summaryrefslogtreecommitdiff
path: root/usr.sbin/nsd/udbradtree.c
blob: d9be6b9c25523c7a219c34dacd38ac8dcd007013 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
/*
 * udbradtree -- radix tree for binary strings for in udb file.
 *
 * Copyright (c) 2011, NLnet Labs.  See LICENSE for license.
 */
#include "config.h"
#include <string.h>
#include <assert.h>
#include <stdio.h>
#include "udbradtree.h"
#include "radtree.h"
#define RADARRAY(ptr) ((struct udb_radarray_d*)UDB_PTR(ptr))

/** see if radarray can be reduced (by a factor of two) */
static int udb_radarray_reduce_if_needed(udb_base* udb, udb_ptr* n);

int udb_radix_tree_create(udb_base* udb, udb_ptr* ptr)
{
	if(!udb_ptr_alloc_space(ptr, udb, udb_chunk_type_radtree,
		sizeof(struct udb_radtree_d)))
		return 0;
	udb_rel_ptr_init(&RADTREE(ptr)->root);
	RADTREE(ptr)->count = 0;
	return 1;
}

/** size of radarray */
static size_t size_of_radarray(struct udb_radarray_d* a)
{
	return sizeof(struct udb_radarray_d)+((size_t)a->capacity)*(
		sizeof(struct udb_radsel_d)+(size_t)a->str_cap);
}

/** size in bytes of data in the array lookup structure */
static size_t size_of_lookup(udb_ptr* node)
{
	assert(udb_ptr_get_type(node) == udb_chunk_type_radnode);
	return size_of_radarray((struct udb_radarray_d*)UDB_REL(*node->base,
		RADNODE(node)->lookup.data));
}

/** external variant, size in bytes of data in the array lookup structure */
size_t size_of_lookup_ext(udb_ptr* lookup)
{
	return size_of_lookup(lookup);
}

/** size needed for a lookup array like this */
static size_t size_of_lookup_needed(uint16_t capacity, udb_radstrlen_t str_cap)
{
	return sizeof(struct udb_radarray_d)+ ((size_t)capacity)*(
		sizeof(struct udb_radsel_d)+(size_t)str_cap);
}

/** get the lookup array for a node */
static struct udb_radarray_d* lookup(udb_ptr* n)
{
	assert(udb_ptr_get_type(n) == udb_chunk_type_radnode);
	return (struct udb_radarray_d*)UDB_REL(*n->base,
		RADNODE(n)->lookup.data);
}

/** get a length in the lookup array */
static udb_radstrlen_t lookup_len(udb_ptr* n, unsigned i)
{
	return lookup(n)->array[i].len;
}

/** get a string in the lookup array */
static uint8_t* lookup_string(udb_ptr* n, unsigned i)
{
	return ((uint8_t*)&(lookup(n)->array[lookup(n)->capacity]))+
		i*lookup(n)->str_cap;
}

/** get a node in the lookup array */
static struct udb_radnode_d* lookup_node(udb_ptr* n, unsigned i)
{
	return (struct udb_radnode_d*)UDB_REL(*n->base,
		lookup(n)->array[i].node.data);
}

/** zero the relptrs in radarray */
static void udb_radarray_zero_ptrs(udb_base* udb, udb_ptr* n)
{
	unsigned i;
	for(i=0; i<lookup(n)->len; i++) {
		udb_rptr_zero(&lookup(n)->array[i].node, udb);
	}
}

/** delete a radnode */
static void udb_radnode_delete(udb_base* udb, udb_ptr* n)
{
	if(udb_ptr_is_null(n))
		return;
	if(RADNODE(n)->lookup.data) {
		udb_radarray_zero_ptrs(udb, n);
		udb_rel_ptr_free_space(&RADNODE(n)->lookup, udb,
			size_of_lookup(n));
	}
	udb_rptr_zero(&RADNODE(n)->lookup, udb);
	udb_rptr_zero(&RADNODE(n)->parent, udb);
	udb_rptr_zero(&RADNODE(n)->elem, udb);
	udb_ptr_free_space(n, udb, sizeof(struct udb_radnode_d));
}

/** delete radnodes in postorder recursion, n is ptr to node */
static void udb_radnode_del_postorder(udb_base* udb, udb_ptr* n)
{
	unsigned i;
	udb_ptr sub;
	if(udb_ptr_is_null(n))
		return;
	/* clear subnodes */
	udb_ptr_init(&sub, udb);
	for(i=0; i<lookup(n)->len; i++) {
		udb_ptr_set_rptr(&sub, udb, &lookup(n)->array[i].node);
		udb_rptr_zero(&lookup(n)->array[i].node, udb);
		udb_radnode_del_postorder(udb, &sub);
	}
	udb_ptr_unlink(&sub, udb);
	/* clear lookup */
	udb_rel_ptr_free_space(&RADNODE(n)->lookup, udb, size_of_lookup(n));
	udb_rptr_zero(&RADNODE(n)->parent, udb);
	udb_rptr_zero(&RADNODE(n)->elem, udb);
	udb_ptr_free_space(n, udb, sizeof(struct udb_radnode_d));
}

void udb_radix_tree_clear(udb_base* udb, udb_ptr* rt)
{
	udb_ptr root;
	udb_ptr_new(&root, udb, &RADTREE(rt)->root);
	udb_rptr_zero(&RADTREE(rt)->root, udb);
	/* free the root node (and its descendants, if any) */
	udb_radnode_del_postorder(udb, &root);
	udb_ptr_unlink(&root, udb);

	RADTREE(rt)->count = 0;
}

void udb_radix_tree_delete(udb_base* udb, udb_ptr* rt)
{
	if(rt->data == 0) return;
	assert(udb_ptr_get_type(rt) == udb_chunk_type_radtree);
	udb_radix_tree_clear(udb, rt);
	udb_ptr_free_space(rt, udb, sizeof(struct udb_radtree_d));
}

/** 
 * Find a prefix of the key, in whole-nodes.
 * Finds the longest prefix that corresponds to a whole radnode entry.
 * There may be a slightly longer prefix in one of the array elements.
 * @param result: the longest prefix, the entry itself if *respos==len,
 *      otherwise an array entry, residx.  Output.
 * @param respos: pos in string where next unmatched byte is, if == len an
 *      exact match has been found.  If == 0 then a "" match was found.
 * @return false if no prefix found, not even the root "" prefix.
 */
static int udb_radix_find_prefix_node(udb_base* udb, udb_ptr* rt, uint8_t* k,
	udb_radstrlen_t len, udb_ptr* result, udb_radstrlen_t* respos)
{
	udb_radstrlen_t pos = 0;
	uint8_t byte;
	udb_ptr n;
	udb_ptr_new(&n, udb, &RADTREE(rt)->root);

	*respos = 0;
	udb_ptr_set_ptr(result, udb, &n);
	if(udb_ptr_is_null(&n)) {
		udb_ptr_unlink(&n, udb);
		return 0;
	}
	while(!udb_ptr_is_null(&n)) {
		if(pos == len) {
			break;
		}
		byte = k[pos];
		if(byte < RADNODE(&n)->offset) {
			break;
		}
		byte -= RADNODE(&n)->offset;
		if(byte >= lookup(&n)->len) {
			break;
		}
		pos++;
		if(lookup(&n)->array[byte].len != 0) {
			/* must match additional string */
			if(pos+lookup(&n)->array[byte].len > len) {
				break;
			}
			if(memcmp(&k[pos], lookup_string(&n, byte),
				lookup(&n)->array[byte].len) != 0) {
				break;
			}
			pos += lookup(&n)->array[byte].len;
		}
		udb_ptr_set_rptr(&n, udb, &lookup(&n)->array[byte].node);
		if(udb_ptr_is_null(&n)) {
			break;
		}
		*respos = pos;
		udb_ptr_set_ptr(result, udb, &n);
	}
	udb_ptr_unlink(&n, udb);
	return 1;
}

/** grow the radnode stringcapacity, copy existing elements */
static int udb_radnode_str_grow(udb_base* udb, udb_ptr* n, udb_radstrlen_t want)
{
	unsigned ns = ((unsigned)lookup(n)->str_cap)*2;
	unsigned i;
	udb_ptr a;
	if(want > ns)
		ns = want;
	if(ns > 65535) ns = 65535; /* MAX of udb_radstrlen_t range */
	/* if this fails, the tree is still usable */
	if(!udb_ptr_alloc_space(&a, udb, udb_chunk_type_radarray,
		size_of_lookup_needed(lookup(n)->capacity, ns)))
		return 0;
	/* make sure to zero the newly allocated relptrs to init them */
	memcpy(RADARRAY(&a), lookup(n), sizeof(struct udb_radarray_d));
	RADARRAY(&a)->str_cap = ns;
	for(i = 0; i < lookup(n)->len; i++) {
		udb_rel_ptr_init(&RADARRAY(&a)->array[i].node);
		udb_rptr_set_rptr(&RADARRAY(&a)->array[i].node, udb,
			&lookup(n)->array[i].node);
		RADARRAY(&a)->array[i].len = lookup_len(n, i);
		memmove(((uint8_t*)(&RADARRAY(&a)->array[
			lookup(n)->capacity]))+i*ns,
			lookup_string(n, i), lookup(n)->str_cap);
	}
	udb_radarray_zero_ptrs(udb, n);
	udb_rel_ptr_free_space(&RADNODE(n)->lookup, udb, size_of_lookup(n));
	udb_rptr_set_ptr(&RADNODE(n)->lookup, udb, &a);
	udb_ptr_unlink(&a, udb);
	return 1;
}

/** grow the radnode array, copy existing elements to start of new array */
static int udb_radnode_array_grow(udb_base* udb, udb_ptr* n, size_t want)
{
	unsigned i;
	unsigned ns = ((unsigned)lookup(n)->capacity)*2;
	udb_ptr a;
	assert(want <= 256); /* cannot be more, range of uint8 */
	if(want > ns)
		ns = want;
	if(ns > 256) ns = 256;
	/* if this fails, the tree is still usable */
	if(!udb_ptr_alloc_space(&a, udb, udb_chunk_type_radarray,
		size_of_lookup_needed(ns, lookup(n)->str_cap)))
		return 0;
	/* zero the newly allocated rel ptrs to init them */
	memset(UDB_PTR(&a), 0, size_of_lookup_needed(ns, lookup(n)->str_cap));
	assert(lookup(n)->len <= lookup(n)->capacity);
	assert(lookup(n)->capacity < ns);
	memcpy(RADARRAY(&a), lookup(n), sizeof(struct udb_radarray_d));
	RADARRAY(&a)->capacity = ns;
	for(i=0; i<lookup(n)->len; i++) {
		udb_rptr_set_rptr(&RADARRAY(&a)->array[i].node, udb,
			&lookup(n)->array[i].node);
		RADARRAY(&a)->array[i].len = lookup_len(n, i);
	}
	memmove(&RADARRAY(&a)->array[ns], lookup_string(n, 0),
		lookup(n)->len * lookup(n)->str_cap);
	udb_radarray_zero_ptrs(udb, n);
	udb_rel_ptr_free_space(&RADNODE(n)->lookup, udb, size_of_lookup(n));
	udb_rptr_set_ptr(&RADNODE(n)->lookup, udb, &a);
	udb_ptr_unlink(&a, udb);
	return 1;
}

/** make empty array in radnode */
static int udb_radnode_array_create(udb_base* udb, udb_ptr* n)
{
	/* is there an array? */
	if(RADNODE(n)->lookup.data == 0) {
		/* create array */
		udb_ptr a;
		uint16_t cap = 0;
		udb_radstrlen_t len = 0;
		if(!udb_ptr_alloc_space(&a, udb, udb_chunk_type_radarray,
			size_of_lookup_needed(cap, len)))
			return 0;
		memset(UDB_PTR(&a), 0, size_of_lookup_needed(cap, len));
		udb_rptr_set_ptr(&RADNODE(n)->lookup, udb, &a);
		RADARRAY(&a)->len = cap;
		RADARRAY(&a)->capacity = cap;
		RADARRAY(&a)->str_cap = len;
		RADNODE(n)->offset = 0;
		udb_ptr_unlink(&a, udb);
	}
	return 1;
}

/** make space in radnode for another byte, or longer strings */
static int udb_radnode_array_space(udb_base* udb, udb_ptr* n, uint8_t byte,
	udb_radstrlen_t len)
{
	/* is there an array? */
	if(RADNODE(n)->lookup.data == 0) {
		/* create array */
		udb_ptr a;
		uint16_t cap = 1;
		if(!udb_ptr_alloc_space(&a, udb, udb_chunk_type_radarray,
			size_of_lookup_needed(cap, len)))
			return 0;
		/* this memset inits the relptr that is allocated */
		memset(UDB_PTR(&a), 0, size_of_lookup_needed(cap, len));
		udb_rptr_set_ptr(&RADNODE(n)->lookup, udb, &a);
		RADARRAY(&a)->len = cap;
		RADARRAY(&a)->capacity = cap;
		RADARRAY(&a)->str_cap = len;
		RADNODE(n)->offset = byte;
		udb_ptr_unlink(&a, udb);
		return 1;
	}
	if(lookup(n)->capacity == 0) {
		if(!udb_radnode_array_grow(udb, n, 1))
			return 0;
	}

	/* make space for this stringsize */
	if(lookup(n)->str_cap < len) {
		/* must resize for stringsize */
		if(!udb_radnode_str_grow(udb, n, len))
			return 0;
	}

	/* other cases */
	/* is the array unused? */
	if(lookup(n)->len == 0 && lookup(n)->capacity != 0) {
		lookup(n)->len = 1;
		RADNODE(n)->offset = byte;
		memset(&lookup(n)->array[0], 0, sizeof(struct udb_radsel_d));
	/* is it below the offset? */
	} else if(byte < RADNODE(n)->offset) {
		/* is capacity enough? */
		int i;
		unsigned need = RADNODE(n)->offset-byte;
		if(lookup(n)->len+need > lookup(n)->capacity) {
			/* grow array */
			if(!udb_radnode_array_grow(udb, n, lookup(n)->len+need))
				return 0;
		}
		/* take a piece of capacity into use, init the relptrs */
		for(i = lookup(n)->len; i< (int)(lookup(n)->len + need); i++) {
			udb_rel_ptr_init(&lookup(n)->array[i].node);
		}
		/* reshuffle items to end */
		for(i = lookup(n)->len-1; i >= 0; i--) {
			udb_rptr_set_rptr(&lookup(n)->array[need+i].node,
				udb, &lookup(n)->array[i].node);
			lookup(n)->array[need+i].len = lookup_len(n, i);
			/* fixup pidx */
			if(lookup(n)->array[i+need].node.data)
				lookup_node(n, i+need)->pidx = i+need;
		}
		memmove(lookup_string(n, need), lookup_string(n, 0),
			lookup(n)->len*lookup(n)->str_cap);
		/* zero the first */
		for(i = 0; i < (int)need; i++) {
			udb_rptr_zero(&lookup(n)->array[i].node, udb);
			lookup(n)->array[i].len = 0;
		}
		lookup(n)->len += need;
		RADNODE(n)->offset = byte;
	/* is it above the max? */
	} else if(byte - RADNODE(n)->offset >= lookup(n)->len) {
		/* is capacity enough? */
		int i;
		unsigned need = (byte-RADNODE(n)->offset) - lookup(n)->len + 1;
		/* grow array */
		if(lookup(n)->len + need > lookup(n)->capacity) {
			if(!udb_radnode_array_grow(udb, n, lookup(n)->len+need))
				return 0;
		}
		/* take new entries into use, init relptrs */
		for(i = lookup(n)->len; i< (int)(lookup(n)->len + need); i++) {
			udb_rel_ptr_init(&lookup(n)->array[i].node);
			lookup(n)->array[i].len = 0;
		}
		/* grow length */
		lookup(n)->len += need;
	}
	return 1;
}

/** make space for string size */
static int udb_radnode_str_space(udb_base* udb, udb_ptr* n, udb_radstrlen_t len)
{
	if(RADNODE(n)->lookup.data == 0) {
		return udb_radnode_array_space(udb, n, 0, len);
	}
	if(lookup(n)->str_cap < len) {
		/* must resize for stringsize */
		if(!udb_radnode_str_grow(udb, n, len))
			return 0;
	}
	return 1;
}

/** copy remainder from prefixes for a split:
 * plen: len prefix, l: longer bstring, llen: length of l. */
static void udb_radsel_prefix_remainder(udb_radstrlen_t plen, 
	uint8_t* l, udb_radstrlen_t llen,
	uint8_t* s, udb_radstrlen_t* slen)
{
	*slen = llen - plen;
	/* assert(*slen <= lookup(n)->str_cap); */
	memmove(s, l+plen, llen-plen);
}

/** create a prefix in the array strs */
static void udb_radsel_str_create(uint8_t* s, udb_radstrlen_t* slen,
	uint8_t* k, udb_radstrlen_t pos, udb_radstrlen_t len)
{
	*slen = len-pos;
	/* assert(*slen <= lookup(n)->str_cap); */
	memmove(s, k+pos, len-pos);
}

static udb_radstrlen_t
udb_bstr_common(uint8_t* x, udb_radstrlen_t xlen,
	uint8_t* y, udb_radstrlen_t ylen)
{
	assert(sizeof(radstrlen_t) == sizeof(udb_radstrlen_t));
	return bstr_common_ext(x, xlen, y, ylen);
}

static int
udb_bstr_is_prefix(uint8_t* p, udb_radstrlen_t plen,
	uint8_t* x, udb_radstrlen_t xlen)
{
	assert(sizeof(radstrlen_t) == sizeof(udb_radstrlen_t));
	return bstr_is_prefix_ext(p, plen, x, xlen);
}

/** grow array space for byte N after a string, (but if string shorter) */
static int
udb_radnode_array_space_strremain(udb_base* udb, udb_ptr* n,
	uint8_t* str, udb_radstrlen_t len, udb_radstrlen_t pos)
{
	assert(pos < len);
	/* shift by one char because it goes in lookup array */
	return udb_radnode_array_space(udb, n, str[pos], len-(pos+1));
}


/** radsel create a split when two nodes have shared prefix.
 * @param udb: udb
 * @param n: node with the radsel that gets changed, it contains a node.
 * @param idx: the index of the radsel that gets changed.
 * @param k: key byte string
 * @param pos: position where the string enters the radsel (e.g. r.str)
 * @param len: length of k.
 * @param add: additional node for the string k.
 *      removed by called on failure.
 * @return false on alloc failure, no changes made.
 */
static int udb_radsel_split(udb_base* udb, udb_ptr* n, uint8_t idx, uint8_t* k,
	udb_radstrlen_t pos, udb_radstrlen_t len, udb_ptr* add)
{
	uint8_t* addstr = k+pos;
	udb_radstrlen_t addlen = len-pos;
	if(udb_bstr_is_prefix(addstr, addlen, lookup_string(n, idx),
		lookup_len(n, idx))) {
		udb_radstrlen_t split_len = 0;
		/* 'add' is a prefix of r.node */
		/* also for empty addstr */
		/* set it up so that the 'add' node has r.node as child */
		/* so, r.node gets moved below the 'add' node, but we do
		 * this so that the r.node stays the same pointer for its
		 * key name */
		assert(addlen != lookup_len(n, idx));
		assert(addlen < lookup_len(n, idx));
		/* make space for new string sizes */
		if(!udb_radnode_str_space(udb, n, addlen))
			return 0;
		if(lookup_len(n, idx) - addlen > 1)
			/* shift one because a char is in the lookup array */
			split_len = lookup_len(n, idx) - (addlen+1);
		if(!udb_radnode_array_space(udb, add,
			lookup_string(n, idx)[addlen], split_len))
			return 0;
		/* alloc succeeded, now link it in */
		udb_rptr_set_rptr(&RADNODE(add)->parent, udb,
			&lookup_node(n, idx)->parent);
		RADNODE(add)->pidx = lookup_node(n, idx)->pidx;
		udb_rptr_set_rptr(&lookup(add)->array[0].node, udb,
			&lookup(n)->array[idx].node);
		if(lookup_len(n, idx) - addlen > 1) {
			udb_radsel_prefix_remainder(addlen+1,
				lookup_string(n, idx), lookup_len(n, idx),
				lookup_string(add, 0),
				&lookup(add)->array[0].len);
		} else {
			lookup(add)->array[0].len = 0;
		}
		udb_rptr_set_ptr(&lookup_node(n, idx)->parent, udb, add);
		lookup_node(n, idx)->pidx = 0;

		udb_rptr_set_ptr(&lookup(n)->array[idx].node, udb, add);
		memmove(lookup_string(n, idx), addstr, addlen);
		lookup(n)->array[idx].len = addlen;
		/* n's string may have become shorter */
		if(!udb_radarray_reduce_if_needed(udb, n)) {
			/* ignore this, our tree has become inefficient */
		}
	} else if(udb_bstr_is_prefix(lookup_string(n, idx), lookup_len(n, idx),
		addstr, addlen)) {
		udb_radstrlen_t split_len = 0;
		udb_ptr rnode;
		/* r.node is a prefix of 'add' */
		/* set it up so that the 'r.node' has 'add' as child */
		/* and basically, r.node is already completely fine,
		 * we only need to create a node as its child */
		assert(addlen != lookup_len(n, idx));
		assert(lookup_len(n, idx) < addlen);
		udb_ptr_new(&rnode, udb, &lookup(n)->array[idx].node);
		/* make space for string length */
		if(addlen-lookup_len(n, idx) > 1) {
			/* shift one because a character goes into array */
			split_len = addlen - (lookup_len(n, idx)+1);
		}
		if(!udb_radnode_array_space(udb, &rnode,
			addstr[lookup_len(n, idx)], split_len)) {
			udb_ptr_unlink(&rnode, udb);
			return 0;
		}
		/* alloc succeeded, now link it in */
		udb_rptr_set_ptr(&RADNODE(add)->parent, udb, &rnode);
		RADNODE(add)->pidx = addstr[lookup_len(n, idx)] -
			RADNODE(&rnode)->offset;
		udb_rptr_set_ptr(&lookup(&rnode)->array[ RADNODE(add)->pidx ]
			.node, udb, add);
		if(addlen-lookup_len(n, idx) > 1) {
			udb_radsel_prefix_remainder(lookup_len(n, idx)+1,
				addstr, addlen,
				lookup_string(&rnode, RADNODE(add)->pidx),
				&lookup(&rnode)->array[ RADNODE(add)->pidx]
				.len);
		} else {
			lookup(&rnode)->array[ RADNODE(add)->pidx].len = 0;
		}
		/* rnode's string has become shorter */
		if(!udb_radarray_reduce_if_needed(udb, &rnode)) {
			/* ignore this, our tree has become inefficient */
		}
		udb_ptr_unlink(&rnode, udb);
	} else {
		/* okay we need to create a new node that chooses between 
		 * the nodes 'add' and r.node
		 * We do this so that r.node stays the same pointer for its
		 * key name. */
		udb_ptr com, rnode;
		udb_radstrlen_t common_len = udb_bstr_common(
			lookup_string(n, idx), lookup_len(n, idx),
			addstr, addlen);
		assert(common_len < lookup_len(n, idx));
		assert(common_len < addlen);
		udb_ptr_new(&rnode, udb, &lookup(n)->array[idx].node);

		/* create the new node for choice */
		if(!udb_ptr_alloc_space(&com, udb, udb_chunk_type_radnode,
			sizeof(struct udb_radnode_d))) {
			udb_ptr_unlink(&rnode, udb);
			return 0; /* out of space */
		}
		memset(UDB_PTR(&com), 0, sizeof(struct udb_radnode_d));
		/* make stringspace for the two substring choices */
		/* this allocates the com->lookup array */
		if(!udb_radnode_array_space_strremain(udb, &com,
			lookup_string(n, idx), lookup_len(n, idx), common_len)
		   || !udb_radnode_array_space_strremain(udb, &com,
			addstr, addlen, common_len)) {
			udb_ptr_unlink(&rnode, udb);
			udb_radnode_delete(udb, &com);
			return 0;
		}
		/* create stringspace for the shared prefix */
		if(common_len > 0) {
			if(!udb_radnode_str_space(udb, n, common_len-1)) {
				udb_ptr_unlink(&rnode, udb);
				udb_radnode_delete(udb, &com);
				return 0;
			}
		}
		/* allocs succeeded, proceed to link it all up */
		udb_rptr_set_rptr(&RADNODE(&com)->parent, udb,
			&RADNODE(&rnode)->parent);
		RADNODE(&com)->pidx = RADNODE(&rnode)->pidx;
		udb_rptr_set_ptr(&RADNODE(&rnode)->parent, udb, &com);
		RADNODE(&rnode)->pidx = lookup_string(n, idx)[common_len] -
			RADNODE(&com)->offset;
		udb_rptr_set_ptr(&RADNODE(add)->parent, udb, &com);
		RADNODE(add)->pidx = addstr[common_len] -
			RADNODE(&com)->offset;
		udb_rptr_set_ptr(&lookup(&com)->array[RADNODE(&rnode)->pidx]
			.node, udb, &rnode);
		if(lookup_len(n, idx)-common_len > 1) {
			udb_radsel_prefix_remainder(common_len+1,
			lookup_string(n, idx), lookup_len(n, idx),
			lookup_string(&com, RADNODE(&rnode)->pidx),
			&lookup(&com)->array[RADNODE(&rnode)->pidx].len);
		} else {
			lookup(&com)->array[RADNODE(&rnode)->pidx].len= 0;
		}
		udb_rptr_set_ptr(&lookup(&com)->array[RADNODE(add)->pidx]
			.node, udb, add);
		if(addlen-common_len > 1) {
			udb_radsel_prefix_remainder(common_len+1,
			addstr, addlen,
			lookup_string(&com, RADNODE(add)->pidx),
			&lookup(&com)->array[RADNODE(add)->pidx].len);
		} else {
			lookup(&com)->array[RADNODE(add)->pidx].len = 0;
		}
		memmove(lookup_string(n, idx), addstr, common_len);
		lookup(n)->array[idx].len = common_len;
		udb_rptr_set_ptr(&lookup(n)->array[idx].node, udb, &com);
		udb_ptr_unlink(&rnode, udb);
		udb_ptr_unlink(&com, udb);
		/* n's string has become shorter */
		if(!udb_radarray_reduce_if_needed(udb, n)) {
			/* ignore this, our tree has become inefficient */
		}
	}
	return 1;
}

uint64_t* result_data = NULL;
udb_void udb_radix_insert(udb_base* udb, udb_ptr* rt, uint8_t* k,
        udb_radstrlen_t len, udb_ptr* elem, udb_ptr* result)
{
	udb_void ret;
	udb_ptr add, n; /* type udb_radnode_d */
	udb_radstrlen_t pos = 0;
	/* create new element to add */
	if(!udb_ptr_alloc_space(&add, udb, udb_chunk_type_radnode,
		sizeof(struct udb_radnode_d))) {
		return 0; /* alloc failure */
	}
	memset(UDB_PTR(&add), 0, sizeof(struct udb_radnode_d));
	udb_rptr_set_ptr(&RADNODE(&add)->elem, udb, elem);
	if(!udb_radnode_array_create(udb, &add)) {
		udb_ptr_free_space(&add, udb, sizeof(struct udb_radnode_d));
		return 0; /* alloc failure */
	}
	udb_ptr_init(&n, udb);
	result_data = &n.data;

	/* find out where to add it */
	if(!udb_radix_find_prefix_node(udb, rt, k, len, &n, &pos)) {
		/* new root */
		assert(RADTREE(rt)->root.data == 0);
		if(len == 0) {
			udb_rptr_set_ptr(&RADTREE(rt)->root, udb, &add);
		} else {
			/* add a root to point to new node */
			udb_ptr_zero(&n, udb);
			if(!udb_ptr_alloc_space(&n, udb,
				udb_chunk_type_radnode,
				sizeof(struct udb_radnode_d))) {
				udb_radnode_delete(udb, &add);
				udb_ptr_unlink(&n, udb);
				return 0; /* alloc failure */
			}
			memset(RADNODE(&n), 0, sizeof(struct udb_radnode_d));
			/* this creates the array lookup structure for n */
			if(!udb_radnode_array_space(udb, &n, k[0], len-1)) {
				udb_radnode_delete(udb, &add);
				udb_ptr_free_space(&n, udb,
					sizeof(struct udb_radnode_d));
				return 0; /* alloc failure */
			}
			udb_rptr_set_ptr(&RADNODE(&add)->parent, udb, &n);
			RADNODE(&add)->pidx = 0;
			udb_rptr_set_ptr(&lookup(&n)->array[0].node, udb, &add);
			if(len > 1) {
				udb_radsel_prefix_remainder(1, k, len,
					lookup_string(&n, 0),
					&lookup(&n)->array[0].len);
			}
			udb_rptr_set_ptr(&RADTREE(rt)->root, udb, &n);
		}
	} else if(pos == len) {
		/* found an exact match */
		if(RADNODE(&n)->elem.data) {
			/* already exists, failure */
			udb_radnode_delete(udb, &add);
			udb_ptr_unlink(&n, udb);
			return 0;
		}
		udb_rptr_set_ptr(&RADNODE(&n)->elem, udb, elem);
		udb_radnode_delete(udb, &add);
		udb_ptr_set_ptr(&add, udb, &n);
	} else {
		/* n is a node which can accomodate */
		uint8_t byte;
		assert(pos < len);
		byte = k[pos];

		/* see if it falls outside of array */
		if(byte < RADNODE(&n)->offset || byte-RADNODE(&n)->offset >=
			lookup(&n)->len) {
			/* make space in the array for it; adjusts offset */
			if(!udb_radnode_array_space(udb, &n, byte,
				len-(pos+1))) {
				udb_radnode_delete(udb, &add);
				udb_ptr_unlink(&n, udb);
				return 0;
			}
			assert(byte>=RADNODE(&n)->offset && byte-RADNODE(&n)->
				offset<lookup(&n)->len);
			byte -= RADNODE(&n)->offset;
			/* see if more prefix needs to be split off */
			if(pos+1 < len) {
				udb_radsel_str_create(lookup_string(&n, byte),
					&lookup(&n)->array[byte].len,
					k, pos+1, len);
			}
			/* insert the new node in the new bucket */
			udb_rptr_set_ptr(&RADNODE(&add)->parent, udb, &n);
			RADNODE(&add)->pidx = byte;
			udb_rptr_set_ptr(&lookup(&n)->array[byte].node, udb,
				&add);
		/* so a bucket exists and byte falls in it */
		} else if(lookup(&n)->array[byte - RADNODE(&n)->offset]
			.node.data == 0) {
			/* use existing bucket */
			byte -= RADNODE(&n)->offset;
			if(pos+1 < len) {
				/* make space and split off more prefix */
				if(!udb_radnode_str_space(udb, &n,
					len-(pos+1))) {
					udb_radnode_delete(udb, &add);
					udb_ptr_unlink(&n, udb);
					return 0;
				}
				udb_radsel_str_create(lookup_string(&n, byte),
					&lookup(&n)->array[byte].len,
					k, pos+1, len);
			}
			/* insert the new node in the new bucket */
			udb_rptr_set_ptr(&RADNODE(&add)->parent, udb, &n);
			RADNODE(&add)->pidx = byte;
			udb_rptr_set_ptr(&lookup(&n)->array[byte].node, udb,
				&add);
		} else {
			/* use bucket but it has a shared prefix,
			 * split that out and create a new intermediate
			 * node to split out between the two.
			 * One of the two might exactmatch the new 
			 * intermediate node */
			if(!udb_radsel_split(udb, &n, byte-RADNODE(&n)->offset,
				k, pos+1, len, &add)) {
				udb_radnode_delete(udb, &add);
				udb_ptr_unlink(&n, udb);
				return 0;
			}
		}
	}
	RADTREE(rt)->count ++;
	ret = add.data;
	udb_ptr_init(result, udb);
	udb_ptr_set_ptr(result, udb, &add);
	udb_ptr_unlink(&add, udb);
	udb_ptr_unlink(&n, udb);
	return ret;
}

/** Cleanup node with one child, it is removed and joined into parent[x] str */
static int
udb_radnode_cleanup_onechild(udb_base* udb, udb_ptr* n)
{
	udb_ptr par, child;
	uint8_t pidx = RADNODE(n)->pidx;
	radstrlen_t joinlen;
	udb_ptr_new(&par, udb, &RADNODE(n)->parent);
	udb_ptr_new(&child, udb, &lookup(n)->array[0].node);

	/* node had one child, merge them into the parent. */
	/* keep the child node, so its pointers stay valid. */

	/* at parent, append child->str to array str */
	assert(pidx < lookup(&par)->len);
	joinlen = lookup_len(&par, pidx) + lookup_len(n, 0) + 1;
	/* make stringspace for the joined string */
	if(!udb_radnode_str_space(udb, &par, joinlen)) {
		/* cleanup failed due to out of memory */
		/* the tree is inefficient, with node n still existing */
		udb_ptr_unlink(&par, udb);
		udb_ptr_unlink(&child, udb);
		udb_ptr_zero(n, udb);
		return 0;
	}
	/* the string(par, pidx) is already there */
	/* the array lookup is gone, put its character in the lookup string*/
	lookup_string(&par, pidx)[lookup_len(&par, pidx)] =
		RADNODE(&child)->pidx + RADNODE(n)->offset;
	memmove(lookup_string(&par, pidx)+lookup_len(&par, pidx)+1,
		lookup_string(n, 0), lookup_len(n, 0));
	lookup(&par)->array[pidx].len = joinlen;
	/* and set the node to our child. */
	udb_rptr_set_ptr(&lookup(&par)->array[pidx].node, udb, &child);
	udb_rptr_set_ptr(&RADNODE(&child)->parent, udb, &par);
	RADNODE(&child)->pidx = pidx;
	/* we are unlinked, delete our node */
	udb_radnode_delete(udb, n);
	udb_ptr_unlink(&par, udb);
	udb_ptr_unlink(&child, udb);
	udb_ptr_zero(n, udb);
	return 1;
}

/** reduce the size of radarray, does a malloc */
static int
udb_radarray_reduce(udb_base* udb, udb_ptr* n, uint16_t cap,
	udb_radstrlen_t strcap)
{
	udb_ptr a;
	unsigned i;
	assert(lookup(n)->len <= cap);
	assert(cap <= lookup(n)->capacity);
	assert(strcap <= lookup(n)->str_cap);
	if(!udb_ptr_alloc_space(&a, udb, udb_chunk_type_radarray,
		size_of_lookup_needed(cap, strcap)))
		return 0;
	memset(RADARRAY(&a), 0, size_of_lookup_needed(cap, strcap));
	memcpy(RADARRAY(&a), lookup(n), sizeof(struct udb_radarray_d));
	RADARRAY(&a)->capacity = cap;
	RADARRAY(&a)->str_cap = strcap;
	for(i=0; i<lookup(n)->len; i++) {
		udb_rel_ptr_init(&RADARRAY(&a)->array[i].node);
		udb_rptr_set_rptr(&RADARRAY(&a)->array[i].node, udb,
			&lookup(n)->array[i].node);
		RADARRAY(&a)->array[i].len = lookup_len(n, i);
		memmove(((uint8_t*)(&RADARRAY(&a)->array[cap]))+i*strcap,
			lookup_string(n, i), lookup_len(n, i));
	}
	udb_radarray_zero_ptrs(udb, n);
	udb_rel_ptr_free_space(&RADNODE(n)->lookup, udb, size_of_lookup(n));
	udb_rptr_set_ptr(&RADNODE(n)->lookup, udb, &a);
	udb_ptr_unlink(&a, udb);
	return 1;
}

/** find the max stringlength in the array */
static udb_radstrlen_t udb_radarray_max_len(udb_ptr* n)
{
	unsigned i;
	udb_radstrlen_t maxlen = 0;
	for(i=0; i<lookup(n)->len; i++) {
		if(lookup(n)->array[i].node.data &&
			lookup(n)->array[i].len > maxlen)
			maxlen = lookup(n)->array[i].len;
	}
	return maxlen;
}

/** see if radarray can be reduced (by a factor of two) */
static int
udb_radarray_reduce_if_needed(udb_base* udb, udb_ptr* n)
{
	udb_radstrlen_t maxlen = udb_radarray_max_len(n);
	if((lookup(n)->len <= lookup(n)->capacity/2 || lookup(n)->len == 0
		|| maxlen <= lookup(n)->str_cap/2 || maxlen == 0) &&
		(lookup(n)->len != lookup(n)->capacity ||
		lookup(n)->str_cap != maxlen))
		return udb_radarray_reduce(udb, n, lookup(n)->len, maxlen);
	return 1;
}

static int
udb_radnode_array_clean_all(udb_base* udb, udb_ptr* n)
{
	RADNODE(n)->offset = 0;
	lookup(n)->len = 0;
	/* reallocate lookup to a smaller capacity structure */
	return udb_radarray_reduce(udb, n, 0, 0);
}

/** remove NULL nodes from front of array */
static int
udb_radnode_array_clean_front(udb_base* udb, udb_ptr* n)
{
	/* move them up and adjust offset */
	unsigned idx, shuf = 0;
	/* remove until a nonNULL entry */
	while(shuf < lookup(n)->len && lookup(n)->array[shuf].node.data == 0)
		shuf++;
	if(shuf == 0)
		return 1;
	if(shuf == lookup(n)->len) {
		/* the array is empty, the tree is inefficient */
		return udb_radnode_array_clean_all(udb, n);
	}
	assert(shuf < lookup(n)->len);
	assert((int)shuf <= 255-(int)RADNODE(n)->offset);
	/* move them */
	for(idx=0; idx<lookup(n)->len-shuf; idx++) {
		udb_rptr_set_rptr(&lookup(n)->array[idx].node, udb,
			&lookup(n)->array[shuf+idx].node);
		lookup(n)->array[idx].len = lookup_len(n, shuf+idx);
		memmove(lookup_string(n, idx), lookup_string(n, shuf+idx),
			lookup(n)->array[idx].len);
	}
	/* zero the to-be-unused entries */
	for(idx=lookup(n)->len-shuf; idx<lookup(n)->len; idx++) {
		udb_rptr_zero(&lookup(n)->array[idx].node, udb);
		memset(lookup_string(n, idx), 0, lookup(n)->array[idx].len);
		lookup(n)->array[idx].len = 0;
	}
	RADNODE(n)->offset += shuf;
	lookup(n)->len -= shuf;
	for(idx=0; idx<lookup(n)->len; idx++)
		if(lookup(n)->array[idx].node.data)
			lookup_node(n, idx)->pidx = idx;

	/* see if capacity has to shrink */
	return udb_radarray_reduce_if_needed(udb, n);
}

/** remove NULL nodes from end of array */
static int
udb_radnode_array_clean_end(udb_base* udb, udb_ptr* n)
{
	/* shorten it */
	unsigned shuf = 0;
	/* remove until a nonNULL entry */
	/* remove until a nonNULL entry */
	while(shuf < lookup(n)->len && lookup(n)->array[lookup(n)->len-1-shuf]
		.node.data == 0)
		shuf++;
	if(shuf == 0)
		return 1;
	if(shuf == lookup(n)->len) {
		/* the array is empty, the tree is inefficient */
		return udb_radnode_array_clean_all(udb, n);
	}
	assert(shuf < lookup(n)->len);
	lookup(n)->len -= shuf;
	/* array elements can stay where they are */
	/* see if capacity has to shrink */
	return udb_radarray_reduce_if_needed(udb, n);
}

/** clean up radnode leaf, where we know it has a parent */
static int
udb_radnode_cleanup_leaf(udb_base* udb, udb_ptr* n, udb_ptr* par)
{
	uint8_t pidx;
	/* node was a leaf */

	/* delete leaf node, but store parent+idx */
	pidx = RADNODE(n)->pidx;
	assert(pidx < lookup(par)->len);

	/** set parent ptr to this node to NULL before deleting the node,
	 * because otherwise ptrlinks fail */
	udb_rptr_zero(&lookup(par)->array[pidx].node, udb);

	udb_radnode_delete(udb, n);

	/* set parent+idx entry to NULL str and node.*/
	lookup(par)->array[pidx].len = 0;

	/* see if par offset or len must be adjusted */
	if(lookup(par)->len == 1) {
		/* removed final element from array */
		if(!udb_radnode_array_clean_all(udb, par))
			return 0;
	} else if(pidx == 0) {
		/* removed first element from array */
		if(!udb_radnode_array_clean_front(udb, par))
			return 0;
	} else if(pidx == lookup(par)->len-1) {
		/* removed last element from array */
		if(!udb_radnode_array_clean_end(udb, par))
			return 0;
	}
	return 1;
}

/** 
 * Cleanup a radix node that was made smaller, see if it can 
 * be merged with others.
 * @param udb: the udb
 * @param rt: tree to remove root if needed.
 * @param n: node to cleanup
 * @return false on alloc failure.
 */
static int
udb_radnode_cleanup(udb_base* udb, udb_ptr* rt, udb_ptr* n)
{
	while(!udb_ptr_is_null(n)) {
		if(RADNODE(n)->elem.data) {
			/* see if if needs to be reduced in stringsize */
			if(!udb_radarray_reduce_if_needed(udb, n)) {
				udb_ptr_zero(n, udb);
				return 0;
			}
			/* cannot delete node with a data element */
			udb_ptr_zero(n, udb);
			return 1;
		} else if(lookup(n)->len == 1 && RADNODE(n)->parent.data) {
			return udb_radnode_cleanup_onechild(udb, n);
		} else if(lookup(n)->len == 0) {
			udb_ptr par;
			if(!RADNODE(n)->parent.data) {
				/* root deleted */
				udb_rptr_zero(&RADTREE(rt)->root, udb);
				udb_radnode_delete(udb, n);
				return 1;
			}
			udb_ptr_new(&par, udb, &RADNODE(n)->parent);
			/* remove and delete the leaf node */
			if(!udb_radnode_cleanup_leaf(udb, n, &par)) {
				udb_ptr_unlink(&par, udb);
				udb_ptr_zero(n, udb);
				return 0;
			}
			/* see if parent can now be cleaned up */
			udb_ptr_set_ptr(n, udb, &par);
			udb_ptr_unlink(&par, udb);
		} else {
			/* see if if needs to be reduced in stringsize */
			if(!udb_radarray_reduce_if_needed(udb, n)) {
				udb_ptr_zero(n, udb);
				return 0;
			}
			/* node cannot be cleaned up */
			udb_ptr_zero(n, udb);
			return 1;
		}
	}
	/* ENOTREACH */
	return 1;
}

void udb_radix_delete(udb_base* udb, udb_ptr* rt, udb_ptr* n)
{
	if(udb_ptr_is_null(n))
		return;
	udb_rptr_zero(&RADNODE(n)->elem, udb);
	RADTREE(rt)->count --;
	if(!udb_radnode_cleanup(udb, rt, n)) {
		/* out of memory in cleanup.  the elem ptr is NULL, but
		 * the radix tree could be inefficient. */
	}
}

udb_void udb_radix_search(udb_ptr* rt, uint8_t* k, udb_radstrlen_t len)
{
	/* since we only perform reads, and no udb_mallocs or udb_frees
	 * we know the pointers stay the same */
	struct udb_radnode_d* n;
	udb_radstrlen_t pos = 0;
	uint8_t byte;
	void* base = *rt->base;

	n = (struct udb_radnode_d*)UDB_REL(base, RADTREE(rt)->root.data);
#define NARRAY(n) ((struct udb_radarray_d*)UDB_REL(base, n->lookup.data))
#define NSTR(n, byte) (((uint8_t*)(&NARRAY(n)->array[NARRAY(n)->capacity]))+byte*NARRAY(n)->str_cap)
	while(n != *rt->base) {
		if(pos == len)
			return UDB_SYSTOREL(*rt->base, n);
		byte = k[pos];
		if(byte < n->offset)
			return 0;
		byte -= n->offset;
		if(byte >= NARRAY(n)->len)
			return 0;
		pos++;
		if(NARRAY(n)->array[byte].len != 0) {
			/* must match additional string */
			if(pos+NARRAY(n)->array[byte].len > len)
				return 0; /* no match */
			if(memcmp(&k[pos], NSTR(n, byte),
				NARRAY(n)->array[byte].len) != 0)
				return 0; /* no match */
			pos += NARRAY(n)->array[byte].len;
		}
		n = (struct udb_radnode_d*)UDB_REL(base,
			NARRAY(n)->array[byte].node.data);
	}
	return 0;
}

/** go to last elem-containing node in this subtree (excl self) */
static void
udb_radnode_last_in_subtree(udb_base* udb, udb_ptr* n)
{
	int idx;
	/* try last entry in array first */
	for(idx=((int)lookup(n)->len)-1; idx >= 0; idx--) {
		if(lookup(n)->array[idx].node.data) {
			udb_ptr s;
			udb_ptr_init(&s, udb);
			udb_ptr_set_rptr(&s, udb, &lookup(n)->array[idx].node);
			/* does it have entries in its subtrees? */
			if(lookup(&s)->len > 0) {
				udb_radnode_last_in_subtree(udb, &s);
				if(!udb_ptr_is_null(&s)) {
					udb_ptr_set_ptr(n, udb, &s);
					udb_ptr_unlink(&s, udb);
					return;
				}
			}
			udb_ptr_set_rptr(&s, udb, &lookup(n)->array[idx].node);
			/* no, does it have an entry itself? */
			if(RADNODE(&s)->elem.data) {
				udb_ptr_set_ptr(n, udb, &s);
				udb_ptr_unlink(&s, udb);
				return;
			}
			udb_ptr_unlink(&s, udb);
		}
	}
	udb_ptr_zero(n, udb);
}

/** last in subtree, incl self */
static void
udb_radnode_last_in_subtree_incl_self(udb_base* udb, udb_ptr* n)
{
	udb_ptr self;
	udb_ptr_init(&self, udb);
	udb_ptr_set_ptr(&self, udb, n);
	udb_radnode_last_in_subtree(udb, n);
	if(!udb_ptr_is_null(n)) {
		udb_ptr_unlink(&self, udb);
		return;
	}
	if(RADNODE(&self)->elem.data) {
		udb_ptr_set_ptr(n, udb, &self);
		udb_ptr_unlink(&self, udb);
		return;
	}
	udb_ptr_zero(n, udb);
	udb_ptr_unlink(&self, udb);
}

/** return first elem-containing node in this subtree (excl self) */
static void
udb_radnode_first_in_subtree(udb_base* udb, udb_ptr* n)
{
	unsigned idx;
	/* try every subnode */
	for(idx=0; idx<lookup(n)->len; idx++) {
		if(lookup(n)->array[idx].node.data) {
			udb_ptr s;
			udb_ptr_init(&s, udb);
			udb_ptr_set_rptr(&s, udb, &lookup(n)->array[idx].node);
			/* does it have elem itself? */
			if(RADNODE(&s)->elem.data) {
				udb_ptr_set_ptr(n, udb, &s);
				udb_ptr_unlink(&s, udb);
				return;
			}
			/* try its subtrees */
			udb_radnode_first_in_subtree(udb, &s);
			if(!udb_ptr_is_null(&s)) {
				udb_ptr_set_ptr(n, udb, &s);
				udb_ptr_unlink(&s, udb);
				return;
			}

		}
	}
	udb_ptr_zero(n, udb);
}

/** Find an entry in arrays from idx-1 to 0 */
static void
udb_radnode_find_prev_from_idx(udb_base* udb, udb_ptr* n, unsigned from)
{
	unsigned idx = from;
	while(idx > 0) {
		idx --;
		if(lookup(n)->array[idx].node.data) {
			udb_ptr_set_rptr(n, udb, &lookup(n)->array[idx].node);
			udb_radnode_last_in_subtree_incl_self(udb, n);
			if(!udb_ptr_is_null(n))
				return;
		}
	}
	udb_ptr_zero(n, udb);
}

/** return self or a previous element */
static int udb_ret_self_or_prev(udb_base* udb, udb_ptr* n, udb_ptr* result)
{
	if(RADNODE(n)->elem.data) {
		udb_ptr_set_ptr(result, udb, n);
	} else {
		udb_ptr_set_ptr(result, udb, n);
		udb_radix_prev(udb, result);
	}
	udb_ptr_unlink(n, udb);
	return 0;
}


int udb_radix_find_less_equal(udb_base* udb, udb_ptr* rt, uint8_t* k,
        udb_radstrlen_t len, udb_ptr* result)
{
	udb_ptr n;
	udb_radstrlen_t pos = 0;
	uint8_t byte;
	int r;
	/* set result to NULL */
	udb_ptr_init(result, udb);
	if(RADTREE(rt)->count == 0) {
		/* empty tree */
		return 0;
	}
	udb_ptr_new(&n, udb, &RADTREE(rt)->root);
	while(pos < len) {
		byte = k[pos];
		if(byte < RADNODE(&n)->offset) {
			/* so the previous is the element itself */
			/* or something before this element */
			return udb_ret_self_or_prev(udb, &n, result);
		}
		byte -= RADNODE(&n)->offset;
		if(byte >= lookup(&n)->len) {
			/* so, the previous is the last of array, or itself */
			/* or something before this element */
			udb_ptr_set_ptr(result, udb, &n);
			udb_radnode_last_in_subtree_incl_self(udb, result);
			if(udb_ptr_is_null(result)) {
				udb_ptr_set_ptr(result, udb, &n);
				udb_radix_prev(udb, result);
			}
			goto done_fail;
		}
		pos++;
		if(!lookup(&n)->array[byte].node.data) {
			/* no match */
			/* Find an entry in arrays from byte-1 to 0 */
			udb_ptr_set_ptr(result, udb, &n);
			udb_radnode_find_prev_from_idx(udb, result, byte);
			if(!udb_ptr_is_null(result))
				goto done_fail;
			/* this entry or something before it */
			udb_ptr_zero(result, udb);
			return udb_ret_self_or_prev(udb, &n, result);
		}
		if(lookup_len(&n, byte) != 0) {
			/* must match additional string */
			if(pos+lookup_len(&n, byte) > len) {
				/* the additional string is longer than key*/
				if( (r=memcmp(&k[pos], lookup_string(&n, byte),
					len-pos)) <= 0) {
					/* and the key is before this node */
					udb_ptr_set_rptr(result, udb,
						&lookup(&n)->array[byte].node);
					udb_radix_prev(udb, result);
				} else {
					/* the key is after the additional
					 * string, thus everything in that
					 * subtree is smaller. */
					udb_ptr_set_rptr(result, udb,
						&lookup(&n)->array[byte].node);
					udb_radnode_last_in_subtree_incl_self(udb, result);
					/* if somehow that is NULL,
					 * then we have an inefficient tree:
					 * byte+1 is larger than us, so find
					 * something in byte-1 and before */
					if(udb_ptr_is_null(result)) {
						udb_ptr_set_rptr(result, udb,
						&lookup(&n)->array[byte].node);
						udb_radix_prev(udb, result);
					}
				}
				goto done_fail; /* no match */
			}
			if( (r=memcmp(&k[pos], lookup_string(&n, byte),
				lookup_len(&n, byte))) < 0) {
				udb_ptr_set_rptr(result, udb,
					&lookup(&n)->array[byte].node);
				udb_radix_prev(udb, result);
				goto done_fail; /* no match */
			} else if(r > 0) {
				/* the key is larger than the additional
				 * string, thus everything in that subtree
				 * is smaller */
				udb_ptr_set_rptr(result, udb,
					&lookup(&n)->array[byte].node);
				udb_radnode_last_in_subtree_incl_self(udb, result);
				/* if we have an inefficient tree */
				if(udb_ptr_is_null(result)) {
					udb_ptr_set_rptr(result, udb,
						&lookup(&n)->array[byte].node);
					udb_radix_prev(udb, result);
				}
				goto done_fail; /* no match */
			}
			pos += lookup_len(&n, byte);
		}
		udb_ptr_set_rptr(&n, udb, &lookup(&n)->array[byte].node);
	}
	if(RADNODE(&n)->elem.data) {
		/* exact match */
		udb_ptr_set_ptr(result, udb, &n);
		udb_ptr_unlink(&n, udb);
		return 1;
	}
	/* there is a node which is an exact match, but it has no element */
	udb_ptr_set_ptr(result, udb, &n);
	udb_radix_prev(udb, result);
done_fail:
	udb_ptr_unlink(&n, udb);
	return 0;
}

void udb_radix_first(udb_base* udb, udb_ptr* rt, udb_ptr* p)
{
	udb_ptr_init(p, udb);
	if(!rt || udb_ptr_is_null(rt) || RADTREE(rt)->count == 0)
		return;
	udb_ptr_set_rptr(p, udb, &RADTREE(rt)->root);
	if(RADNODE(p)->elem.data)
		return;
	udb_radix_next(udb, p);
}

void udb_radix_last(udb_base* udb, udb_ptr* rt, udb_ptr* p)
{
	udb_ptr_init(p, udb);
	if(!rt || udb_ptr_is_null(rt) || RADTREE(rt)->count == 0)
		return;
	udb_ptr_set_rptr(p, udb, &RADTREE(rt)->root);
	udb_radnode_last_in_subtree_incl_self(udb, p);
}

void udb_radix_next(udb_base* udb, udb_ptr* n)
{
	udb_ptr s;
	udb_ptr_init(&s, udb);
	if(lookup(n)->len) {
		/* go down */
		udb_ptr_set_ptr(&s, udb, n);
		udb_radnode_first_in_subtree(udb, &s);
		if(!udb_ptr_is_null(&s)) {
			udb_ptr_set_ptr(n, udb, &s);
			udb_ptr_unlink(&s, udb);
			return;
		}
	}
	/* go up - the parent->elem is not useful, because it is before us */
	while(RADNODE(n)->parent.data) {
		unsigned idx = RADNODE(n)->pidx;
		udb_ptr_set_rptr(n, udb, &RADNODE(n)->parent);
		idx++;
		for(; idx < lookup(n)->len; idx++) {
			/* go down the next branch */
			if(lookup(n)->array[idx].node.data) {
				udb_ptr_set_rptr(&s, udb,
					&lookup(n)->array[idx].node);
				/* node itself */
				if(RADNODE(&s)->elem.data) {
					udb_ptr_set_ptr(n, udb, &s);
					udb_ptr_unlink(&s, udb);
					return;
				}
				/* or subtree */
				udb_radnode_first_in_subtree(udb, &s);
				if(!udb_ptr_is_null(&s)) {
					udb_ptr_set_ptr(n, udb, &s);
					udb_ptr_unlink(&s, udb);
					return;
				}
			}
		}
	}
	udb_ptr_unlink(&s, udb);
	udb_ptr_zero(n, udb);
}

void udb_radix_prev(udb_base* udb, udb_ptr* n)
{
	/* must go up, since all array nodes are after this node */
	while(RADNODE(n)->parent.data) {
		uint8_t idx = RADNODE(n)->pidx;
		udb_ptr s;
		udb_ptr_set_rptr(n, udb, &RADNODE(n)->parent);
		assert(lookup(n)->len > 0); /* since we are a child */
		/* see if there are elements in previous branches there */
		udb_ptr_init(&s, udb);
		udb_ptr_set_ptr(&s, udb, n);
		udb_radnode_find_prev_from_idx(udb, &s, idx);
		if(!udb_ptr_is_null(&s)) {
			udb_ptr_set_ptr(n, udb, &s);
			udb_ptr_unlink(&s, udb);
			return;
		}
		udb_ptr_unlink(&s, udb);
		/* the current node is before the array */
		if(RADNODE(n)->elem.data)
			return;
	}
	udb_ptr_zero(n, udb);
}

udb_void udb_radname_insert(udb_base* udb, udb_ptr* rt, const uint8_t* dname,
	size_t dlen, udb_ptr* elem, udb_ptr* result)
{
	uint8_t k[300];
	radstrlen_t klen = (radstrlen_t)sizeof(k);
	radname_d2r(k, &klen, dname, dlen);
	return udb_radix_insert(udb, rt, k, klen, elem, result);
}

int udb_radname_search(udb_base* udb, udb_ptr* rt, const uint8_t* dname,
        size_t dlen, udb_ptr* result)
{
	udb_void r;
	uint8_t k[300];
	radstrlen_t klen = (radstrlen_t)sizeof(k);
	radname_d2r(k, &klen, dname, dlen);
	r = udb_radix_search(rt, k, klen);
	udb_ptr_init(result, udb);
	udb_ptr_set(result, udb, r);
	return (r != 0);
}

void udb_radix_tree_walk_chunk(void* base, void* d, uint64_t s,
        udb_walk_relptr_cb* cb, void* arg)
{
	struct udb_radtree_d* p = (struct udb_radtree_d*)d;
	assert(s >= sizeof(struct udb_radtree_d));
	(void)s;
	(*cb)(base, &p->root, arg);
}

void udb_radix_node_walk_chunk(void* base, void* d, uint64_t s,
        udb_walk_relptr_cb* cb, void* arg)
{
	struct udb_radnode_d* p = (struct udb_radnode_d*)d;
	assert(s >= sizeof(struct udb_radnode_d));
	(void)s;
	(*cb)(base, &p->elem, arg);
	(*cb)(base, &p->parent, arg);
	(*cb)(base, &p->lookup, arg);
}

void udb_radix_array_walk_chunk(void* base, void* d, uint64_t s,
        udb_walk_relptr_cb* cb, void* arg)
{
	struct udb_radarray_d* p = (struct udb_radarray_d*)d;
	unsigned i;
	assert(s >= sizeof(struct udb_radarray_d)+
		p->capacity*(sizeof(struct udb_radsel_d)+p->str_cap));
	(void)s;
	for(i=0; i<p->len; i++) {
		(*cb)(base, &p->array[i].node, arg);
	}
}