summaryrefslogtreecommitdiff
path: root/usr.bin/ssh/PROTOCOL.certkeys
blob: 81b02a078b75b375daf960632374fb8a536abefb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
This document describes a simple public-key certificate authentication
system for use by SSH.

Background
----------

The SSH protocol currently supports a simple public key authentication
mechanism. Unlike other public key implementations, SSH eschews the
use of X.509 certificates and uses raw keys. This approach has some
benefits relating to simplicity of configuration and minimisation
of attack surface, but it does not support the important use-cases
of centrally managed, passwordless authentication and centrally
certified host keys.

These protocol extensions build on the simple public key authentication
system already in SSH to allow certificate-based authentication.
The certificates used are not traditional X.509 certificates, with
numerous options and complex encoding rules, but something rather
more minimal: a key, some identity information and usage options
that have been signed with some other trusted key.

A sshd server may be configured to allow authentication via certified
keys, by extending the existing ~/.ssh/authorized_keys mechanism
to allow specification of certification authority keys in addition
to raw user keys. The ssh client will support automatic verification
of acceptance of certified host keys, by adding a similar ability
to specify CA keys in ~/.ssh/known_hosts.

Certified keys are represented using two new key types:
ssh-rsa-cert-v01@openssh.com and ssh-dss-cert-v01@openssh.com that
include certification information along with the public key that is used
to sign challenges. ssh-keygen performs the CA signing operation.

Protocol extensions
-------------------

The SSH wire protocol includes several extensibility mechanisms.
These modifications shall take advantage of namespaced public key
algorithm names to add support for certificate authentication without
breaking the protocol - implementations that do not support the
extensions will simply ignore them.

Authentication using the new key formats described below proceeds
using the existing SSH "publickey" authentication method described
in RFC4252 section 7.

New public key formats
----------------------

The ssh-rsa-cert-v01@openssh.com and ssh-dss-cert-v01@openssh.com key
types take a similar high-level format (note: data types and
encoding are as per RFC4251 section 5). The serialised wire encoding of
these certificates is also used for storing them on disk.

#define SSH_CERT_TYPE_USER    1
#define SSH_CERT_TYPE_HOST    2

RSA certificate

    string    "ssh-rsa-cert-v01@openssh.com"
    string    nonce
    mpint     e
    mpint     n
    uint64    serial
    uint32    type
    string    key id
    string    valid principals
    uint64    valid after
    uint64    valid before
    string    critical options
    string    extensions
    string    reserved
    string    signature key
    string    signature

DSA certificate

    string    "ssh-dss-cert-v01@openssh.com"
    string    nonce
    mpint     p
    mpint     q
    mpint     g
    mpint     y
    uint64    serial
    uint32    type
    string    key id
    string    valid principals
    uint64    valid after
    uint64    valid before
    string    critical options
    string    extensions
    string    reserved
    string    signature key
    string    signature

The nonce field is a CA-provided random bitstring of arbitrary length
(but typically 16 or 32 bytes) included to make attacks that depend on
inducing collisions in the signature hash infeasible.

e and n are the RSA exponent and public modulus respectively.

p, q, g, y are the DSA parameters as described in FIPS-186-2.

serial is an optional certificate serial number set by the CA to
provide an abbreviated way to refer to certificates from that CA.
If a CA does not wish to number its certificates it must set this
field to zero.

type specifies whether this certificate is for identification of a user
or a host using a SSH_CERT_TYPE_... value.

key id is a free-form text field that is filled in by the CA at the time
of signing; the intention is that the contents of this field are used to
identify the identity principal in log messages.

"valid principals" is a string containing zero or more principals as
strings packed inside it. These principals list the names for which this
certificate is valid; hostnames for SSH_CERT_TYPE_HOST certificates and
usernames for SSH_CERT_TYPE_USER certificates. As a special case, a
zero-length "valid principals" field means the certificate is valid for
any principal of the specified type. XXX DNS wildcards?

"valid after" and "valid before" specify a validity period for the
certificate. Each represents a time in seconds since 1970-01-01
00:00:00. A certificate is considered valid if:
	 valid after <= current time < valid before

criticial options is a set of zero or more key options encoded as
below. All such options are "critical" in the sense that an implementation
must refuse to authorise a key that has an unrecognised option.

extensions is a set of zero or more optional extensions. These extensions
are not critical, and an implementation that encounters one that it does
not recognise may safely ignore it.

The reserved field is currently unused and is ignored in this version of
the protocol.

signature key contains the CA key used to sign the certificate.
The valid key types for CA keys are ssh-rsa and ssh-dss. "Chained"
certificates, where the signature key type is a certificate type itself
are NOT supported. Note that it is possible for a RSA certificate key to
be signed by a DSS CA key and vice-versa.

signature is computed over all preceding fields from the initial string
up to, and including the signature key. Signatures are computed and
encoded according to the rules defined for the CA's public key algorithm
(RFC4253 section 6.6 for ssh-rsa and ssh-dss).

Critical options
----------------

The critical options section of the certificate specifies zero or more
options on the certificates validity. The format of this field
is a sequence of zero or more tuples:

    string       name
    string       data

The name field identifies the option and the data field encodes
option-specific information (see below). All options are
"critical", if an implementation does not recognise a option
then the validating party should refuse to accept the certificate.

The supported options and the contents and structure of their
data fields are:

Name                    Format        Description
-----------------------------------------------------------------------------
force-command           string        Specifies a command that is executed
                                      (replacing any the user specified on the
                                      ssh command-line) whenever this key is
                                      used for authentication.

source-address          string        Comma-separated list of source addresses
                                      from which this certificate is accepted
                                      for authentication. Addresses are
                                      specified in CIDR format (nn.nn.nn.nn/nn
                                      or hhhh::hhhh/nn).
                                      If this option is not present then
                                      certificates may be presented from any
                                      source address.

Extensions
----------

The extensions section of the certificate specifies zero or more
non-critical certificate extensions. The encoding of extensions in this
field is identical to that of the critical options. If an implementation
does not recognise an extension, then it should ignore it.

The supported extensions and the contents and structure of their data
fields are:

Name                    Format        Description
-----------------------------------------------------------------------------
permit-X11-forwarding   empty         Flag indicating that X11 forwarding
                                      should be permitted. X11 forwarding will
                                      be refused if this option is absent.

permit-agent-forwarding empty         Flag indicating that agent forwarding
                                      should be allowed. Agent forwarding
                                      must not be permitted unless this
                                      option is present.

permit-port-forwarding  empty         Flag indicating that port-forwarding
                                      should be allowed. If this option is
                                      not present then no port forwarding will
                                      be allowed.

permit-pty              empty         Flag indicating that PTY allocation
                                      should be permitted. In the absence of
                                      this option PTY allocation will be
                                      disabled.

permit-user-rc          empty         Flag indicating that execution of
                                      ~/.ssh/rc should be permitted. Execution
                                      of this script will not be permitted if
                                      this option is not present.

$OpenBSD: PROTOCOL.certkeys,v 1.6 2010/05/20 23:46:02 djm Exp $