1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
/*
** ********************************************************************
** md4.c -- Implementation of MD4 Message Digest Algorithm **
** Updated: 2/16/90 by Ronald L. Rivest **
** (C) 1990 RSA Data Security, Inc. **
** ********************************************************************
*/
/*
** To use MD4:
** -- Include md4.h in your program
** -- Declare an MDstruct MD to hold the state of the digest
** computation.
** -- Initialize MD using MDbegin(&MD)
** -- For each full block (64 bytes) X you wish to process, call
** MDupdate(&MD,X,512)
** (512 is the number of bits in a full block.)
** -- For the last block (less than 64 bytes) you wish to process,
** MDupdate(&MD,X,n)
** where n is the number of bits in the partial block. A partial
** block terminates the computation, so every MD computation
** should terminate by processing a partial block, even if it
** has n = 0.
** -- The message digest is available in MD.buffer[0] ...
** MD.buffer[3]. (Least-significant byte of each word
** should be output first.)
** -- You can print out the digest using MDprint(&MD)
*/
/* Implementation notes:
** This implementation assumes that ints are 32-bit quantities.
** If the machine stores the least-significant byte of an int in the
** least-addressed byte (e.g., VAX and 8086), then LOWBYTEFIRST
** should be set to TRUE. Otherwise (e.g., SUNS), LOWBYTEFIRST
** should be set to FALSE. Note that on machines with LOWBYTEFIRST
** FALSE the routine MDupdate modifies has a side-effect on its input
** array (the order of bytes in each word are reversed). If this is
** undesired a call to MDreverse(X) can reverse the bytes of X back
** into order after each call to MDupdate.
**
** NOTE: LOWBYTEFIRST removed by Eric Rosenquist in favour of run-time
** detection to simplify build process.
*/
#define TRUE 1
#define FALSE 0
/* Compile-time includes
*/
#include <stdio.h>
#include "md4.h"
#include "pppd.h"
/* Compile-time declarations of MD4 "magic constants".
*/
#define I0 0x67452301 /* Initial values for MD buffer */
#define I1 0xefcdab89
#define I2 0x98badcfe
#define I3 0x10325476
#define C2 013240474631 /* round 2 constant = sqrt(2) in octal */
#define C3 015666365641 /* round 3 constant = sqrt(3) in octal */
/* C2 and C3 are from Knuth, The Art of Programming, Volume 2
** (Seminumerical Algorithms), Second Edition (1981), Addison-Wesley.
** Table 2, page 660.
*/
#define fs1 3 /* round 1 shift amounts */
#define fs2 7
#define fs3 11
#define fs4 19
#define gs1 3 /* round 2 shift amounts */
#define gs2 5
#define gs3 9
#define gs4 13
#define hs1 3 /* round 3 shift amounts */
#define hs2 9
#define hs3 11
#define hs4 15
/* Compile-time macro declarations for MD4.
** Note: The "rot" operator uses the variable "tmp".
** It assumes tmp is declared as unsigned int, so that the >>
** operator will shift in zeros rather than extending the sign bit.
*/
#define f(X,Y,Z) ((X&Y) | ((~X)&Z))
#define g(X,Y,Z) ((X&Y) | (X&Z) | (Y&Z))
#define h(X,Y,Z) (X^Y^Z)
#define rot(X,S) (tmp=X,(tmp<<S) | (tmp>>(32-S)))
#define ff(A,B,C,D,i,s) A = rot((A + f(B,C,D) + X[i]),s)
#define gg(A,B,C,D,i,s) A = rot((A + g(B,C,D) + X[i] + C2),s)
#define hh(A,B,C,D,i,s) A = rot((A + h(B,C,D) + X[i] + C3),s)
/* MDprint(MDp)
** Print message digest buffer MDp as 32 hexadecimal digits.
** Order is from low-order byte of buffer[0] to high-order byte of
** buffer[3].
** Each byte is printed with high-order hexadecimal digit first.
** This is a user-callable routine.
*/
void
MDprint(MDp)
MDptr MDp;
{ int i,j;
for (i=0;i<4;i++)
for (j=0;j<32;j=j+8)
printf("%02x",(MDp->buffer[i]>>j) & 0xFF);
}
/* MDbegin(MDp)
** Initialize message digest buffer MDp.
** This is a user-callable routine.
*/
void
MDbegin(MDp)
MDptr MDp;
{ int i;
MDp->buffer[0] = I0;
MDp->buffer[1] = I1;
MDp->buffer[2] = I2;
MDp->buffer[3] = I3;
for (i=0;i<8;i++) MDp->count[i] = 0;
MDp->done = 0;
}
/* MDreverse(X)
** Reverse the byte-ordering of every int in X.
** Assumes X is an array of 16 ints.
** The macro revx reverses the byte-ordering of the next word of X.
*/
#define revx { t = (*X << 16) | (*X >> 16); \
*X++ = ((t & 0xFF00FF00) >> 8) | ((t & 0x00FF00FF) << 8); }
MDreverse(X)
unsigned int *X;
{ register unsigned int t;
revx; revx; revx; revx; revx; revx; revx; revx;
revx; revx; revx; revx; revx; revx; revx; revx;
}
/* MDblock(MDp,X)
** Update message digest buffer MDp->buffer using 16-word data block X.
** Assumes all 16 words of X are full of data.
** Does not update MDp->count.
** This routine is not user-callable.
*/
static void
MDblock(MDp,X)
MDptr MDp;
unsigned int *X;
{
register unsigned int tmp, A, B, C, D;
static int low_byte_first = -1;
if (low_byte_first == -1) {
low_byte_first = (htons((unsigned short int)1) != 1);
}
if (low_byte_first == 0) {
MDreverse(X);
}
A = MDp->buffer[0];
B = MDp->buffer[1];
C = MDp->buffer[2];
D = MDp->buffer[3];
/* Update the message digest buffer */
ff(A , B , C , D , 0 , fs1); /* Round 1 */
ff(D , A , B , C , 1 , fs2);
ff(C , D , A , B , 2 , fs3);
ff(B , C , D , A , 3 , fs4);
ff(A , B , C , D , 4 , fs1);
ff(D , A , B , C , 5 , fs2);
ff(C , D , A , B , 6 , fs3);
ff(B , C , D , A , 7 , fs4);
ff(A , B , C , D , 8 , fs1);
ff(D , A , B , C , 9 , fs2);
ff(C , D , A , B , 10 , fs3);
ff(B , C , D , A , 11 , fs4);
ff(A , B , C , D , 12 , fs1);
ff(D , A , B , C , 13 , fs2);
ff(C , D , A , B , 14 , fs3);
ff(B , C , D , A , 15 , fs4);
gg(A , B , C , D , 0 , gs1); /* Round 2 */
gg(D , A , B , C , 4 , gs2);
gg(C , D , A , B , 8 , gs3);
gg(B , C , D , A , 12 , gs4);
gg(A , B , C , D , 1 , gs1);
gg(D , A , B , C , 5 , gs2);
gg(C , D , A , B , 9 , gs3);
gg(B , C , D , A , 13 , gs4);
gg(A , B , C , D , 2 , gs1);
gg(D , A , B , C , 6 , gs2);
gg(C , D , A , B , 10 , gs3);
gg(B , C , D , A , 14 , gs4);
gg(A , B , C , D , 3 , gs1);
gg(D , A , B , C , 7 , gs2);
gg(C , D , A , B , 11 , gs3);
gg(B , C , D , A , 15 , gs4);
hh(A , B , C , D , 0 , hs1); /* Round 3 */
hh(D , A , B , C , 8 , hs2);
hh(C , D , A , B , 4 , hs3);
hh(B , C , D , A , 12 , hs4);
hh(A , B , C , D , 2 , hs1);
hh(D , A , B , C , 10 , hs2);
hh(C , D , A , B , 6 , hs3);
hh(B , C , D , A , 14 , hs4);
hh(A , B , C , D , 1 , hs1);
hh(D , A , B , C , 9 , hs2);
hh(C , D , A , B , 5 , hs3);
hh(B , C , D , A , 13 , hs4);
hh(A , B , C , D , 3 , hs1);
hh(D , A , B , C , 11 , hs2);
hh(C , D , A , B , 7 , hs3);
hh(B , C , D , A , 15 , hs4);
MDp->buffer[0] += A;
MDp->buffer[1] += B;
MDp->buffer[2] += C;
MDp->buffer[3] += D;
}
/* MDupdate(MDp,X,count)
** Input: MDp -- an MDptr
** X -- a pointer to an array of unsigned characters.
** count -- the number of bits of X to use.
** (if not a multiple of 8, uses high bits of last byte.)
** Update MDp using the number of bits of X given by count.
** This is the basic input routine for an MD4 user.
** The routine completes the MD computation when count < 512, so
** every MD computation should end with one call to MDupdate with a
** count less than 512. A call with count 0 will be ignored if the
** MD has already been terminated (done != 0), so an extra call with
** count 0 can be given as a "courtesy close" to force termination
** if desired.
*/
void
MDupdate(MDp,X,count)
MDptr MDp;
unsigned char *X;
unsigned int count;
{ unsigned int i, tmp, bit, byte, mask;
unsigned char XX[64];
unsigned char *p;
/* return with no error if this is a courtesy close with count
** zero and MDp->done is true.
*/
if (count == 0 && MDp->done) return;
/* check to see if MD is already done and report error */
if (MDp->done)
{ printf("\nError: MDupdate MD already done."); return; }
/* Add count to MDp->count */
tmp = count;
p = MDp->count;
while (tmp)
{ tmp += *p;
*p++ = tmp;
tmp = tmp >> 8;
}
/* Process data */
if (count == 512)
{ /* Full block of data to handle */
MDblock(MDp,(unsigned int *)X);
}
else if (count > 512) /* Check for count too large */
{ printf("\nError: MDupdate called with illegal count value %d."
,count);
return;
}
else /* partial block -- must be last block so finish up */
{ /* Find out how many bytes and residual bits there are */
byte = count >> 3;
bit = count & 7;
/* Copy X into XX since we need to modify it */
for (i=0;i<=byte;i++) XX[i] = X[i];
for (i=byte+1;i<64;i++) XX[i] = 0;
/* Add padding '1' bit and low-order zeros in last byte */
mask = 1 << (7 - bit);
XX[byte] = (XX[byte] | mask) & ~( mask - 1);
/* If room for bit count, finish up with this block */
if (byte <= 55)
{ for (i=0;i<8;i++) XX[56+i] = MDp->count[i];
MDblock(MDp,(unsigned int *)XX);
}
else /* need to do two blocks to finish up */
{ MDblock(MDp,(unsigned int *)XX);
for (i=0;i<56;i++) XX[i] = 0;
for (i=0;i<8;i++) XX[56+i] = MDp->count[i];
MDblock(MDp,(unsigned int *)XX);
}
/* Set flag saying we're done with MD computation */
MDp->done = 1;
}
}
/*
** End of md4.c
****************************(cut)***********************************/
|