1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
|
/* udb.c - u(micro) data base.
* By W.C.A. Wijngaards
* Copyright 2010, NLnet Labs.
* BSD, see LICENSE.
*/
#include "config.h"
#include "udb.h"
#include <string.h>
#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <assert.h>
#include "lookup3.h"
#include "util.h"
/* mmap and friends */
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
/* for systems without, portable definition, failed-1 and async is a flag */
#ifndef MAP_FAILED
#define MAP_FAILED ((void*)-1)
#endif
#ifndef MS_SYNC
#define MS_SYNC 0
#endif
/** move and fixup xl segment */
static void move_xl_segment(void* base, udb_base* udb, udb_void xl,
udb_void n, uint64_t sz, uint64_t startseg);
/** attempt to compact the data and move free space to the end */
static int udb_alloc_compact(void* base, udb_alloc* alloc);
/** convert pointer to the data part to a pointer to the base of the chunk */
static udb_void
chunk_from_dataptr(udb_void data)
{
/* we use that sizeof(udb_chunk_d) != sizeof(udb_xl_chunk_d) and
* that xl_chunk_d is aligned on x**1024 boundaries. */
udb_void xl = data - sizeof(udb_xl_chunk_d);
if( (xl & (UDB_ALLOC_CHUNK_SIZE-1)) == 0)
return xl;
return data - sizeof(udb_chunk_d);
}
udb_void chunk_from_dataptr_ext(udb_void data) {
return chunk_from_dataptr(data);
}
#ifndef NDEBUG
/** read last octet from a chunk */
static uint8_t
chunk_get_last(void* base, udb_void chunk, int exp)
{
return *((uint8_t*)UDB_REL(base, chunk+(1<<exp)-1));
}
#endif
/** write last octet of a chunk */
static void
chunk_set_last(void* base, udb_void chunk, int exp, uint8_t value)
{
assert(exp >= 0 && exp <= 63);
*((uint8_t*)UDB_REL(base, chunk+((uint64_t)1<<exp)-1)) = value;
}
/** create udb_base from a file descriptor (must be at start of file) */
udb_base*
udb_base_create_fd(const char* fname, int fd, udb_walk_relptr_func walkfunc,
void* arg)
{
uint64_t m, fsz;
udb_glob_d g;
ssize_t r;
udb_base* udb = (udb_base*)xalloc_zero(sizeof(*udb));
if(!udb) {
log_msg(LOG_ERR, "out of memory");
close(fd);
return NULL;
}
udb->fname = strdup(fname);
if(!udb->fname) {
log_msg(LOG_ERR, "out of memory");
free(udb);
close(fd);
return NULL;
}
udb->walkfunc = walkfunc;
udb->walkarg = arg;
udb->fd = fd;
udb->ram_size = 1024;
udb->ram_mask = (int)udb->ram_size - 1;
udb->ram_hash = (udb_ptr**)xalloc_array_zero(sizeof(udb_ptr*),
udb->ram_size);
if(!udb->ram_hash) {
free(udb->fname);
free(udb);
log_msg(LOG_ERR, "out of memory");
close(fd);
return NULL;
}
/* read magic */
if((r=read(fd, &m, sizeof(m))) == -1) {
log_msg(LOG_ERR, "%s: %s", fname, strerror(errno));
goto fail;
} else if(r != (ssize_t)sizeof(m)) {
log_msg(LOG_ERR, "%s: file too short", fname);
goto fail;
}
/* TODO : what if bigendian and littleendian file, see magic */
if(m != UDB_MAGIC) {
log_msg(LOG_ERR, "%s: wrong type of file", fname);
goto fail;
}
/* read header */
if((r=read(fd, &g, sizeof(g))) == -1) {
log_msg(LOG_ERR, "%s: %s\n", fname, strerror(errno));
goto fail;
} else if(r != (ssize_t)sizeof(g)) {
log_msg(LOG_ERR, "%s: file too short", fname);
goto fail;
}
if(g.version != 0) {
log_msg(LOG_ERR, "%s: unknown file version %d", fname,
(int)g.version);
goto fail;
}
if(g.hsize < UDB_HEADER_SIZE) {
log_msg(LOG_ERR, "%s: header size too small %d", fname,
(int)g.hsize);
goto fail;
}
if(g.hsize > UDB_HEADER_SIZE) {
log_msg(LOG_WARNING, "%s: header size too large %d", fname,
(int)g.hsize);
goto fail;
}
if(g.clean_close != 1) {
log_msg(LOG_WARNING, "%s: not cleanly closed %d", fname,
(int)g.clean_close);
goto fail;
}
if(g.dirty_alloc != 0) {
log_msg(LOG_WARNING, "%s: not cleanly closed (alloc:%d)", fname,
(int)g.dirty_alloc);
goto fail;
}
/* check file size correctly written, for 4.0.2 nsd.db failure */
fsz = (uint64_t)lseek(fd, (off_t)0, SEEK_END);
(void)lseek(fd, (off_t)0, SEEK_SET);
if(g.fsize != fsz) {
log_msg(LOG_WARNING, "%s: file size %llu but mmap header "
"has size %llu", fname, (unsigned long long)fsz,
(unsigned long long)g.fsize);
goto fail;
}
/* mmap it */
if(g.fsize < UDB_HEADER_SIZE || g.fsize < g.hsize) {
log_msg(LOG_ERR, "%s: file too short", fname);
goto fail;
}
if(g.fsize > (uint64_t)400*1024*1024*1024*1024) /* 400 Tb */ {
log_msg(LOG_WARNING, "%s: file size too large %llu",
fname, (unsigned long long)g.fsize);
goto fail;
}
udb->base_size = (size_t)g.fsize;
#ifdef HAVE_MMAP
/* note the size_t casts must be there for portability, on some
* systems the layout of memory is otherwise broken. */
udb->base = mmap(NULL, (size_t)udb->base_size,
(int)PROT_READ|PROT_WRITE, (int)MAP_SHARED,
(int)udb->fd, (off_t)0);
#else
udb->base = MAP_FAILED; errno = ENOSYS;
#endif
if(udb->base == MAP_FAILED) {
udb->base = NULL;
log_msg(LOG_ERR, "mmap(size %u) error: %s",
(unsigned)udb->base_size, strerror(errno));
fail:
close(fd);
free(udb->fname);
free(udb->ram_hash);
free(udb);
return NULL;
}
/* init completion */
udb->glob_data = (udb_glob_d*)((char*)udb->base+sizeof(uint64_t));
r = 0;
/* cannot be dirty because that is goto fail above */
if(udb->glob_data->dirty_alloc != udb_dirty_clean)
r = 1;
udb->alloc = udb_alloc_create(udb, (udb_alloc_d*)(
(char*)udb->glob_data+sizeof(*udb->glob_data)));
if(!udb->alloc) {
log_msg(LOG_ERR, "out of memory");
udb_base_free(udb);
return NULL;
}
if(r) {
/* and compact now, or resume compacting */
udb_alloc_compact(udb, udb->alloc);
udb_base_sync(udb, 1);
}
udb->glob_data->clean_close = 0;
return udb;
}
udb_base* udb_base_create_read(const char* fname, udb_walk_relptr_func walkfunc,
void* arg)
{
int fd = open(fname, O_RDWR);
if(fd == -1) {
log_msg(LOG_ERR, "%s: %s", fname, strerror(errno));
return NULL;
}
return udb_base_create_fd(fname, fd, walkfunc, arg);
}
/** init new udb_global structure */
static void udb_glob_init_new(udb_glob_d* g)
{
memset(g, 0, sizeof(*g));
g->hsize = UDB_HEADER_SIZE;
g->fsize = UDB_HEADER_SIZE;
}
/** write data to file and check result */
static int
write_fdata(const char* fname, int fd, void* data, size_t len)
{
ssize_t w;
if((w=write(fd, data, len)) == -1) {
log_msg(LOG_ERR, "%s: %s", fname, strerror(errno));
close(fd);
return 0;
} else if(w != (ssize_t)len) {
log_msg(LOG_ERR, "%s: short write (disk full?)", fname);
close(fd);
return 0;
}
return 1;
}
udb_base* udb_base_create_new(const char* fname, udb_walk_relptr_func walkfunc,
void* arg)
{
uint64_t m;
udb_glob_d g;
udb_alloc_d a;
uint64_t endsize = UDB_HEADER_SIZE;
uint64_t endexp = 0;
int fd = open(fname, O_CREAT|O_RDWR, 0600);
if(fd == -1) {
log_msg(LOG_ERR, "%s: %s", fname, strerror(errno));
return NULL;
}
m = UDB_MAGIC;
udb_glob_init_new(&g);
udb_alloc_init_new(&a);
g.clean_close = 1;
/* write new data to file (closes fd on error) */
if(!write_fdata(fname, fd, &m, sizeof(m)))
return NULL;
if(!write_fdata(fname, fd, &g, sizeof(g)))
return NULL;
if(!write_fdata(fname, fd, &a, sizeof(a)))
return NULL;
if(!write_fdata(fname, fd, &endsize, sizeof(endsize)))
return NULL;
if(!write_fdata(fname, fd, &endexp, sizeof(endexp)))
return NULL;
/* rewind to start */
if(lseek(fd, (off_t)0, SEEK_SET) == (off_t)-1) {
log_msg(LOG_ERR, "%s: lseek %s", fname, strerror(errno));
close(fd);
return NULL;
}
/* truncate to the right size */
if(ftruncate(fd, (off_t)g.fsize) < 0) {
log_msg(LOG_ERR, "%s: ftruncate(%d): %s", fname,
(int)g.fsize, strerror(errno));
close(fd);
return NULL;
}
return udb_base_create_fd(fname, fd, walkfunc, arg);
}
/** shrink the udb base if it has unused space at the end */
static void
udb_base_shrink(udb_base* udb, uint64_t nsize)
{
udb->glob_data->dirty_alloc = udb_dirty_fsize;
udb->glob_data->fsize = nsize;
/* sync, does not *seem* to be required on Linux, but it is
certainly required on OpenBSD. Otherwise changed data is lost. */
#ifdef HAVE_MMAP
msync(udb->base, udb->base_size, MS_ASYNC);
#endif
if(ftruncate(udb->fd, (off_t)nsize) != 0) {
log_msg(LOG_ERR, "%s: ftruncate(%u) %s", udb->fname,
(unsigned)nsize, strerror(errno));
}
udb->glob_data->dirty_alloc = udb_dirty_clean;
}
void udb_base_close(udb_base* udb)
{
if(!udb)
return;
if(udb->fd != -1 && udb->base && udb->alloc) {
uint64_t nsize = udb->alloc->disk->nextgrow;
if(nsize < udb->base_size)
udb_base_shrink(udb, nsize);
}
if(udb->fd != -1) {
udb->glob_data->clean_close = 1;
close(udb->fd);
udb->fd = -1;
}
if(udb->base) {
#ifdef HAVE_MMAP
if(munmap(udb->base, udb->base_size) == -1) {
log_msg(LOG_ERR, "munmap: %s", strerror(errno));
}
#endif
udb->base = NULL;
}
}
void udb_base_free(udb_base* udb)
{
if(!udb)
return;
udb_base_close(udb);
udb_alloc_delete(udb->alloc);
free(udb->ram_hash);
free(udb->fname);
free(udb);
}
void udb_base_free_keep_mmap(udb_base* udb)
{
if(!udb) return;
if(udb->fd != -1) {
close(udb->fd);
udb->fd = -1;
}
udb->base = NULL;
udb_alloc_delete(udb->alloc);
free(udb->ram_hash);
free(udb->fname);
free(udb);
}
void udb_base_sync(udb_base* udb, int wait)
{
if(!udb) return;
#ifdef HAVE_MMAP
if(msync(udb->base, udb->base_size, wait?MS_SYNC:MS_ASYNC) != 0) {
log_msg(LOG_ERR, "msync(%s) error %s",
udb->fname, strerror(errno));
}
#else
(void)wait;
#endif
}
/** hash a chunk pointer */
static uint32_t
chunk_hash_ptr(udb_void p)
{
/* put p into an array of uint32 */
uint32_t h[sizeof(p)/sizeof(uint32_t)];
memcpy(&h, &p, sizeof(h));
return hashword(h, sizeof(p)/sizeof(uint32_t), 0x8763);
}
/** check that the given pointer is on the bucket for the given offset */
int udb_ptr_is_on_bucket(udb_base* udb, udb_ptr* ptr, udb_void to)
{
uint32_t i = chunk_hash_ptr(to) & udb->ram_mask;
udb_ptr* p;
assert((size_t)i < udb->ram_size);
for(p = udb->ram_hash[i]; p; p=p->next) {
if(p == ptr)
return 1;
}
return 0;
}
/** grow the ram array */
static void
grow_ram_hash(udb_base* udb, udb_ptr** newhash)
{
size_t i;
size_t osize= udb->ram_size;
udb_ptr* p, *np;
udb_ptr** oldhash = udb->ram_hash;
udb->ram_size *= 2;
udb->ram_mask <<= 1;
udb->ram_mask |= 1;
udb->ram_hash = newhash;
/* have to link in every element in the old list into the new list*/
for(i=0; i<osize; i++) {
p = oldhash[i];
while(p) {
np = p->next;
/* link into newhash */
p->prev=NULL;
p->next=newhash[chunk_hash_ptr(p->data)&udb->ram_mask];
if(p->next) p->next->prev = p;
/* go to next element of oldhash */
p = np;
}
}
free(oldhash);
}
void udb_base_link_ptr(udb_base* udb, udb_ptr* ptr)
{
uint32_t i;
#ifdef UDB_CHECK
assert(udb_valid_dataptr(udb, ptr->data)); /* must be to whole chunk*/
#endif
udb->ram_num++;
if(udb->ram_num == udb->ram_size && udb->ram_size<(size_t)0x7fffffff) {
/* grow the array, if allocation succeeds */
udb_ptr** newram = (udb_ptr**)xalloc_array_zero(
sizeof(udb_ptr*), udb->ram_size*2);
if(newram) {
grow_ram_hash(udb, newram);
}
}
i = chunk_hash_ptr(ptr->data) & udb->ram_mask;
assert((size_t)i < udb->ram_size);
ptr->prev = NULL;
ptr->next = udb->ram_hash[i];
udb->ram_hash[i] = ptr;
if(ptr->next)
ptr->next->prev = ptr;
}
void udb_base_unlink_ptr(udb_base* udb, udb_ptr* ptr)
{
assert(ptr->data);
#ifdef UDB_CHECK
assert(udb_valid_dataptr(udb, ptr->data)); /* ptr must be inited */
assert(udb_ptr_is_on_bucket(udb, ptr, ptr->data));
#endif
udb->ram_num--;
if(ptr->next)
ptr->next->prev = ptr->prev;
if(ptr->prev)
ptr->prev->next = ptr->next;
else {
uint32_t i = chunk_hash_ptr(ptr->data) & udb->ram_mask;
assert((size_t)i < udb->ram_size);
udb->ram_hash[i] = ptr->next;
}
}
/** change a set of ram ptrs to a new value */
static void
udb_base_ram_ptr_edit(udb_base* udb, udb_void old, udb_void newd)
{
uint32_t io = chunk_hash_ptr(old) & udb->ram_mask;
udb_ptr* p, *np;
/* edit them and move them into the new position */
p = udb->ram_hash[io];
while(p) {
np = p->next;
if(p->data == old) {
udb_base_unlink_ptr(udb, p);
p->data = newd;
udb_base_link_ptr(udb, p);
}
p = np;
}
}
udb_rel_ptr* udb_base_get_userdata(udb_base* udb)
{
return &udb->glob_data->user_global;
}
void udb_base_set_userdata(udb_base* udb, udb_void user)
{
#ifdef UDB_CHECK
if(user) { assert(udb_valid_dataptr(udb, user)); }
#endif
udb_rel_ptr_set(udb->base, &udb->glob_data->user_global, user);
}
void udb_base_set_userflags(udb_base* udb, uint8_t v)
{
udb->glob_data->userflags = v;
}
uint8_t udb_base_get_userflags(udb_base* udb)
{
return udb->glob_data->userflags;
}
/** re-mmap the udb to specified size */
static void*
udb_base_remap(udb_base* udb, udb_alloc* alloc, uint64_t nsize)
{
#ifdef HAVE_MMAP
void* nb;
/* for use with valgrind, do not use mremap, but the other version */
#ifdef MREMAP_MAYMOVE
nb = mremap(udb->base, udb->base_size, nsize, MREMAP_MAYMOVE);
if(nb == MAP_FAILED) {
log_msg(LOG_ERR, "mremap(%s, size %u) error %s",
udb->fname, (unsigned)nsize, strerror(errno));
return 0;
}
#else /* !HAVE MREMAP */
/* use munmap-mmap to simulate mremap */
if(munmap(udb->base, udb->base_size) != 0) {
log_msg(LOG_ERR, "munmap(%s) error %s",
udb->fname, strerror(errno));
}
/* provide hint for new location */
/* note the size_t casts must be there for portability, on some
* systems the layout of memory is otherwise broken. */
nb = mmap(udb->base, (size_t)nsize, (int)PROT_READ|PROT_WRITE,
(int)MAP_SHARED, (int)udb->fd, (off_t)0);
/* retry the mmap without basept in case of ENOMEM (FreeBSD8),
* the kernel can then try to mmap it at a different location
* where more memory is available */
if(nb == MAP_FAILED && errno == ENOMEM) {
nb = mmap(NULL, (size_t)nsize, (int)PROT_READ|PROT_WRITE,
(int)MAP_SHARED, (int)udb->fd, (off_t)0);
}
if(nb == MAP_FAILED) {
log_msg(LOG_ERR, "mmap(%s, size %u) error %s",
udb->fname, (unsigned)nsize, strerror(errno));
udb->base = NULL;
return 0;
}
#endif /* HAVE MREMAP */
if(nb != udb->base) {
/* fix up realpointers in udb and alloc */
/* but mremap may have been nice and not move the base */
udb->base = nb;
udb->glob_data = (udb_glob_d*)((char*)nb+sizeof(uint64_t));
/* use passed alloc pointer because the udb->alloc may not
* be initialized yet */
alloc->disk = (udb_alloc_d*)((char*)udb->glob_data
+sizeof(*udb->glob_data));
}
udb->base_size = nsize;
return nb;
#else /* HAVE_MMAP */
(void)udb; (void)alloc; (void)nsize;
return NULL;
#endif /* HAVE_MMAP */
}
void
udb_base_remap_process(udb_base* udb)
{
/* assume that fsize is still accessible */
udb_base_remap(udb, udb->alloc, udb->glob_data->fsize);
}
/** grow file to specified size and re-mmap, return new base */
static void*
udb_base_grow_and_remap(udb_base* udb, uint64_t nsize)
{
/* grow file by writing a single zero at that spot, the
* rest is filled in with zeroes. */
uint8_t z = 0;
ssize_t w;
assert(nsize > 0);
udb->glob_data->dirty_alloc = udb_dirty_fsize;
#ifdef HAVE_PWRITE
if((w=pwrite(udb->fd, &z, sizeof(z), (off_t)(nsize-1))) == -1) {
#else
if(lseek(udb->fd, (off_t)(nsize-1), SEEK_SET) == -1) {
log_msg(LOG_ERR, "fseek %s: %s", udb->fname, strerror(errno));
return 0;
}
if((w=write(udb->fd, &z, sizeof(z))) == -1) {
#endif
log_msg(LOG_ERR, "grow(%s, size %u) error %s",
udb->fname, (unsigned)nsize, strerror(errno));
return 0;
} else if(w != (ssize_t)sizeof(z)) {
log_msg(LOG_ERR, "grow(%s, size %u) failed (disk full?)",
udb->fname, (unsigned)nsize);
return 0;
}
udb->glob_data->fsize = nsize;
udb->glob_data->dirty_alloc = udb_dirty_clean;
return udb_base_remap(udb, udb->alloc, nsize);
}
int udb_exp_size(uint64_t a)
{
/* find enclosing value such that 2**x >= a */
int x = 0;
uint64_t i = a;
assert(a != 0);
i --;
/* could optimise this with uint8* access, depends on endianness */
/* first whole bytes */
while( (i&(~(uint64_t)0xff)) ) {
i >>= 8;
x += 8;
}
/* now details */
while(i) {
i >>= 1;
x ++;
}
assert( x>=0 && x<=63);
assert( ((uint64_t)1<<x) >= a);
assert( x==0 || /* <<x-1 without negative number analyzer complaints: */ (((uint64_t)1<<x)>>1) < a);
return x;
}
int udb_exp_offset(uint64_t o)
{
/* this means measuring the number of 0 bits on the right */
/* so, if exp zero bits then (o&(2**x-1))==0 */
int x = 0;
uint64_t i = o;
assert(o != 0);
/* first whole bytes */
while( (i&(uint64_t)0xff) == 0) {
i >>= 8;
x += 8;
}
/* now details */
while( (i&(uint64_t)0x1) == 0) {
i >>= 1;
x ++;
}
assert( o % ((uint64_t)1<<x) == 0);
assert( o % ((uint64_t)1<<(x+1)) != 0);
return x;
}
void udb_alloc_init_new(udb_alloc_d* a)
{
assert(UDB_HEADER_SIZE % UDB_ALLOC_CHUNK_MINSIZE == 0);
memset(a, 0, sizeof(*a));
/* set new allocations after header, as if allocated in a sequence
* of minsize allocations */
a->nextgrow = UDB_HEADER_SIZE;
}
/** fsck the file size, false if failed and file is useless */
static int
fsck_fsize(udb_base* udb, udb_alloc* alloc)
{
off_t realsize;
log_msg(LOG_WARNING, "udb-fsck %s: file size wrong", udb->fname);
realsize = lseek(udb->fd, (off_t)0, SEEK_END);
if(realsize == (off_t)-1) {
log_msg(LOG_ERR, "lseek(%s): %s", udb->fname, strerror(errno));
return 0;
}
udb->glob_data->fsize = (uint64_t)realsize;
if(!udb_base_remap(udb, alloc, (uint64_t)realsize))
return 0;
udb->glob_data->dirty_alloc = udb_dirty_clean;
log_msg(LOG_WARNING, "udb-fsck %s: file size fixed (sync)", udb->fname);
udb_base_sync(udb, 1);
return 1;
}
/** regenerate freelist add a new free chunk, return next todo */
static udb_void
regen_free(void* base, udb_void c, int exp, udb_alloc_d* regen)
{
udb_free_chunk_d* cp = UDB_FREE_CHUNK(c);
uint64_t esz = (uint64_t)1<<exp;
if(exp < UDB_ALLOC_CHUNK_MINEXP || exp > UDB_ALLOC_CHUNKS_MAX) {
return 0;
}
cp->type = udb_chunk_type_free;
cp->flags = 0;
chunk_set_last(base, c, exp, (uint8_t)exp);
cp->prev = 0;
cp->next = regen->free[exp-UDB_ALLOC_CHUNK_MINEXP];
if(cp->next)
UDB_FREE_CHUNK(cp->next)->prev = c;
regen->stat_free += esz;
return c + esz;
}
/** regenerate xl chunk, return next todo */
static udb_void
regen_xl(void* base, udb_void c, udb_alloc_d* regen)
{
udb_xl_chunk_d* cp = UDB_XL_CHUNK(c);
uint64_t xlsz = cp->size;
if( (xlsz&(UDB_ALLOC_CHUNK_SIZE-1)) != 0) {
return 0;
}
if( (c&(UDB_ALLOC_CHUNK_SIZE-1)) != 0) {
return 0;
}
/* fixup end-size and end-expmarker */
regen->stat_alloc += xlsz;
return c + xlsz;
}
/** regenerate data chunk, return next todo */
static udb_void
regen_data(void* base, udb_void c, int exp, udb_alloc_d* regen)
{
uint64_t esz = (uint64_t)1<<exp;
if(exp < UDB_ALLOC_CHUNK_MINEXP || exp > UDB_ALLOC_CHUNKS_MAX) {
return 0;
}
chunk_set_last(base, c, exp, (uint8_t)exp);
regen->stat_alloc += esz;
return c + esz;
}
/** regenerate a relptr structure inside a data segment */
static void
regen_relptr_func(void* base, udb_rel_ptr* rp, void* arg)
{
udb_void* a = (udb_void*)arg;
/* ignore 0 pointers */
if(!rp->data)
return;
/* edit relptrs that point to oldmoved to point to newmoved. */
if(rp->data == a[0])
rp->data = a[1];
/* regenerate relptr lists, add this item to the relptr list for
* the data that it points to */
udb_rel_ptr_link(base, rp, rp->data);
}
/** regenerate the relptrs store in this data segment */
static void
regen_its_ptrs(void* base, udb_base* udb, udb_chunk_d* atp,
void* data, uint64_t dsz, udb_void rb_old, udb_void rb_new)
{
udb_void arg[2];
arg[0] = rb_old; arg[1] = rb_new;
/* walk through the structs here and put them on their respective
* relptr lists */
(*udb->walkfunc)(base, udb->walkarg, atp->type, data, dsz,
®en_relptr_func, arg);
}
/** regenerate relptrlists in the file */
static void
regen_ptrlist(void* base, udb_base* udb, udb_alloc* alloc,
udb_void rb_old, udb_void rb_new)
{
udb_void at = alloc->udb->glob_data->hsize;
/* clear all ptrlist start pointers in the file. */
while(at < alloc->disk->nextgrow) {
int exp = (int)UDB_CHUNK(at)->exp;
udb_chunk_type tp = (udb_chunk_type)UDB_CHUNK(at)->type;
if(exp == UDB_EXP_XL) {
UDB_XL_CHUNK(at)->ptrlist = 0;
at += UDB_XL_CHUNK(at)->size;
} else if(tp == udb_chunk_type_free) {
at += (uint64_t)1<<exp;
} else { /* data chunk */
UDB_CHUNK(at)->ptrlist = 0;
at += (uint64_t)1<<exp;
}
}
/* walk through all relptr structs and put on the right list. */
at = alloc->udb->glob_data->hsize;
while(at < alloc->disk->nextgrow) {
udb_chunk_d* atp = UDB_CHUNK(at);
int exp = (int)atp->exp;
udb_chunk_type tp = (udb_chunk_type)atp->type;
uint64_t sz = ((exp == UDB_EXP_XL)?UDB_XL_CHUNK(at)->size:
(uint64_t)1<<exp);
if(exp == UDB_EXP_XL) {
assert(at != rb_old); /* should have been freed */
regen_its_ptrs(base, udb, atp,
((char*)atp)+sizeof(udb_xl_chunk_d),
sz-sizeof(udb_xl_chunk_d) - sizeof(uint64_t)*2,
rb_old, rb_new);
at += sz;
} else if(tp == udb_chunk_type_free) {
at += sz;
} else { /* data chunk */
assert(at != rb_old); /* should have been freed */
regen_its_ptrs(base, udb, atp,
((char*)atp)+sizeof(udb_chunk_d),
sz-sizeof(udb_chunk_d)-1, rb_old, rb_new);
at += sz;
}
}
}
/** mark free elements from ex XL chunk space and later fixups pick that up */
static void
rb_mark_free_segs(void* base, udb_void s, uint64_t m)
{
udb_void q = s + m - UDB_ALLOC_CHUNK_SIZE;
/* because of header and alignment we know s >= UDB_ALLOC_CHUNK_SIZE*/
assert(s >= UDB_ALLOC_CHUNK_SIZE);
while(q >= s) {
UDB_CHUNK(q)->exp = UDB_ALLOC_CHUNKS_MAX;
UDB_CHUNK(q)->type = udb_chunk_type_free;
q -= UDB_ALLOC_CHUNK_SIZE;
}
}
/** fsck rollback or rollforward XL move results */
static int
fsck_rb_xl(void* base, udb_base* udb, udb_void rb_old, udb_void rb_new,
uint64_t rb_size, uint64_t rb_seg)
{
if(rb_old <= rb_new)
return 0; /* XL move one way */
if( (rb_size&(UDB_ALLOC_CHUNK_SIZE-1)) != 0)
return 0; /* not aligned */
if( (rb_old&(UDB_ALLOC_CHUNK_SIZE-1)) != 0)
return 0; /* not aligned */
if( (rb_new&(UDB_ALLOC_CHUNK_SIZE-1)) != 0)
return 0; /* not aligned */
if(rb_new + rb_size <= rb_old) {
/* not overlapping: resume copy */
memcpy(UDB_CHUNK(rb_new), UDB_CHUNK(rb_old), rb_size);
/* and free up old piece(s) */
rb_mark_free_segs(base, rb_old, rb_size);
} else {
/* overlapping, see what segment we stopped at
* and continue there. */
move_xl_segment(base, udb, rb_old, rb_new, rb_size, rb_seg);
/* free up old piece(s); from the end of the moved segment,
* until the end of the old segment */
rb_mark_free_segs(base, rb_new+rb_size, (rb_old+rb_size)-
(rb_new+rb_size));
}
/* do not call fix_ptrs, regenptrs does the job */
return 1;
}
/** fsck rollback or rollforward move results */
static int
fsck_rb(void* base, udb_void rb_old, udb_void rb_new, uint64_t rb_size,
udb_void* make_free)
{
if( (rb_size&(rb_size-1)) != 0)
return 0; /* not powerof2 */
if( (rb_old&(rb_size-1)) != 0)
return 0; /* not aligned */
if( (rb_new&(rb_size-1)) != 0)
return 0; /* not aligned */
/* resume copy */
memcpy(UDB_CHUNK(rb_new), UDB_CHUNK(rb_old), rb_size);
/* do not call fix_ptrs, regenptrs does the job */
/* make sure udb_old is freed */
*make_free = rb_old;
return 1;
}
/** fsck the file and salvage, false if failed and file is useless */
static int
fsck_file(udb_base* udb, udb_alloc* alloc, int moved)
{
void* base = udb->base;
udb_alloc_d regen;
udb_void at = udb->glob_data->hsize;
udb_void rb_old = udb->glob_data->rb_old;
udb_void rb_new = udb->glob_data->rb_new;
udb_void rb_seg = udb->glob_data->rb_seg;
udb_void make_free = 0;
uint64_t rb_size = udb->glob_data->rb_size;
log_msg(LOG_WARNING, "udb-fsck %s: salvaging", udb->fname);
/* walk through the file, use the exp values to see what can be
* salvaged */
if(moved && rb_old && rb_new && rb_size) {
if(rb_old+rb_size <= alloc->disk->nextgrow
&& rb_new+rb_size <= alloc->disk->nextgrow) {
/* we can use the move information to fix up the
* duplicate element (or partially moved element) */
if(rb_size > 1024*1024) {
/* XL chunk */
if(!fsck_rb_xl(base, udb, rb_old, rb_new,
rb_size, rb_seg))
return 0;
} else {
if(!fsck_rb(base, rb_old, rb_new, rb_size,
&make_free))
return 0;
}
}
}
/* rebuild freelists */
/* recalculate stats in alloc (except 'stat_data') */
/* possibly new end 'nextgrow' value */
memset(®en, 0, sizeof(regen));
regen.nextgrow = alloc->disk->nextgrow;
while(at < regen.nextgrow) {
/* figure out this chunk */
int exp = (int)UDB_CHUNK(at)->exp;
udb_chunk_type tp = (udb_chunk_type)UDB_CHUNK(at)->type;
/* consistency check possible here with end-exp */
if(tp == udb_chunk_type_free || at == make_free) {
at = regen_free(base, at, exp, ®en);
if(!at) return 0;
} else if(exp == UDB_EXP_XL) {
/* allocated data of XL size */
at = regen_xl(base, at, ®en);
if(!at) return 0;
} else if(exp >= UDB_ALLOC_CHUNK_MINEXP
&& exp <= UDB_ALLOC_CHUNKS_MAX) {
/* allocated data */
at = regen_data(base, at, exp, ®en);
if(!at) return 0;
} else {
/* garbage; this must be EOF then */
regen.nextgrow = at;
break;
}
}
*alloc->disk = regen;
/* rebuild relptr lists */
regen_ptrlist(base, udb, alloc, rb_old, rb_new);
log_msg(LOG_WARNING, "udb-fsck %s: salvaged successfully (sync)",
udb->fname);
udb->glob_data->rb_old = 0;
udb->glob_data->rb_new = 0;
udb->glob_data->rb_size = 0;
udb->glob_data->dirty_alloc = udb_dirty_clean;
udb_base_sync(udb, 1);
return 1;
}
udb_alloc* udb_alloc_create(udb_base* udb, udb_alloc_d* disk)
{
udb_alloc* alloc = (udb_alloc*)xalloc_zero(sizeof(*alloc));
if(!alloc)
return NULL;
alloc->udb = udb;
alloc->disk = disk;
/* see if committed but uncompleted actions need to be done */
/* preserves the alloc state */
if(udb->glob_data->dirty_alloc != udb_dirty_clean) {
if(udb->glob_data->dirty_alloc == udb_dirty_fsize) {
if(fsck_fsize(udb, alloc))
return alloc;
} else if(udb->glob_data->dirty_alloc == udb_dirty_fl) {
if(fsck_file(udb, alloc, 0))
return alloc;
} else if(udb->glob_data->dirty_alloc == udb_dirty_compact) {
if(fsck_file(udb, alloc, 1))
return alloc;
}
log_msg(LOG_ERR, "error: file allocation dirty (%d)",
(int)udb->glob_data->dirty_alloc);
free(alloc);
return NULL;
}
return alloc;
}
void udb_alloc_delete(udb_alloc* alloc)
{
if(!alloc) return;
free(alloc);
}
/** unlink this element from its freelist */
static void
udb_alloc_unlink_fl(void* base, udb_alloc* alloc, udb_void chunk, int exp)
{
udb_free_chunk_d* fp = UDB_FREE_CHUNK(chunk);
assert(chunk);
/* chunk is a free chunk */
assert(fp->exp == (uint8_t)exp);
assert(fp->type == udb_chunk_type_free);
assert(chunk_get_last(base, chunk, exp) == (uint8_t)exp);
/* and thus freelist not empty */
assert(alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP]);
/* unlink */
if(fp->prev)
UDB_FREE_CHUNK(fp->prev)->next = fp->next;
else alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP] = fp->next;
if(fp->next)
UDB_FREE_CHUNK(fp->next)->prev = fp->prev;
}
/** pop first element off freelist, list may not be empty */
static udb_void
udb_alloc_pop_fl(void* base, udb_alloc* alloc, int exp)
{
udb_void f = alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP];
udb_free_chunk_d* fp = UDB_FREE_CHUNK(f);
assert(f);
assert(fp->exp == (uint8_t)exp);
assert(fp->type == udb_chunk_type_free);
assert(chunk_get_last(base, f, exp) == (uint8_t)exp);
alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP] = fp->next;
if(fp->next) {
UDB_FREE_CHUNK(fp->next)->prev = 0;
}
return f;
}
/** push new element onto freelist */
static void
udb_alloc_push_fl(void* base, udb_alloc* alloc, udb_void f, int exp)
{
udb_free_chunk_d* fp = UDB_FREE_CHUNK(f);
assert(f);
fp->exp = (uint8_t)exp;
fp->type = udb_chunk_type_free;
fp->flags = 0;
fp->prev = 0;
fp->next = alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP];
if(fp->next)
UDB_FREE_CHUNK(fp->next)->prev = f;
chunk_set_last(base, f, exp, (uint8_t)exp);
alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP] = f;
}
/** push new element onto freelist - do not initialize the elt */
static void
udb_alloc_push_fl_noinit(void* base, udb_alloc* alloc, udb_void f, int exp)
{
udb_free_chunk_d* fp = UDB_FREE_CHUNK(f);
assert(f);
assert(fp->exp == (uint8_t)exp);
assert(fp->type == udb_chunk_type_free);
assert(chunk_get_last(base, f, exp) == (uint8_t)exp);
fp->prev = 0;
fp->next = alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP];
if(fp->next)
UDB_FREE_CHUNK(fp->next)->prev = f;
alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP] = f;
}
/** add free chunks at end until specified alignment occurs */
static void
grow_align(void* base, udb_alloc* alloc, uint64_t esz)
{
while( (alloc->disk->nextgrow & (esz-1)) != 0) {
/* the nextgrow is not a whole multiple of esz. */
/* grow a free chunk of max allowed size */
int fexp = udb_exp_offset(alloc->disk->nextgrow);
uint64_t fsz = (uint64_t)1<<fexp;
udb_void f = alloc->disk->nextgrow;
udb_void fn = alloc->disk->nextgrow+fsz;
assert(fn <= alloc->udb->base_size);
alloc->disk->stat_free += fsz;
udb_alloc_push_fl(base, alloc, f, fexp);
/* now increase nextgrow to commit that free chunk */
alloc->disk->nextgrow = fn;
}
}
/** append chunks at end of memory space to get size exp, return dataptr */
static udb_void
grow_chunks(void* base, udb_alloc* alloc, size_t sz, int exp)
{
uint64_t esz = (uint64_t)1<<exp;
udb_void ret;
alloc->udb->glob_data->dirty_alloc = udb_dirty_fl;
grow_align(base, alloc, esz);
/* free chunks are grown, grow the one we want to use */
ret = alloc->disk->nextgrow;
/* take a new alloced chunk into use */
UDB_CHUNK(ret)->exp = (uint8_t)exp;
UDB_CHUNK(ret)->flags = 0;
UDB_CHUNK(ret)->ptrlist = 0;
UDB_CHUNK(ret)->type = udb_chunk_type_data;
/* store last octet */
chunk_set_last(base, ret, exp, (uint8_t)exp);
/* update stats */
alloc->disk->stat_alloc += esz;
alloc->disk->stat_data += sz;
/* now increase nextgrow to commit this newly allocated chunk */
alloc->disk->nextgrow += esz;
assert(alloc->disk->nextgrow <= alloc->udb->base_size);
alloc->udb->glob_data->dirty_alloc = udb_dirty_clean;
return ret + sizeof(udb_chunk_d); /* ptr to data */
}
/** calculate how much space is necessary to grow for this exp */
static uint64_t
grow_end_calc(udb_alloc* alloc, int exp)
{
uint64_t sz = (uint64_t)1<<exp;
uint64_t ng = alloc->disk->nextgrow;
uint64_t res;
/* if nextgrow is 2**expness, no extra growth needed, only size */
if( (ng & (sz-1)) == 0) {
/* sz-1 is like 0xfff, and checks if ng is whole 2**exp */
return ng+sz; /* must grow exactly 2**exp */
}
/* grow until 2**expness and then we need 2**exp as well */
/* so, round ng down to whole sz (basically ng-ng%sz, or ng/sz*sz)
* and then add the sz twice (go up to whole sz, and to allocate) */
res = (ng & ~(sz-1)) + 2*sz;
return res;
}
/** see if we need to grow more than specified to enable sustained growth */
static uint64_t
grow_extra_check(udb_alloc* alloc, uint64_t ge)
{
const uint64_t mb = 1024*1024;
uint64_t bsz = alloc->udb->base_size;
if(bsz <= mb) {
/* below 1 Mb, double sizes for exponential growth */
/* takes about 15 times to grow to 1Mb */
if(ge < bsz*2)
return bsz*2;
} else {
uint64_t gnow = ge - bsz;
/* above 1Mb, grow at least 1 Mb, or 12.5% of current size,
* in whole megabytes rounded up. */
uint64_t want = ((bsz / 8) & ~(mb-1)) + mb;
if(gnow < want)
return bsz + want;
}
return ge;
}
/** see if free space is enough to warrant shrink (while file is open) */
static int
enough_free(udb_alloc* alloc)
{
if(alloc->udb->base_size <= 2*1024*1024) {
/* below 1 Mb, grown by double size, (so up to 2 mb),
* do not shrink unless we can 1/3 in size */
if(((size_t)alloc->disk->nextgrow)*3 <= alloc->udb->base_size)
return 1;
} else {
/* grown 12.5%, shrink 25% if possible, at least one mb */
/* between 1mb and 4mb size, it shrinks by 1mb if possible */
uint64_t space = alloc->udb->base_size - alloc->disk->nextgrow;
if(space >= 1024*1024 && (space*4 >= alloc->udb->base_size
|| alloc->udb->base_size < 4*1024*1024))
return 1;
}
return 0;
}
/** grow space for a chunk of 2**exp and return dataptr */
static udb_void
udb_alloc_grow_space(void* base, udb_alloc* alloc, size_t sz, int exp)
{
/* commit the grow action
* - the file grow only changes filesize, but not the nextgrow.
* - taking space after nextgrow into use (as free space),
* is like free-ing a chunk (one at a time).
* - and the last chunk taken into use is like alloc.
*/
/* predict how much free space is needed for this */
uint64_t grow_end = grow_end_calc(alloc, exp);
assert(alloc->udb->base_size >= alloc->disk->nextgrow);
if(grow_end <= alloc->udb->base_size) {
/* we can do this with the available space */
return grow_chunks(base, alloc, sz, exp);
}
/* we have to grow the file, re-mmap */
/* see if we need to grow a little more, to avoid endless grow
* efforts on adding data */
grow_end = grow_extra_check(alloc, grow_end);
if(!(base=udb_base_grow_and_remap(alloc->udb, grow_end))) {
return 0; /* mmap or write failed (disk or mem full) */
}
/* we have enough space now */
assert(grow_end <= alloc->udb->base_size);
assert(alloc->udb->glob_data->fsize == alloc->udb->base_size);
return grow_chunks(base, alloc, sz, exp);
}
/** take XL allocation into use at end of file, return dataptr */
static udb_void
grow_xl(void* base, udb_alloc* alloc, uint64_t xlsz, uint64_t sz)
{
udb_void ret;
udb_xl_chunk_d* p;
alloc->udb->glob_data->dirty_alloc = udb_dirty_fl;
/* align growth to whole mbs */
grow_align(base, alloc, UDB_ALLOC_CHUNK_SIZE);
/* grow XL segment */
ret = alloc->disk->nextgrow;
p = UDB_XL_CHUNK(ret);
p->exp = UDB_EXP_XL;
p->size = xlsz;
p->flags = 0;
p->ptrlist = 0;
p->type = udb_chunk_type_data;
/* also put size and marker at end for compaction */
*((uint64_t*)(UDB_REL(base, ret+xlsz-sizeof(uint64_t)*2))) = xlsz;
*((uint8_t*)(UDB_REL(base, ret+xlsz-1))) = UDB_EXP_XL;
/* stats */
alloc->disk->stat_data += sz;
alloc->disk->stat_alloc += xlsz;
/* now increase the nextgrow to commit this xl chunk */
alloc->disk->nextgrow += xlsz;
alloc->udb->glob_data->dirty_alloc = udb_dirty_clean;
return ret + sizeof(udb_xl_chunk_d); /* data ptr */
}
/** make space for XL allocation */
static udb_void
udb_alloc_xl_space(void* base, udb_alloc* alloc, size_t sz)
{
/* allocate whole mbs of space, at end of space */
uint64_t asz = sz + sizeof(udb_xl_chunk_d) + sizeof(uint64_t)*2;
uint64_t need=(asz+UDB_ALLOC_CHUNK_SIZE-1)&(~(UDB_ALLOC_CHUNK_SIZE-1));
uint64_t grow_end = grow_end_calc(alloc, UDB_ALLOC_CHUNKS_MAX) + need;
assert(need >= asz);
if(grow_end <= alloc->udb->base_size) {
/* can do this in available space */
return grow_xl(base, alloc, need, sz);
}
/* have to grow file and re-mmap */
grow_end = grow_extra_check(alloc, grow_end);
if(!(base=udb_base_grow_and_remap(alloc->udb, grow_end))) {
return 0; /* mmap or write failed (disk or mem full) */
}
/* we have enough space now */
assert(grow_end <= alloc->udb->base_size);
assert(alloc->udb->glob_data->fsize == alloc->udb->base_size);
return grow_xl(base, alloc, need, sz);
}
/** divide big(2**e2) into pieces so 2**exp fits */
static udb_void
udb_alloc_subdivide(void* base, udb_alloc* alloc, udb_void big, int e2,
int exp)
{
int e = e2;
uint64_t sz = (uint64_t)1<<e2;
assert(big && e2 > exp);
/* so the returned piece to use is the first piece,
* offload the later half until it fits */
do {
sz >>= 1; /* divide size of big by two */
e--; /* that means its exp is one smaller */
udb_alloc_push_fl(base, alloc, big+sz, e);
} while(e != exp);
/* exit loop when last pushed is same size as what we want */
return big;
}
/** returns the exponent size of the chunk needed for data sz */
static int
udb_alloc_exp_needed(size_t sz)
{
uint64_t asz = sz + sizeof(udb_chunk_d) + 1;
int exp;
if(asz > UDB_ALLOC_CHUNK_SIZE) {
return UDB_EXP_XL;
} else if(asz <= UDB_ALLOC_CHUNK_MINSIZE) {
return UDB_ALLOC_CHUNK_MINEXP;
}
exp = udb_exp_size(asz);
assert(exp <= UDB_ALLOC_CHUNKS_MAX);
return exp;
}
udb_void udb_alloc_space(udb_alloc* alloc, size_t sz)
{
void* base = alloc->udb->base;
/* calculate actual allocation size */
int e2, exp = udb_alloc_exp_needed(sz);
if(exp == UDB_EXP_XL)
return udb_alloc_xl_space(base, alloc, sz);
/* see if there is a free chunk of that size exactly */
if(alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP]) {
/* snip from freelist, udb_chunk_d */
udb_void ret;
alloc->udb->glob_data->dirty_alloc = udb_dirty_fl;
ret = udb_alloc_pop_fl(base, alloc, exp);
/* use it - size octets already OK */
UDB_CHUNK(ret)->flags = 0;
UDB_CHUNK(ret)->ptrlist = 0;
UDB_CHUNK(ret)->type = udb_chunk_type_data;
/* update stats */
alloc->disk->stat_data += sz;
alloc->disk->stat_alloc += (1<<exp);
assert(alloc->disk->stat_free >= (1u<<exp));
alloc->disk->stat_free -= (1<<exp);
alloc->udb->glob_data->dirty_alloc = udb_dirty_clean;
return ret + sizeof(udb_chunk_d); /* ptr to data */
}
/* see if we can subdivide a larger chunk */
for(e2 = exp+1; e2 <= UDB_ALLOC_CHUNKS_MAX; e2++)
if(alloc->disk->free[e2-UDB_ALLOC_CHUNK_MINEXP]) {
udb_void big, ret; /* udb_chunk_d */
alloc->udb->glob_data->dirty_alloc = udb_dirty_fl;
big = udb_alloc_pop_fl(base, alloc, e2);
/* push other parts onto freelists (needs inited) */
ret = udb_alloc_subdivide(base, alloc, big, e2, exp);
/* use final part (needs inited) */
UDB_CHUNK(ret)->exp = (uint8_t)exp;
/* if stop here; the new exp makes smaller free chunk*/
UDB_CHUNK(ret)->flags = 0;
UDB_CHUNK(ret)->ptrlist = 0;
/* set type to commit data chunk */
UDB_CHUNK(ret)->type = udb_chunk_type_data;
/* store last octet */
chunk_set_last(base, ret, exp, (uint8_t)exp);
/* update stats */
alloc->disk->stat_data += sz;
alloc->disk->stat_alloc += (1<<exp);
assert(alloc->disk->stat_free >= (1u<<exp));
alloc->disk->stat_free -= (1<<exp);
alloc->udb->glob_data->dirty_alloc = udb_dirty_clean;
return ret + sizeof(udb_chunk_d); /* ptr to data */
}
/* we need to grow an extra chunk */
return udb_alloc_grow_space(base, alloc, sz, exp);
}
/** see if there is free space to allocate a chunk into */
static int
have_free_for(udb_alloc* alloc, int exp)
{
int e2;
if(alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP])
return exp;
for(e2 = exp+1; e2 <= UDB_ALLOC_CHUNKS_MAX; e2++)
if(alloc->disk->free[e2-UDB_ALLOC_CHUNK_MINEXP]) {
return e2;
}
return 0;
}
/** fix relptr prev and next for moved relptr structures */
static void
chunk_fix_ptr_each(void* base, udb_rel_ptr* rp, void* arg)
{
udb_void* data = (udb_void*)arg;
udb_void r;
if(!rp->data)
return;
r = UDB_SYSTOREL(base, rp);
if(rp->next)
UDB_REL_PTR(rp->next)->prev = r;
if(rp->prev)
UDB_REL_PTR(rp->prev)->next = r;
else {
/* if this is a pointer to its own chunk, fix it up;
* the data ptr gets set by relptr_edit later. */
if(rp->data == data[0])
UDB_CHUNK(data[1])->ptrlist = r;
else UDB_CHUNK(chunk_from_dataptr(rp->data))->ptrlist = r;
}
}
/** fix pointers from and to a moved chunk */
static void
chunk_fix_ptrs(void* base, udb_base* udb, udb_chunk_d* cp, udb_void data,
uint64_t dsz, udb_void olddata)
{
udb_void d[2];
d[0] = olddata;
d[1] = data;
(*udb->walkfunc)(base, udb->walkarg, cp->type, UDB_REL(base, data),
dsz, &chunk_fix_ptr_each, d);
udb_rel_ptr_edit(base, cp->ptrlist, data);
udb_base_ram_ptr_edit(udb, olddata, data);
}
/** move an allocated chunk to use a free chunk */
static void
move_chunk(void* base, udb_alloc* alloc, udb_void f, int exp, uint64_t esz,
int e2)
{
udb_void res = udb_alloc_pop_fl(base, alloc, e2);
udb_chunk_d* rp;
udb_chunk_d* fp;
if(exp != e2) {
/* it is bigger, subdivide it */
res = udb_alloc_subdivide(base, alloc, res, e2, exp);
}
assert(res != f);
/* setup rollback information */
alloc->udb->glob_data->rb_old = f;
alloc->udb->glob_data->rb_new = res;
alloc->udb->glob_data->rb_size = esz;
/* take the res, exp into use */
rp = UDB_CHUNK(res);
fp = UDB_CHUNK(f);
/* copy over the data */
memcpy(rp, fp, esz);
/* adjust rel ptrs */
chunk_fix_ptrs(base, alloc->udb, rp, res+sizeof(udb_chunk_d),
esz-sizeof(udb_chunk_d)-1, f+sizeof(udb_chunk_d));
/* do not freeup the fp; caller does that */
}
/** unlink several free elements to overwrite with xl chunk */
static void
free_xl_space(void* base, udb_alloc* alloc, udb_void s, uint64_t m)
{
udb_void q = s + m - UDB_ALLOC_CHUNK_SIZE;
/* because of header and alignment we know s >= UDB_ALLOC_CHUNK_SIZE*/
assert(s >= UDB_ALLOC_CHUNK_SIZE);
while(q >= s) {
assert(UDB_CHUNK(q)->exp == UDB_ALLOC_CHUNKS_MAX);
assert(UDB_CHUNK(q)->type == udb_chunk_type_free);
udb_alloc_unlink_fl(base, alloc, q, UDB_ALLOC_CHUNKS_MAX);
q -= UDB_ALLOC_CHUNK_SIZE;
}
}
/** move an XL chunk, and keep track of segments for rollback */
static void
move_xl_segment(void* base, udb_base* udb, udb_void xl, udb_void n,
uint64_t sz, uint64_t startseg)
{
udb_xl_chunk_d* xlp = UDB_XL_CHUNK(xl);
udb_xl_chunk_d* np = UDB_XL_CHUNK(n);
uint64_t amount = xl - n;
assert(n < xl); /* move to compact */
/* setup move rollback */
udb->glob_data->rb_old = xl;
udb->glob_data->rb_new = n;
udb->glob_data->rb_size = sz;
/* is it overlapping? */
if(sz <= amount) {
memcpy(np, xlp, sz);
} else {
/* move and commit per 1M segment to avoid data loss */
uint64_t seg, maxseg = amount/UDB_ALLOC_CHUNK_SIZE;
for(seg = startseg; seg<maxseg; seg++) {
udb->glob_data->rb_seg = seg;
memcpy(np+seg*UDB_ALLOC_CHUNK_SIZE,
xlp+seg*UDB_ALLOC_CHUNK_SIZE,
UDB_ALLOC_CHUNK_SIZE);
}
}
}
/** move list of XL chunks to the front by the shift amount */
static void
move_xl_list(void* base, udb_alloc* alloc, udb_void xl_start, uint64_t xl_sz,
uint64_t amount)
{
udb_void xl = xl_start;
assert( (xl_start&(UDB_ALLOC_CHUNK_SIZE-1)) == 0 ); /* aligned */
assert( (amount&(UDB_ALLOC_CHUNK_SIZE-1)) == 0 ); /* multiples */
assert( (xl_sz&(UDB_ALLOC_CHUNK_SIZE-1)) == 0 ); /* multiples */
while(xl < xl_start+xl_sz) {
udb_xl_chunk_d* xlp = UDB_XL_CHUNK(xl);
udb_void n = xl-amount;
uint64_t sz = xlp->size;
assert(xlp->exp == UDB_EXP_XL);
move_xl_segment(base, alloc->udb, xl, n, sz, 0);
chunk_fix_ptrs(base, alloc->udb, UDB_CHUNK(n),
n+sizeof(udb_xl_chunk_d),
sz-sizeof(udb_xl_chunk_d)-sizeof(uint64_t)*2,
xl+sizeof(udb_xl_chunk_d));
}
alloc->disk->stat_free -= amount;
alloc->disk->nextgrow -= amount;
alloc->udb->glob_data->rb_old = 0;
alloc->udb->glob_data->rb_new = 0;
alloc->udb->glob_data->rb_size = 0;
}
/** see if free chunk can coagulate with another chunk, return other chunk */
static udb_void
coagulate_possible(void* base, udb_alloc* alloc, udb_void f, int exp,
uint64_t esz)
{
udb_void other = f^esz;
if(exp == UDB_ALLOC_CHUNKS_MAX)
return 0; /* no further merges */
if(other >= alloc->udb->base_size)
return 0; /* not allocated */
if(other >= alloc->disk->nextgrow)
return 0; /* not in use */
if(other < alloc->udb->glob_data->hsize)
return 0; /* cannot merge with header */
/* the header is also protected by the special exp marker */
/* see if the other chunk is a free chunk */
/* check closest marker to avoid large memory churn */
/* and also it makes XL allocations and header special markers work */
if(f > other) {
assert(f > 1); /* this is certain because of header */
if(*((uint8_t*)UDB_REL(base, f-1)) == (uint8_t)exp) {
/* can do it if the other part is a free chunk */
assert(UDB_FREE_CHUNK(other)->exp == (uint8_t)exp);
if(UDB_CHUNK(other)->type == udb_chunk_type_free)
return other;
}
} else {
if(UDB_CHUNK(other)->exp == (uint8_t)exp) {
/* can do it if the other part is a free chunk */
assert(chunk_get_last(base, other, exp)==(uint8_t)exp);
if(UDB_CHUNK(other)->type == udb_chunk_type_free)
return other;
}
}
return 0;
}
/** coagulate and then add new free segment, return final free segment */
static udb_void
coagulate_and_push(void* base, udb_alloc* alloc, udb_void last, int exp,
uint64_t esz)
{
/* new free chunk here, attempt coagulate */
udb_void other;
while( (other=coagulate_possible(base, alloc, last, exp, esz)) ) {
/* unlink that other chunk */
udb_alloc_unlink_fl(base, alloc, other, exp);
/* merge up */
if(other < last)
last = other;
exp++;
esz <<= 1;
}
/* free the final segment */
udb_alloc_push_fl(base, alloc, last, exp);
return last;
}
/** attempt to compact the data and move free space to the end */
int
udb_alloc_compact(void* base, udb_alloc* alloc)
{
udb_void last;
int exp, e2;
uint64_t esz;
uint64_t at = alloc->disk->nextgrow;
udb_void xl_start = 0;
uint64_t xl_sz = 0;
if(alloc->udb->inhibit_compact)
return 1;
alloc->udb->useful_compact = 0;
while(at > alloc->udb->glob_data->hsize) {
/* grab last entry */
exp = (int)*((uint8_t*)UDB_REL(base, at-1));
if(exp == UDB_EXP_XL) {
/* for XL chunks:
* - inspect the size of the XLchunklist at end
* - attempt to compact in front of of XLchunklist
*/
uint64_t xlsz = *((uint64_t*)UDB_REL(base,
at-sizeof(uint64_t)*2));
udb_void xl = at-xlsz;
#ifndef NDEBUG
udb_xl_chunk_d* xlp = UDB_XL_CHUNK(xl);
assert(xlp->exp == UDB_EXP_XL);
assert(xlp->type != udb_chunk_type_free);
#endif
/* got thesegment add to the xl chunk list */
if(xl_start != 0 && xl+xlsz != xl_start) {
/* nonadjoining XL part, but they are aligned,
* so the space in between is whole Mbs,
* shift the later part(s) and continue */
uint64_t m = xl_start - (xl+xlsz);
assert(xl_start > xl+xlsz);
alloc->udb->glob_data->dirty_alloc = udb_dirty_compact;
free_xl_space(base, alloc, xl+xlsz, m);
move_xl_list(base, alloc, xl_start, xl_sz, m);
alloc->udb->glob_data->dirty_alloc = udb_dirty_clean;
}
xl_start = xl;
xl_sz += xlsz;
at = xl;
continue;
/* end of XL if */
} else if(exp < UDB_ALLOC_CHUNK_MINEXP
|| exp > UDB_ALLOC_CHUNKS_MAX)
break; /* special chunk or garbage */
esz = (uint64_t)1<<exp;
last = at - esz;
assert(UDB_CHUNK(last)->exp == (uint8_t)exp);
if(UDB_CHUNK(last)->type == udb_chunk_type_free) {
/* if xlstart continue looking to move stuff, but do
* not unlink this free segment */
if(!xl_start) {
/* it is a free chunk, remove it */
alloc->udb->glob_data->dirty_alloc = udb_dirty_fl;
udb_alloc_unlink_fl(base, alloc, last, exp);
alloc->disk->stat_free -= esz;
alloc->disk->nextgrow = last;
alloc->udb->glob_data->dirty_alloc = udb_dirty_clean;
/* and continue at this point */
}
at = last;
} else if( (e2=have_free_for(alloc, exp)) ) {
/* last entry can be allocated in free chunks
* move it to its new position, adjust rel_ptrs */
alloc->udb->glob_data->dirty_alloc = udb_dirty_compact;
move_chunk(base, alloc, last, exp, esz, e2);
if(xl_start) {
last = coagulate_and_push(base, alloc,
last, exp, esz);
} else {
/* shorten usage */
alloc->disk->stat_free -= esz;
alloc->disk->nextgrow = last;
}
alloc->udb->glob_data->rb_old = 0;
alloc->udb->glob_data->rb_new = 0;
alloc->udb->glob_data->rb_size = 0;
alloc->udb->glob_data->dirty_alloc = udb_dirty_clean;
/* and continue in front of it */
at = last;
} else {
/* cannot compact this block, stop compacting */
break;
}
/* if that worked, repeat it */
}
/* if we passed xl chunks, see if XL-chunklist can move */
if(xl_start) {
/* calculate free space in front of the XLchunklist. */
/* has to be whole mbs of free space */
/* if so, we can move the XL chunks. Move them all back
* by the new free space. */
/* this compacts very well, but the XL chunks can be moved
* multiple times; worst case for every mb freed a huge sized
* xlchunklist gets moved. */
/* free space must be, since aligned and coagulated, in
* chunks of a whole MB */
udb_void at = xl_start;
uint64_t m = 0;
while(*((uint8_t*)UDB_REL(base, at-1))==UDB_ALLOC_CHUNKS_MAX){
udb_void chunk = at - UDB_ALLOC_CHUNK_SIZE;
if(UDB_CHUNK(chunk)->type != udb_chunk_type_free)
break;
assert(UDB_CHUNK(chunk)->exp==UDB_ALLOC_CHUNKS_MAX);
m += UDB_ALLOC_CHUNK_SIZE;
at = chunk;
}
if(m != 0) {
assert(at+m == xl_start);
alloc->udb->glob_data->dirty_alloc = udb_dirty_compact;
free_xl_space(base, alloc, at, m);
move_xl_list(base, alloc, xl_start, xl_sz, m);
alloc->udb->glob_data->dirty_alloc = udb_dirty_clean;
}
}
/* if enough free, shrink the file; re-mmap */
if(enough_free(alloc)) {
uint64_t nsize = alloc->disk->nextgrow;
udb_base_shrink(alloc->udb, nsize);
if(!udb_base_remap(alloc->udb, alloc, nsize))
return 0;
}
return 1;
}
int
udb_compact(udb_base* udb)
{
if(!udb) return 1;
if(!udb->useful_compact) return 1;
DEBUG(DEBUG_DBACCESS, 1, (LOG_INFO, "Compacting database..."));
return udb_alloc_compact(udb->base, udb->alloc);
}
void udb_compact_inhibited(udb_base* udb, int inhibit)
{
if(!udb) return;
udb->inhibit_compact = inhibit;
}
#ifdef UDB_CHECK
/** check that rptrs are really zero before free */
void udb_check_rptr_zero(void* base, udb_rel_ptr* p, void* arg)
{
(void)base;
(void)arg;
assert(p->data == 0);
}
#endif /* UDB_CHECK */
/** free XL chunk as multiples of CHUNK_SIZE free segments */
static void
udb_free_xl(void* base, udb_alloc* alloc, udb_void f, udb_xl_chunk_d* fp,
size_t sz)
{
uint64_t xlsz = fp->size;
uint64_t c;
/* lightweight check for buffer overflow in xl data */
assert(*((uint64_t*)(UDB_REL(base, f+xlsz-sizeof(uint64_t)*2)))==xlsz);
assert(*((uint8_t*)(UDB_REL(base, f+xlsz-1))) == UDB_EXP_XL);
assert( (xlsz & (UDB_ALLOC_CHUNK_SIZE-1)) == 0 ); /* whole mbs */
assert( (f & (UDB_ALLOC_CHUNK_SIZE-1)) == 0 ); /* aligned */
#ifdef UDB_CHECK
/* check that relptrs in this chunk have been zeroed */
(*alloc->udb->walkfunc)(base, alloc->udb->walkarg, fp->type,
UDB_REL(base, f+sizeof(udb_xl_chunk_d)), xlsz,
&udb_check_rptr_zero, NULL);
#endif
alloc->udb->glob_data->dirty_alloc = udb_dirty_fl;
/* update stats */
alloc->disk->stat_data -= sz;
alloc->disk->stat_alloc -= xlsz;
alloc->disk->stat_free += xlsz;
/* walk in reverse, so the front blocks go first on the list */
c = f + xlsz - UDB_ALLOC_CHUNK_SIZE;
/* because of header and alignment we know f >= UDB_ALLOC_CHUNK_SIZE*/
assert(f >= UDB_ALLOC_CHUNK_SIZE);
while(c >= f) {
/* free a block of CHUNK_SIZE (1 Mb) */
udb_alloc_push_fl(base, alloc, c, UDB_ALLOC_CHUNKS_MAX);
c -= UDB_ALLOC_CHUNK_SIZE;
}
alloc->udb->glob_data->dirty_alloc = udb_dirty_clean;
}
int udb_alloc_free(udb_alloc* alloc, udb_void r, size_t sz)
{
void* base;
/* lookup chunk ptr */
udb_void f;
udb_chunk_d* fp;
uint64_t esz;
int exp;
udb_void other;
int coagulated = 0;
if(!r)
return 1; /* free(NULL) does nothing */
/* lookup size of chunk */
base = alloc->udb->base;
/* fails for XL blocks */
f = chunk_from_dataptr(r);
fp = UDB_CHUNK(f);
assert(fp->type != udb_chunk_type_free);
/* see if it has a ptrlist, if so: trouble, the list is not properly
* cleaned up. (although you can imagine a wholesale delete where
* it does not matter) */
assert(fp->ptrlist == 0);
/* set ptrlist to 0 to stop relptr from using it, robustness. */
fp->ptrlist = 0;
if(fp->exp == UDB_EXP_XL) {
udb_free_xl(base, alloc, f, (udb_xl_chunk_d*)fp, sz);
/* compact */
if(alloc->udb->inhibit_compact) {
alloc->udb->useful_compact = 1;
return 1;
}
return udb_alloc_compact(base, alloc);
}
/* it is a regular chunk of 2**exp size */
exp = (int)fp->exp;
esz = (uint64_t)1<<exp;
/* light check for e.g. buffer overflow of the data */
assert(sz < esz);
assert(chunk_get_last(base, f, exp) == (uint8_t)exp);
#ifdef UDB_CHECK
/* check that relptrs in this chunk have been zeroed */
(*alloc->udb->walkfunc)(base, alloc->udb->walkarg, fp->type,
UDB_REL(base, r), esz, &udb_check_rptr_zero, NULL);
#endif
/* update the stats */
alloc->udb->glob_data->dirty_alloc = udb_dirty_fl;
alloc->disk->stat_data -= sz;
alloc->disk->stat_free += esz;
alloc->disk->stat_alloc -= esz;
/* if it can be merged with other free chunks, do so */
while( (other=coagulate_possible(base, alloc, f, exp, esz)) ) {
coagulated = 1;
/* unlink that other chunk and expand it (it has same size) */
udb_alloc_unlink_fl(base, alloc, other, exp);
/* merge up */
if(other < f)
f = other;
exp++;
esz <<= 1;
}
if(coagulated) {
/* put big free chunk into freelist, and init it */
udb_alloc_push_fl(base, alloc, f, exp);
} else {
/* we do not need to touch the last-exp-byte, which may save
* a reference to that page of memory */
fp->type = udb_chunk_type_free;
fp->flags = 0;
udb_alloc_push_fl_noinit(base, alloc, f, exp);
}
alloc->udb->glob_data->dirty_alloc = udb_dirty_clean;
/* compact */
if(alloc->udb->inhibit_compact) {
alloc->udb->useful_compact = 1;
return 1;
}
return udb_alloc_compact(base, alloc);
}
udb_void udb_alloc_init(udb_alloc* alloc, void* d, size_t sz)
{
/* could be faster maybe, if grown? */
udb_void r = udb_alloc_space(alloc, sz);
if(!r) return r;
memcpy(UDB_REL(alloc->udb->base, r), d, sz);
return r;
}
udb_void udb_alloc_realloc(udb_alloc* alloc, udb_void r, size_t osz, size_t sz)
{
void* base = alloc->udb->base;
udb_void c, n, newd;
udb_chunk_d* cp, *np;
uint64_t avail;
uint8_t cp_type;
/* emulate some posix realloc stuff */
if(r == 0)
return udb_alloc_space(alloc, sz);
if(sz == 0) {
if(!udb_alloc_free(alloc, r, osz))
log_msg(LOG_ERR, "udb_alloc_realloc: free failed");
return 0;
}
c = chunk_from_dataptr(r);
cp = UDB_CHUNK(c);
cp_type = cp->type;
if(cp->exp == UDB_EXP_XL) {
avail = UDB_XL_CHUNK(c)->size - sizeof(udb_xl_chunk_d)
- sizeof(uint64_t)*2;
} else {
avail = ((uint64_t)1<<cp->exp) - sizeof(udb_chunk_d) - 1;
}
if(sz <= avail)
return r;
/* reallocate it, and copy */
newd = udb_alloc_space(alloc, sz);
if(!newd) return 0;
/* re-base after alloc, since re-mmap may have happened */
base = alloc->udb->base;
cp = NULL; /* may be invalid now, robustness */
n = chunk_from_dataptr(newd);
np = UDB_CHUNK(n);
np->type = cp_type;
memcpy(UDB_REL(base, newd), UDB_REL(base, r), osz);
/* fixup ptrs */
chunk_fix_ptrs(base, alloc->udb, np, newd, osz, r);
if(!udb_alloc_free(alloc, r, osz))
log_msg(LOG_ERR, "udb_alloc_realloc: free failed");
return newd;
}
int udb_alloc_grow(udb_alloc* alloc, size_t sz, size_t num)
{
const uint64_t mb = 1024*1024;
int exp = udb_alloc_exp_needed(sz);
uint64_t esz;
uint64_t want;
if(exp == UDB_EXP_XL)
esz = (sz&(mb-1))+mb;
else esz = (uint64_t)1<<exp;
/* we need grow_end_calc to take into account alignment */
want = grow_end_calc(alloc, exp) + esz*(num-1);
assert(want >= alloc->udb->base_size);
if(!udb_base_grow_and_remap(alloc->udb, want)) {
log_msg(LOG_ERR, "failed to grow the specified amount");
return 0;
}
return 1;
}
void udb_alloc_set_type(udb_alloc* alloc, udb_void r, udb_chunk_type tp)
{
void* base = alloc->udb->base;
udb_void f = chunk_from_dataptr(r);
udb_chunk_d* fp = UDB_CHUNK(f);
/* not the 'free' type, that must be set by allocation routines */
assert(fp->type != udb_chunk_type_free);
assert(tp != udb_chunk_type_free);
fp->type = tp;
}
int udb_valid_offset(udb_base* udb, udb_void to, size_t destsize)
{
/* pointers are not valid before the header-size or after the
* used-region of the mmap */
return ( (to+destsize) <= udb->base_size &&
to >= (udb->glob_data->hsize-2*sizeof(udb_rel_ptr)) &&
(to+destsize) <= udb->alloc->disk->nextgrow);
}
int udb_valid_dataptr(udb_base* udb, udb_void to)
{
void* base = udb->base;
udb_void ch;
int exp;
uint64_t esz;
/* our data chunks are aligned and at least 8 bytes */
if(!udb_valid_offset(udb, to, sizeof(uint64_t)))
return 0;
/* get the chunk pointer */
ch = chunk_from_dataptr(to);
if(!udb_valid_offset(udb, ch, sizeof(udb_chunk_d)))
return 0;
/* check its size */
exp = UDB_CHUNK(ch)->exp;
if(exp == UDB_EXP_XL) {
/* check XL chunk */
uint64_t xlsz;
if(!udb_valid_offset(udb, ch, sizeof(udb_xl_chunk_d)))
return 0;
xlsz = UDB_XL_CHUNK(ch)->size;
if(!udb_valid_offset(udb, ch+xlsz-1, 1))
return 0;
if(*((uint8_t*)UDB_REL(base, ch+xlsz-1)) != UDB_EXP_XL)
return 0;
if(*((uint64_t*)UDB_REL(base, ch+xlsz-sizeof(uint64_t)*2))
!= xlsz)
return 0;
return 1;
}
/* check if regular chunk has matching end byte */
if(exp < UDB_ALLOC_CHUNK_MINEXP || exp > UDB_ALLOC_CHUNKS_MAX)
return 0; /* cannot be a valid chunk */
esz = 1<<exp;
if(!udb_valid_offset(udb, ch+esz-1, 1))
return 0;
if(*((uint8_t*)UDB_REL(base, ch+esz-1)) != exp)
return 0;
return 1;
}
int udb_valid_rptr(udb_base* udb, udb_void rptr, udb_void to)
{
void* base = udb->base;
udb_void p;
if(!udb_valid_offset(udb, rptr, sizeof(udb_rel_ptr)))
return 0;
if(!udb_valid_dataptr(udb, to))
return 0;
p = UDB_CHUNK(chunk_from_dataptr(to))->ptrlist;
while(p) {
if(!udb_valid_offset(udb, p, sizeof(udb_rel_ptr)))
return 0;
if(p == rptr)
return 1;
p = UDB_REL_PTR(p)->next;
}
return 0;
}
void udb_rel_ptr_init(udb_rel_ptr* ptr)
{
memset(ptr, 0, sizeof(*ptr));
}
void udb_rel_ptr_unlink(void* base, udb_rel_ptr* ptr)
{
if(!ptr->data)
return;
if(ptr->prev) {
UDB_REL_PTR(ptr->prev)->next = ptr->next;
} else {
UDB_CHUNK(chunk_from_dataptr(ptr->data))->ptrlist = ptr->next;
}
if(ptr->next) {
UDB_REL_PTR(ptr->next)->prev = ptr->prev;
}
}
void udb_rel_ptr_link(void* base, udb_rel_ptr* ptr, udb_void to)
{
udb_chunk_d* chunk = UDB_CHUNK(chunk_from_dataptr(to));
ptr->prev = 0;
ptr->next = chunk->ptrlist;
if(ptr->next)
UDB_REL_PTR(ptr->next)->prev = UDB_SYSTOREL(base, ptr);
chunk->ptrlist = UDB_SYSTOREL(base, ptr);
ptr->data = to;
}
void udb_rel_ptr_set(void* base, udb_rel_ptr* ptr, udb_void to)
{
assert(to == 0 || to > 64);
udb_rel_ptr_unlink(base, ptr);
if(to)
udb_rel_ptr_link(base, ptr, to);
else ptr->data = to;
}
void udb_rel_ptr_edit(void* base, udb_void list, udb_void to)
{
udb_void p = list;
while(p) {
UDB_REL_PTR(p)->data = to;
p = UDB_REL_PTR(p)->next;
}
}
#ifdef UDB_CHECK
/** check that all pointers are validly chained */
static void
udb_check_ptrs_valid(udb_base* udb)
{
size_t i;
udb_ptr* p, *prev;
for(i=0; i<udb->ram_size; i++) {
prev = NULL;
for(p=udb->ram_hash[i]; p; p=p->next) {
assert(p->prev == prev);
assert((size_t)(chunk_hash_ptr(p->data)&udb->ram_mask)
== i);
assert(p->base == &udb->base);
prev = p;
}
}
}
#endif /* UDB_CHECK */
void udb_ptr_init(udb_ptr* ptr, udb_base* udb)
{
#ifdef UDB_CHECK
udb_check_ptrs_valid(udb); /* previous ptrs have been unlinked */
#endif
memset(ptr, 0, sizeof(*ptr));
ptr->base = &udb->base;
}
void udb_ptr_set(udb_ptr* ptr, udb_base* udb, udb_void newval)
{
assert(newval == 0 || newval > 64);
if(ptr->data)
udb_base_unlink_ptr(udb, ptr);
ptr->data = newval;
if(newval)
udb_base_link_ptr(udb, ptr);
}
int udb_ptr_alloc_space(udb_ptr* ptr, udb_base* udb, udb_chunk_type type,
size_t sz)
{
udb_void r;
r = udb_alloc_space(udb->alloc, sz);
if(!r) return 0;
udb_alloc_set_type(udb->alloc, r, type);
udb_ptr_init(ptr, udb);
udb_ptr_set(ptr, udb, r);
return 1;
}
void udb_ptr_free_space(udb_ptr* ptr, udb_base* udb, size_t sz)
{
if(ptr->data) {
udb_void d = ptr->data;
udb_ptr_set(ptr, udb, 0);
udb_alloc_free(udb->alloc, d, sz);
}
}
udb_chunk_type udb_ptr_get_type(udb_ptr* ptr)
{
udb_void f;
if(!ptr || ptr->data == 0) return udb_chunk_type_internal; /* something bad*/
f = chunk_from_dataptr(ptr->data);
return ((udb_chunk_d*)UDB_REL(*ptr->base, f))->type;
}
|