAGE_OWN(p, "scan_inactive");
			pmap_page_protect(p, PROT_READ);
			uvmexp.pgswapout++;

			/*
			 * for swap-backed pages we need to (re)allocate
			 * swap space.
			 */
			if (swap_backed) {
				/* free old swap slot (if any) */
				uvmpd_dropswap(p);

				/* start new cluster (if necessary) */
				if (swslot == 0) {
					swnpages = SWCLUSTPAGES;
					swslot = uvm_swap_alloc(&swnpages,
					    TRUE);
					if (swslot == 0) {
						/* no swap?  give up! */
						atomic_clearbits_int(
						    &p->pg_flags,
						    PG_BUSY);
						UVM_PAGE_OWN(p, NULL);
						rw_exit(slock);
						continue;
					}
					swcpages = 0;	/* cluster is empty */
				}

				/* add block to cluster */
				swpps[swcpages] = p;
				if (anon)
					anon->an_swslot = swslot + swcpages;
				else
					uao_set_swslot(uobj,
					    p->offset >> PAGE_SHIFT,
					    swslot + swcpages);
				swcpages++;
				rw_exit(slock);

				/* cluster not full yet? */
				if (swcpages < swnpages)
					continue;
			}
		} else {
			/* if p == NULL we must be doing a last swap i/o */
			swap_backed = TRUE;
		}

		/*
		 * now consider doing the pageout.
		 *
		 * for swap-backed pages, we do the pageout if we have either
		 * filled the cluster (in which case (swnpages == swcpages) or
		 * run out of pages (p == NULL).
		 *
		 * for object pages, we always do the pageout.
		 */
		if (swap_backed) {
			/* starting I/O now... set up for it */
			npages = swcpages;
			ppsp = swpps;
			/* for swap-backed pages only */
			start = (vaddr_t) swslot;

			/* if this is final pageout we could have a few
			 * extra swap blocks */
			if (swcpages < swnpages) {
				uvm_swap_free(swslot + swcpages,
				    (swnpages - swcpages));
			}
		} else {
			/* normal object pageout */
			ppsp = pps;
			npages = sizeof(pps) / sizeof(struct vm_page *);
			/* not looked at because PGO_ALLPAGES is set */
			start = 0;
		}

		/*
		 * now do the pageout.
		 *
		 * for swap_backed pages we have already built the cluster.
		 * for !swap_backed pages, uvm_pager_put will call the object's
		 * "make put cluster" function to build a cluster on our behalf.
		 *
		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
		 * it to free the cluster pages for us on a successful I/O (it
		 * always does this for un-successful I/O requests).  this
		 * allows us to do clustered pageout without having to deal
		 * with cluster pages at this level.
		 *
		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
		 *  IN: locked: page queues
		 * OUT: locked: 
		 *     !locked: pageqs
		 */

		uvmexp.pdpageouts++;
		result = uvm_pager_put(swap_backed ? NULL : uobj, p,
		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);

		/*
		 * if we did i/o to swap, zero swslot to indicate that we are
		 * no longer building a swap-backed cluster.
		 */

		if (swap_backed)
			swslot = 0;		/* done with this cluster */

		/*
		 * first, we check for VM_PAGER_PEND which means that the
		 * async I/O is in progress and the async I/O done routine
		 * will clean up after us.   in this case we move on to the
		 * next page.
		 *
		 * there is a very remote chance that the pending async i/o can
		 * finish _before_ we get here.   if that happens, our page "p"
		 * may no longer be on the inactive queue.   so we verify this
		 * when determining the next page (starting over at the head if
		 * we've lost our inactive page).
		 */

		if (result == VM_PAGER_PEND) {
			uvmexp.paging += npages;
			uvm_lock_pageq();
			uvmexp.pdpending++;
			if (p) {
				if (p->pg_flags & PQ_INACTIVE)
					nextpg = TAILQ_NEXT(p, pageq);
				else
					nextpg = TAILQ_FIRST(pglst);
			} else {
				nextpg = NULL;
			}
			continue;
		}

		/* clean up "p" if we have one */
		if (p) {
			/*
			 * the I/O request to "p" is done and uvm_pager_put
			 * has freed any cluster pages it may have allocated
			 * during I/O.  all that is left for us to do is
			 * clean up page "p" (which is still PG_BUSY).
			 *
			 * our result could be one of the following:
			 *   VM_PAGER_OK: successful pageout
			 *
			 *   VM_PAGER_AGAIN: tmp resource shortage, we skip
			 *     to next page
			 *   VM_PAGER_{FAIL,ERROR,BAD}: an error.   we
			 *     "reactivate" page to get it out of the way (it
			 *     will eventually drift back into the inactive
			 *     queue for a retry).
			 *   VM_PAGER_UNLOCK: should never see this as it is
			 *     only valid for "get" operations
			 */

			/* relock p's object: page queues not lock yet, so
			 * no need for "try" */

			/* !swap_backed case: already locked... */
			if (swap_backed) {
				rw_enter(slock, RW_WRITE);
			}

#ifdef DIAGNOSTIC
			if (result == VM_PAGER_UNLOCK)
				panic("pagedaemon: pageout returned "
				    "invalid 'unlock' code");
#endif

			/* handle PG_WANTED now */
			if (p->pg_flags & PG_WANTED)
				wakeup(p);

			atomic_clearbits_int(&p->pg_flags, PG_BUSY|PG_WANTED);
			UVM_PAGE_OWN(p, NULL);

			/* released during I/O? Can only happen for anons */
			if (p->pg_flags & PG_RELEASED) {
				KASSERT(anon != NULL);
				/*
				 * remove page so we can get nextpg,
				 * also zero out anon so we don't use
				 * it after the free.
				 */
				anon->an_page = NULL;
				p->uanon = NULL;

				rw_exit(anon->an_lock);
				uvm_anfree(anon);	/* kills anon */
				pmap_page_protect(p, PROT_NONE);
				anon = NULL;
				uvm_lock_pageq();
				nextpg = TAILQ_NEXT(p, pageq);
				/* free released page */
				uvm_pagefree(p);
			} else {	/* page was not released during I/O */
				uvm_lock_pageq();
				nextpg = TAILQ_NEXT(p, pageq);
				if (result != VM_PAGER_OK) {
					/* pageout was a failure... */
					if (result != VM_PAGER_AGAIN)
						uvm_pageactivate(p);
					pmap_clear_reference(p);
					/* XXXCDC: if (swap_backed) FREE p's
					 * swap block? */
				} else {
					/* pageout was a success... */
					pmap_clear_reference(p);
					pmap_clear_modify(p);
					atomic_setbits_int(&p->pg_flags,
					    PG_CLEAN);
				}
			}

			/*
			 * drop object lock (if there is an object left).   do
			 * a safety check of nextpg to make sure it is on the
			 * inactive queue (it should be since PG_BUSY pages on
			 * the inactive queue can't be re-queued [note: not
			 * true for active queue]).
			 */
			rw_exit(slock);

			if (nextpg && (nextpg->pg_flags & PQ_INACTIVE) == 0) {
				nextpg = TAILQ_FIRST(pglst);	/* reload! */
			}
		} else {
			/*
			 * if p is null in this loop, make sure it stays null
			 * in the next loop.
			 */
			nextpg = NULL;

			/*
			 * lock page queues here just so they're always locked
			 * at the end of the loop.
			 */
			uvm_lock_pageq();
		}
	}

	return freed;
}

/*
 * uvmpd_scan: scan the page queues and attempt to meet our targets.
 *
 * => called with pageq's locked
 */

void
uvmpd_scan(struct uvm_pmalloc *pma, int shortage, int inactive_shortage,
    struct uvm_constraint_range *constraint)
{
	int swap_shortage, pages_freed;
	struct vm_page *p, *nextpg;
	struct rwlock *slock;
	paddr_t paddr;

	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);

	uvmexp.pdrevs++;		/* counter */


#ifdef __HAVE_PMAP_COLLECT
	/*
	 * swap out some processes if we are below our free target.
	 * we need to unlock the page queues for this.
	 */
	if (shortage > 0) {
		uvmexp.pdswout++;
		uvm_unlock_pageq();
		shortage -= uvm_swapout_threads();
		uvm_lock_pageq();
	}
#endif

	/*
	 * now we want to work on meeting our targets.   first we work on our
	 * free target by converting inactive pages into free pages.  then
	 * we work on meeting our inactive target by converting active pages
	 * to inactive ones.
	 */
	pages_freed = uvmpd_scan_inactive(pma, constraint);
	uvmexp.pdfreed += pages_freed;
	shortage -= pages_freed;

	/*
	 * we have done the scan to get free pages.   now we work on meeting
	 * our inactive target.
	 *
	 * detect if we're not going to be able to page anything out
	 * until we free some swap resources from active pages.
	 */
	swap_shortage = 0;
	if ((shortage > 0) && uvm_swapisfilled() && !uvm_swapisfull() &&
	    pages_freed == 0) {
		swap_shortage = shortage;
	}

	for (p = TAILQ_FIRST(&uvm.page_active);
	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
	     p = nextpg) {
		nextpg = TAILQ_NEXT(p, pageq);
		if (p->pg_flags & PG_BUSY) {
			continue;
		}

		/*
		 * skip this page if it doesn't match the constraint.
		 */
		paddr = atop(VM_PAGE_TO_PHYS(p));
		if (paddr < constraint->ucr_low &&
		    paddr >= constraint->ucr_high)
			continue;

		/*
		 * lock the page's owner.
		 */
		slock = uvmpd_trylockowner(p);
		if (slock == NULL) {
			continue;
		}

		/*
		 * skip this page if it's busy.
		 */
		if ((p->pg_flags & PG_BUSY) != 0) {
			rw_exit(slock);
			continue;
		}

		/*
		 * if there's a shortage of swap, free any swap allocated
		 * to this page so that other pages can be paged out.
		 */
		if (swap_shortage > 0) {
			if (uvmpd_dropswap(p)) {
				atomic_clearbits_int(&p->pg_flags, PG_CLEAN);
				swap_shortage--;
			}
		}

		/*
		 * deactivate this page if there's a shortage of
		 * inactive pages.
		 */
		if (inactive_shortage > 0) {
			pmap_page_protect(p, PROT_NONE);
			/* no need to check wire_count as pg is "active" */
			uvm_pagedeactivate(p);
			uvmexp.pddeact++;
			inactive_shortage--;
		}

		/*
		 * we're done with this page.
		 */
		rw_exit(slock);
	}
}

#ifdef HIBERNATE

/*
 * uvmpd_drop: drop clean pages from list
 */
void
uvmpd_drop(struct pglist *pglst)
{
	struct vm_page *p, *nextpg;

	for (p = TAILQ_FIRST(pglst); p != NULL; p = nextpg) {
		nextpg = TAILQ_NEXT(p, pageq);

		if (p->pg_flags & PQ_ANON || p->uobject == NULL)
			continue;

		if (p->pg_flags & PG_BUSY)
			continue;

		if (p->pg_flags & PG_CLEAN) {
			struct uvm_object * uobj = p->uobject;

			rw_enter(uobj->vmobjlock, RW_WRITE);
			uvm_lock_pageq();
			/*
			 * we now have the page queues locked.
			 * the page is not busy.   if the page is clean we
			 * can free it now and continue.
			 */
			if (p->pg_flags & PG_CLEAN) {
				if (p->pg_flags & PQ_SWAPBACKED) {
					/* this page now lives only in swap */
					atomic_inc_int(&uvmexp.swpgonly);
				}

				/* zap all mappings with pmap_page_protect... */
				pmap_page_protect(p, PROT_NONE);
				uvm_pagefree(p);
			}
			uvm_unlock_pageq();
			rw_exit(uobj->vmobjlock);
		}
	}
}

void
uvmpd_hibernate(void)
{
	uvmpd_drop(&uvm.page_inactive);
	uvmpd_drop(&uvm.page_active);
}

#endif