1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
/* $OpenBSD: ip.c,v 1.17 2021/04/19 17:04:35 deraadt Exp $ */
/*
* Copyright (c) 2019 Kristaps Dzonsons <kristaps@bsd.lv>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/socket.h>
#include <arpa/inet.h>
#include <assert.h>
#include <err.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "extern.h"
#define PREFIX_SIZE(x) (((x) + 7) / 8)
/*
* Parse an IP address family.
* This is defined in different places in the ROA/X509 standards, but
* it's the same thing.
* We prohibit all but IPv4 and IPv6, without SAFI.
* Return zero on failure, non-zero on success.
*/
int
ip_addr_afi_parse(const char *fn, const ASN1_OCTET_STRING *p, enum afi *afi)
{
uint16_t v;
if (p->length == 0 || p->length > 3) {
warnx("%s: invalid field length, want 1--3, have %d",
fn, p->length);
return 0;
}
memcpy(&v, p->data, sizeof(v));
v = ntohs(v);
/* Only accept IPv4 and IPv6 AFIs. */
if (v != AFI_IPV4 && v != AFI_IPV6) {
warnx("%s: only AFI for IPV4 (1) and IPV6 (2) allowed: "
"have %hd", fn, v);
return 0;
}
/* Disallow the optional SAFI. */
if (p->length == 3) {
warnx("%s: SAFI not allowed", fn);
return 0;
}
*afi = v;
return 1;
}
/*
* See if a given IP prefix is covered by the IP prefixes or ranges
* specified in the "ips" array.
* This means that the IP prefix must be strictly within the ranges or
* singletons given in the array.
* Return 0 if we're inheriting from the parent, >0 if we're covered,
* or <0 if we're not covered.
*/
int
ip_addr_check_covered(enum afi afi,
const unsigned char *min, const unsigned char *max,
const struct cert_ip *ips, size_t ipsz)
{
size_t i, sz = AFI_IPV4 == afi ? 4 : 16;
for (i = 0; i < ipsz; i++) {
if (ips[i].afi != afi)
continue;
if (ips[i].type == CERT_IP_INHERIT)
return 0;
if (memcmp(ips[i].min, min, sz) <= 0 &&
memcmp(ips[i].max, max, sz) >= 0)
return 1;
}
return -1;
}
/*
* Given a newly-parsed IP address or range "ip", make sure that "ip"
* does not overlap with any addresses or ranges in the "ips" array.
* This is defined by RFC 3779 section 2.2.3.6.
* Returns zero on failure, non-zero on success.
*/
int
ip_addr_check_overlap(const struct cert_ip *ip, const char *fn,
const struct cert_ip *ips, size_t ipsz)
{
size_t i, sz = ip->afi == AFI_IPV4 ? 4 : 16;
int inherit_v4 = 0, inherit_v6 = 0;
int has_v4 = 0, has_v6 = 0, socktype;
/*
* FIXME: cache this by having a flag on the cert_ip, else we're
* going to need to do a lot of scanning for big allocations.
*/
for (i = 0; i < ipsz; i++)
if (ips[i].type == CERT_IP_INHERIT) {
if (ips[i].afi == AFI_IPV4)
inherit_v4 = 1;
else
inherit_v6 = 1;
} else {
if (ips[i].afi == AFI_IPV4)
has_v4 = 1;
else
has_v6 = 1;
}
/* Disallow multiple inheritence per type. */
if ((inherit_v4 && ip->afi == AFI_IPV4) ||
(inherit_v6 && ip->afi == AFI_IPV6) ||
(has_v4 && ip->afi == AFI_IPV4 &&
ip->type == CERT_IP_INHERIT) ||
(has_v6 && ip->afi == AFI_IPV6 &&
ip->type == CERT_IP_INHERIT)) {
warnx("%s: RFC 3779 section 2.2.3.5: "
"cannot have multiple inheritence or inheritence and "
"addresses of the same class", fn);
return 0;
}
/* Check our ranges. */
for (i = 0; i < ipsz; i++) {
char buf[64];
if (ips[i].afi != ip->afi)
continue;
if (memcmp(ips[i].max, ip->min, sz) <= 0 ||
memcmp(ips[i].min, ip->max, sz) >= 0)
continue;
socktype = (ips[i].afi == AFI_IPV4) ? AF_INET : AF_INET6,
warnx("%s: RFC 3779 section 2.2.3.5: "
"cannot have overlapping IP addresses", fn);
ip_addr_print(&ip->ip, ip->afi, buf, sizeof(buf));
warnx("%s: certificate IP: %s", fn, buf);
if (inet_ntop(socktype, ip->min, buf, sizeof(buf)) == NULL)
err(1, "inet_ntop");
warnx("%s: certificate IP minimum: %s", fn, buf);
if (inet_ntop(socktype, ip->max, buf, sizeof(buf)) == NULL)
err(1, "inet_ntop");
warnx("%s: certificate IP maximum: %s", fn, buf);
if (inet_ntop(socktype, ips[i].min, buf, sizeof(buf)) == NULL)
err(1, "inet_ntop");
warnx("%s: offending IP minimum: %s", fn, buf);
if (inet_ntop(socktype, ips[i].max, buf, sizeof(buf)) == NULL)
err(1, "inet_ntop");
warnx("%s: offending IP maximum: %s", fn, buf);
return 0;
}
return 1;
}
/*
* Parse an IP address, RFC 3779, 2.2.3.8.
* Return zero on failure, non-zero on success.
*/
int
ip_addr_parse(const ASN1_BIT_STRING *p,
enum afi afi, const char *fn, struct ip_addr *addr)
{
long unused = 0;
/* Weird OpenSSL-ism to get unused bit count. */
if ((p->flags & ASN1_STRING_FLAG_BITS_LEFT))
unused = p->flags & ~ASN1_STRING_FLAG_BITS_LEFT;
if (unused < 0) {
warnx("%s: RFC 3779 section 2.2.3.8: "
"unused bit count must be non-negative", fn);
return 0;
} else if (unused >= 8) {
warnx("%s: RFC 3779 section 2.2.3.8: "
"unused bit count must mask an unsigned char", fn);
return 0;
} else if (p->length == 0 && unused != 0) {
warnx("%s: RFC 3779 section 2.2.3.8: "
"unused bit count must be zero if length is zero", fn);
return 0;
}
/*
* Check that the unused bits are set to zero.
* If we don't do this, stray bits will corrupt our composition
* of the [minimum] address ranges.
*/
if (p->length != 0 &&
(p->data[p->length - 1] & ((1 << unused) - 1))) {
warnx("%s: RFC 3779 section 2.2.3.8: "
"unused bits must be set to zero", fn);
return 0;
}
/* Limit possible sizes of addresses. */
if ((afi == AFI_IPV4 && p->length > 4) ||
(afi == AFI_IPV6 && p->length > 16)) {
warnx("%s: RFC 3779 section 2.2.3.8: "
"IP address too long", fn);
return 0;
}
memset (addr, 0, sizeof(struct ip_addr));
addr->prefixlen = p->length * 8 - unused;
memcpy(addr->addr, p->data, p->length);
return 1;
}
/*
* Convert the IPv4 address into CIDR notation conforming to RFC 4632.
* Buffer should be able to hold xxx.yyy.zzz.www/nn.
*/
static void
ip4_addr2str(const struct ip_addr *addr, char *b, size_t bsz)
{
char buf[16];
int ret;
if (inet_ntop(AF_INET, addr->addr, buf, sizeof(buf)) == NULL)
err(1, "inet_ntop");
ret = snprintf(b, bsz, "%s/%hhu", buf, addr->prefixlen);
if (ret < 0 || (size_t)ret >= bsz)
err(1, "malformed IPV4 address");
}
/*
* Convert the IPv6 address into CIDR notation conforming to RFC 4291.
* See also RFC 5952.
* Must hold 0000:0000:0000:0000:0000:0000:0000:0000/nn.
*/
static void
ip6_addr2str(const struct ip_addr *addr, char *b, size_t bsz)
{
char buf[44];
int ret;
if (inet_ntop(AF_INET6, addr->addr, buf, sizeof(buf)) == NULL)
err(1, "inet_ntop");
ret = snprintf(b, bsz, "%s/%hhu", buf, addr->prefixlen);
if (ret < 0 || (size_t)ret >= bsz)
err(1, "malformed IPV6 address");
}
/*
* Convert a ip_addr into a NUL-terminated CIDR notation string
* conforming to RFC 4632 or 4291.
* The size of the buffer must be at least 64 (inclusive).
*/
void
ip_addr_print(const struct ip_addr *addr,
enum afi afi, char *buf, size_t bufsz)
{
if (afi == AFI_IPV4)
ip4_addr2str(addr, buf, bufsz);
else
ip6_addr2str(addr, buf, bufsz);
}
/*
* Serialise an ip_addr for sending over the wire.
* Matched with ip_addr_read().
*/
void
ip_addr_buffer(struct ibuf *b, const struct ip_addr *p)
{
size_t sz = PREFIX_SIZE(p->prefixlen);
assert(sz <= 16);
io_simple_buffer(b, &p->prefixlen, sizeof(unsigned char));
io_simple_buffer(b, p->addr, sz);
}
/*
* Serialise an ip_addr_range for sending over the wire.
* Matched with ip_addr_range_read().
*/
void
ip_addr_range_buffer(struct ibuf *b, const struct ip_addr_range *p)
{
ip_addr_buffer(b, &p->min);
ip_addr_buffer(b, &p->max);
}
/*
* Read an ip_addr from the wire.
* Matched with ip_addr_buffer().
*/
void
ip_addr_read(int fd, struct ip_addr *p)
{
size_t sz;
io_simple_read(fd, &p->prefixlen, sizeof(unsigned char));
sz = PREFIX_SIZE(p->prefixlen);
assert(sz <= 16);
io_simple_read(fd, p->addr, sz);
}
/*
* Read an ip_addr_range from the wire.
* Matched with ip_addr_range_buffer().
*/
void
ip_addr_range_read(int fd, struct ip_addr_range *p)
{
ip_addr_read(fd, &p->min);
ip_addr_read(fd, &p->max);
}
/*
* Given the addresses (range or IP) in cert_ip, fill in the "min" and
* "max" fields with the minimum and maximum possible IP addresses given
* those ranges (or singleton prefixed range).
* This does nothing if CERT_IP_INHERIT.
* Returns zero on failure (misordered ranges), non-zero on success.
*/
int
ip_cert_compose_ranges(struct cert_ip *p)
{
size_t sz;
switch (p->type) {
case CERT_IP_ADDR:
sz = PREFIX_SIZE(p->ip.prefixlen);
memset(p->min, 0x0, sizeof(p->min));
memcpy(p->min, p->ip.addr, sz);
memset(p->max, 0xff, sizeof(p->max));
memcpy(p->max, p->ip.addr, sz);
if (sz > 0 && p->ip.prefixlen % 8 != 0)
p->max[sz - 1] |= (1 << (8 - p->ip.prefixlen % 8)) - 1;
break;
case CERT_IP_RANGE:
memset(p->min, 0x0, sizeof(p->min));
sz = PREFIX_SIZE(p->range.min.prefixlen);
memcpy(p->min, p->range.min.addr, sz);
memset(p->max, 0xff, sizeof(p->max));
sz = PREFIX_SIZE(p->range.max.prefixlen);
memcpy(p->max, p->range.max.addr, sz);
if (sz > 0 && p->range.max.prefixlen % 8 != 0)
p->max[sz - 1] |=
(1 << (8 - p->range.max.prefixlen % 8)) - 1;
break;
default:
return 1;
}
sz = AFI_IPV4 == p->afi ? 4 : 16;
return memcmp(p->min, p->max, sz) <= 0;
}
/*
* Given the ROA's acceptable prefix, compute the minimum and maximum
* address accepted by the prefix.
*/
void
ip_roa_compose_ranges(struct roa_ip *p)
{
size_t sz = PREFIX_SIZE(p->addr.prefixlen);
memset(p->min, 0x0, sizeof(p->min));
memcpy(p->min, p->addr.addr, sz);
memset(p->max, 0xff, sizeof(p->max));
memcpy(p->max, p->addr.addr, sz);
if (sz > 0 && p->addr.prefixlen % 8 != 0)
p->max[sz - 1] |= (1 << (8 - p->addr.prefixlen % 8)) - 1;
}
|