1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
|
/*
* iterator/iter_utils.c - iterative resolver module utility functions.
*
* Copyright (c) 2007, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
*
* This file contains functions to assist the iterator module.
* Configuration options. Forward zones.
*/
#include "config.h"
#include "iterator/iter_utils.h"
#include "iterator/iterator.h"
#include "iterator/iter_hints.h"
#include "iterator/iter_fwd.h"
#include "iterator/iter_donotq.h"
#include "iterator/iter_delegpt.h"
#include "iterator/iter_priv.h"
#include "services/cache/infra.h"
#include "services/cache/dns.h"
#include "services/cache/rrset.h"
#include "services/outside_network.h"
#include "util/net_help.h"
#include "util/module.h"
#include "util/log.h"
#include "util/config_file.h"
#include "util/regional.h"
#include "util/data/msgparse.h"
#include "util/data/dname.h"
#include "util/random.h"
#include "util/fptr_wlist.h"
#include "validator/val_anchor.h"
#include "validator/val_kcache.h"
#include "validator/val_kentry.h"
#include "validator/val_utils.h"
#include "validator/val_sigcrypt.h"
#include "sldns/sbuffer.h"
#include "sldns/str2wire.h"
/** time when nameserver glue is said to be 'recent' */
#define SUSPICION_RECENT_EXPIRY 86400
/** fillup fetch policy array */
static void
fetch_fill(struct iter_env* ie, const char* str)
{
char* s = (char*)str, *e;
int i;
for(i=0; i<ie->max_dependency_depth+1; i++) {
ie->target_fetch_policy[i] = strtol(s, &e, 10);
if(s == e)
fatal_exit("cannot parse fetch policy number %s", s);
s = e;
}
}
/** Read config string that represents the target fetch policy */
static int
read_fetch_policy(struct iter_env* ie, const char* str)
{
int count = cfg_count_numbers(str);
if(count < 1) {
log_err("Cannot parse target fetch policy: \"%s\"", str);
return 0;
}
ie->max_dependency_depth = count - 1;
ie->target_fetch_policy = (int*)calloc(
(size_t)ie->max_dependency_depth+1, sizeof(int));
if(!ie->target_fetch_policy) {
log_err("alloc fetch policy: out of memory");
return 0;
}
fetch_fill(ie, str);
return 1;
}
/** apply config caps whitelist items to name tree */
static int
caps_white_apply_cfg(rbtree_type* ntree, struct config_file* cfg)
{
struct config_strlist* p;
for(p=cfg->caps_whitelist; p; p=p->next) {
struct name_tree_node* n;
size_t len;
uint8_t* nm = sldns_str2wire_dname(p->str, &len);
if(!nm) {
log_err("could not parse %s", p->str);
return 0;
}
n = (struct name_tree_node*)calloc(1, sizeof(*n));
if(!n) {
log_err("out of memory");
free(nm);
return 0;
}
n->node.key = n;
n->name = nm;
n->len = len;
n->labs = dname_count_labels(nm);
n->dclass = LDNS_RR_CLASS_IN;
if(!name_tree_insert(ntree, n, nm, len, n->labs, n->dclass)) {
/* duplicate element ignored, idempotent */
free(n->name);
free(n);
}
}
name_tree_init_parents(ntree);
return 1;
}
int
iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
{
int i;
/* target fetch policy */
if(!read_fetch_policy(iter_env, cfg->target_fetch_policy))
return 0;
for(i=0; i<iter_env->max_dependency_depth+1; i++)
verbose(VERB_QUERY, "target fetch policy for level %d is %d",
i, iter_env->target_fetch_policy[i]);
if(!iter_env->donotq)
iter_env->donotq = donotq_create();
if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) {
log_err("Could not set donotqueryaddresses");
return 0;
}
if(!iter_env->priv)
iter_env->priv = priv_create();
if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) {
log_err("Could not set private addresses");
return 0;
}
if(cfg->caps_whitelist) {
if(!iter_env->caps_white)
iter_env->caps_white = rbtree_create(name_tree_compare);
if(!iter_env->caps_white || !caps_white_apply_cfg(
iter_env->caps_white, cfg)) {
log_err("Could not set capsforid whitelist");
return 0;
}
}
iter_env->supports_ipv6 = cfg->do_ip6;
iter_env->supports_ipv4 = cfg->do_ip4;
iter_env->outbound_msg_retry = cfg->outbound_msg_retry;
return 1;
}
/** filter out unsuitable targets
* @param iter_env: iterator environment with ipv6-support flag.
* @param env: module environment with infra cache.
* @param name: zone name
* @param namelen: length of name
* @param qtype: query type (host order).
* @param now: current time
* @param a: address in delegation point we are examining.
* @return an integer that signals the target suitability.
* as follows:
* -1: The address should be omitted from the list.
* Because:
* o The address is bogus (DNSSEC validation failure).
* o Listed as donotquery
* o is ipv6 but no ipv6 support (in operating system).
* o is ipv4 but no ipv4 support (in operating system).
* o is lame
* Otherwise, an rtt in milliseconds.
* 0 .. USEFUL_SERVER_TOP_TIMEOUT-1
* The roundtrip time timeout estimate. less than 2 minutes.
* Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus
* values 0 .. 49 are not used, unless that is changed.
* USEFUL_SERVER_TOP_TIMEOUT
* This value exactly is given for unresponsive blacklisted.
* USEFUL_SERVER_TOP_TIMEOUT+1
* For non-blacklisted servers: huge timeout, but has traffic.
* USEFUL_SERVER_TOP_TIMEOUT*1 ..
* parent-side lame servers get this penalty. A dispreferential
* server. (lame in delegpt).
* USEFUL_SERVER_TOP_TIMEOUT*2 ..
* dnsseclame servers get penalty
* USEFUL_SERVER_TOP_TIMEOUT*3 ..
* recursion lame servers get penalty
* UNKNOWN_SERVER_NICENESS
* If no information is known about the server, this is
* returned. 376 msec or so.
* +BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs.
*
* When a final value is chosen that is dnsseclame ; dnsseclameness checking
* is turned off (so we do not discard the reply).
* When a final value is chosen that is recursionlame; RD bit is set on query.
* Because of the numbers this means recursionlame also have dnssec lameness
* checking turned off.
*/
static int
iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env,
uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
struct delegpt_addr* a)
{
int rtt, lame, reclame, dnsseclame;
if(a->bogus)
return -1; /* address of server is bogus */
if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) {
log_addr(VERB_ALGO, "skip addr on the donotquery list",
&a->addr, a->addrlen);
return -1; /* server is on the donotquery list */
}
if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) {
return -1; /* there is no ip6 available */
}
if(!iter_env->supports_ipv4 && !addr_is_ip6(&a->addr, a->addrlen)) {
return -1; /* there is no ip4 available */
}
/* check lameness - need zone , class info */
if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen,
name, namelen, qtype, &lame, &dnsseclame, &reclame,
&rtt, now)) {
log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen);
verbose(VERB_ALGO, " rtt=%d%s%s%s%s", rtt,
lame?" LAME":"",
dnsseclame?" DNSSEC_LAME":"",
reclame?" REC_LAME":"",
a->lame?" ADDR_LAME":"");
if(lame)
return -1; /* server is lame */
else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT)
/* server is unresponsive,
* we used to return TOP_TIMEOUT, but fairly useless,
* because if == TOP_TIMEOUT is dropped because
* blacklisted later, instead, remove it here, so
* other choices (that are not blacklisted) can be
* tried */
return -1;
/* select remainder from worst to best */
else if(reclame)
return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */
else if(dnsseclame || a->dnsseclame)
return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
else if(a->lame)
return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */
else return rtt;
}
/* no server information present */
if(a->dnsseclame)
return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
else if(a->lame)
return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */
return UNKNOWN_SERVER_NICENESS;
}
/** lookup RTT information, and also store fastest rtt (if any) */
static int
iter_fill_rtt(struct iter_env* iter_env, struct module_env* env,
uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
struct delegpt* dp, int* best_rtt, struct sock_list* blacklist,
size_t* num_suitable_results)
{
int got_it = 0;
struct delegpt_addr* a;
*num_suitable_results = 0;
if(dp->bogus)
return 0; /* NS bogus, all bogus, nothing found */
for(a=dp->result_list; a; a = a->next_result) {
a->sel_rtt = iter_filter_unsuitable(iter_env, env,
name, namelen, qtype, now, a);
if(a->sel_rtt != -1) {
if(sock_list_find(blacklist, &a->addr, a->addrlen))
a->sel_rtt += BLACKLIST_PENALTY;
if(!got_it) {
*best_rtt = a->sel_rtt;
got_it = 1;
} else if(a->sel_rtt < *best_rtt) {
*best_rtt = a->sel_rtt;
}
(*num_suitable_results)++;
}
}
return got_it;
}
/** compare two rtts, return -1, 0 or 1 */
static int
rtt_compare(const void* x, const void* y)
{
if(*(int*)x == *(int*)y)
return 0;
if(*(int*)x > *(int*)y)
return 1;
return -1;
}
/** get RTT for the Nth fastest server */
static int
nth_rtt(struct delegpt_addr* result_list, size_t num_results, size_t n)
{
int rtt_band;
size_t i;
int* rtt_list, *rtt_index;
if(num_results < 1 || n >= num_results) {
return -1;
}
rtt_list = calloc(num_results, sizeof(int));
if(!rtt_list) {
log_err("malloc failure: allocating rtt_list");
return -1;
}
rtt_index = rtt_list;
for(i=0; i<num_results && result_list; i++) {
if(result_list->sel_rtt != -1) {
*rtt_index = result_list->sel_rtt;
rtt_index++;
}
result_list=result_list->next_result;
}
qsort(rtt_list, num_results, sizeof(*rtt_list), rtt_compare);
log_assert(n > 0);
rtt_band = rtt_list[n-1];
free(rtt_list);
return rtt_band;
}
/** filter the address list, putting best targets at front,
* returns number of best targets (or 0, no suitable targets) */
static int
iter_filter_order(struct iter_env* iter_env, struct module_env* env,
uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
struct delegpt* dp, int* selected_rtt, int open_target,
struct sock_list* blacklist, time_t prefetch)
{
int got_num = 0, low_rtt = 0, swap_to_front, rtt_band = RTT_BAND, nth;
int alllame = 0;
size_t num_results;
struct delegpt_addr* a, *n, *prev=NULL;
/* fillup sel_rtt and find best rtt in the bunch */
got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp,
&low_rtt, blacklist, &num_results);
if(got_num == 0)
return 0;
if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT &&
/* If all missing (or not fully resolved) targets are lame,
* then use the remaining lame address. */
((delegpt_count_missing_targets(dp, &alllame) > 0 && !alllame) ||
open_target > 0)) {
verbose(VERB_ALGO, "Bad choices, trying to get more choice");
return 0; /* we want more choice. The best choice is a bad one.
return 0 to force the caller to fetch more */
}
if(env->cfg->fast_server_permil != 0 && prefetch == 0 &&
num_results > env->cfg->fast_server_num &&
ub_random_max(env->rnd, 1000) < env->cfg->fast_server_permil) {
/* the query is not prefetch, but for a downstream client,
* there are more servers available then the fastest N we want
* to choose from. Limit our choice to the fastest servers. */
nth = nth_rtt(dp->result_list, num_results,
env->cfg->fast_server_num);
if(nth > 0) {
rtt_band = nth - low_rtt;
if(rtt_band > RTT_BAND)
rtt_band = RTT_BAND;
}
}
got_num = 0;
a = dp->result_list;
while(a) {
/* skip unsuitable targets */
if(a->sel_rtt == -1) {
prev = a;
a = a->next_result;
continue;
}
/* classify the server address and determine what to do */
swap_to_front = 0;
if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= rtt_band) {
got_num++;
swap_to_front = 1;
} else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=rtt_band) {
got_num++;
swap_to_front = 1;
}
/* swap to front if necessary, or move to next result */
if(swap_to_front && prev) {
n = a->next_result;
prev->next_result = n;
a->next_result = dp->result_list;
dp->result_list = a;
a = n;
} else {
prev = a;
a = a->next_result;
}
}
*selected_rtt = low_rtt;
if (env->cfg->prefer_ip6) {
int got_num6 = 0;
int low_rtt6 = 0;
int i;
int attempt = -1; /* filter to make sure addresses have
less attempts on them than the first, to force round
robin when all the IPv6 addresses fail */
int num4ok = 0; /* number ip4 at low attempt count */
int num4_lowrtt = 0;
prev = NULL;
a = dp->result_list;
for(i = 0; i < got_num; i++) {
if(!a) break; /* robustness */
swap_to_front = 0;
if(a->addr.ss_family != AF_INET6 && attempt == -1) {
/* if we only have ip4 at low attempt count,
* then ip6 is failing, and we need to
* select one of the remaining IPv4 addrs */
attempt = a->attempts;
num4ok++;
num4_lowrtt = a->sel_rtt;
} else if(a->addr.ss_family != AF_INET6 && attempt == a->attempts) {
num4ok++;
if(num4_lowrtt == 0 || a->sel_rtt < num4_lowrtt) {
num4_lowrtt = a->sel_rtt;
}
}
if(a->addr.ss_family == AF_INET6) {
if(attempt == -1) {
attempt = a->attempts;
} else if(a->attempts > attempt) {
break;
}
got_num6++;
swap_to_front = 1;
if(low_rtt6 == 0 || a->sel_rtt < low_rtt6) {
low_rtt6 = a->sel_rtt;
}
}
/* swap to front if IPv6, or move to next result */
if(swap_to_front && prev) {
n = a->next_result;
prev->next_result = n;
a->next_result = dp->result_list;
dp->result_list = a;
a = n;
} else {
prev = a;
a = a->next_result;
}
}
if(got_num6 > 0) {
got_num = got_num6;
*selected_rtt = low_rtt6;
} else if(num4ok > 0) {
got_num = num4ok;
*selected_rtt = num4_lowrtt;
}
} else if (env->cfg->prefer_ip4) {
int got_num4 = 0;
int low_rtt4 = 0;
int i;
int attempt = -1; /* filter to make sure addresses have
less attempts on them than the first, to force round
robin when all the IPv4 addresses fail */
int num6ok = 0; /* number ip6 at low attempt count */
int num6_lowrtt = 0;
prev = NULL;
a = dp->result_list;
for(i = 0; i < got_num; i++) {
if(!a) break; /* robustness */
swap_to_front = 0;
if(a->addr.ss_family != AF_INET && attempt == -1) {
/* if we only have ip6 at low attempt count,
* then ip4 is failing, and we need to
* select one of the remaining IPv6 addrs */
attempt = a->attempts;
num6ok++;
num6_lowrtt = a->sel_rtt;
} else if(a->addr.ss_family != AF_INET && attempt == a->attempts) {
num6ok++;
if(num6_lowrtt == 0 || a->sel_rtt < num6_lowrtt) {
num6_lowrtt = a->sel_rtt;
}
}
if(a->addr.ss_family == AF_INET) {
if(attempt == -1) {
attempt = a->attempts;
} else if(a->attempts > attempt) {
break;
}
got_num4++;
swap_to_front = 1;
if(low_rtt4 == 0 || a->sel_rtt < low_rtt4) {
low_rtt4 = a->sel_rtt;
}
}
/* swap to front if IPv4, or move to next result */
if(swap_to_front && prev) {
n = a->next_result;
prev->next_result = n;
a->next_result = dp->result_list;
dp->result_list = a;
a = n;
} else {
prev = a;
a = a->next_result;
}
}
if(got_num4 > 0) {
got_num = got_num4;
*selected_rtt = low_rtt4;
} else if(num6ok > 0) {
got_num = num6ok;
*selected_rtt = num6_lowrtt;
}
}
return got_num;
}
struct delegpt_addr*
iter_server_selection(struct iter_env* iter_env,
struct module_env* env, struct delegpt* dp,
uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame,
int* chase_to_rd, int open_target, struct sock_list* blacklist,
time_t prefetch)
{
int sel;
int selrtt;
struct delegpt_addr* a, *prev;
int num = iter_filter_order(iter_env, env, name, namelen, qtype,
*env->now, dp, &selrtt, open_target, blacklist, prefetch);
if(num == 0)
return NULL;
verbose(VERB_ALGO, "selrtt %d", selrtt);
if(selrtt > BLACKLIST_PENALTY) {
if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) {
verbose(VERB_ALGO, "chase to "
"blacklisted recursion lame server");
*chase_to_rd = 1;
}
if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) {
verbose(VERB_ALGO, "chase to "
"blacklisted dnssec lame server");
*dnssec_lame = 1;
}
} else {
if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) {
verbose(VERB_ALGO, "chase to recursion lame server");
*chase_to_rd = 1;
}
if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) {
verbose(VERB_ALGO, "chase to dnssec lame server");
*dnssec_lame = 1;
}
if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) {
verbose(VERB_ALGO, "chase to blacklisted lame server");
return NULL;
}
}
if(num == 1) {
a = dp->result_list;
if(++a->attempts < iter_env->outbound_msg_retry)
return a;
dp->result_list = a->next_result;
return a;
}
/* randomly select a target from the list */
log_assert(num > 1);
/* grab secure random number, to pick unexpected server.
* also we need it to be threadsafe. */
sel = ub_random_max(env->rnd, num);
a = dp->result_list;
prev = NULL;
while(sel > 0 && a) {
prev = a;
a = a->next_result;
sel--;
}
if(!a) /* robustness */
return NULL;
if(++a->attempts < iter_env->outbound_msg_retry)
return a;
/* remove it from the delegation point result list */
if(prev)
prev->next_result = a->next_result;
else dp->result_list = a->next_result;
return a;
}
struct dns_msg*
dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg,
struct regional* region)
{
struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
sizeof(struct dns_msg));
if(!m)
return NULL;
memset(m, 0, sizeof(*m));
if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) {
log_err("malloc failure: allocating incoming dns_msg");
return NULL;
}
return m;
}
struct dns_msg*
dns_copy_msg(struct dns_msg* from, struct regional* region)
{
struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
sizeof(struct dns_msg));
if(!m)
return NULL;
m->qinfo = from->qinfo;
if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname,
from->qinfo.qname_len)))
return NULL;
if(!(m->rep = reply_info_copy(from->rep, NULL, region)))
return NULL;
return m;
}
void
iter_dns_store(struct module_env* env, struct query_info* msgqinf,
struct reply_info* msgrep, int is_referral, time_t leeway, int pside,
struct regional* region, uint16_t flags, time_t qstarttime)
{
if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway,
pside, region, flags, qstarttime))
log_err("out of memory: cannot store data in cache");
}
int
iter_ns_probability(struct ub_randstate* rnd, int n, int m)
{
int sel;
if(n == m) /* 100% chance */
return 1;
/* we do not need secure random numbers here, but
* we do need it to be threadsafe, so we use this */
sel = ub_random_max(rnd, m);
return (sel < n);
}
/** detect dependency cycle for query and target */
static int
causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen,
uint16_t t, uint16_t c)
{
struct query_info qinf;
qinf.qname = name;
qinf.qname_len = namelen;
qinf.qtype = t;
qinf.qclass = c;
qinf.local_alias = NULL;
fptr_ok(fptr_whitelist_modenv_detect_cycle(
qstate->env->detect_cycle));
return (*qstate->env->detect_cycle)(qstate, &qinf,
(uint16_t)(BIT_RD|BIT_CD), qstate->is_priming,
qstate->is_valrec);
}
void
iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
{
struct delegpt_ns* ns;
for(ns = dp->nslist; ns; ns = ns->next) {
if(ns->resolved)
continue;
/* see if this ns as target causes dependency cycle */
if(causes_cycle(qstate, ns->name, ns->namelen,
LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) ||
causes_cycle(qstate, ns->name, ns->namelen,
LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
log_nametypeclass(VERB_QUERY, "skipping target due "
"to dependency cycle (harden-glue: no may "
"fix some of the cycles)",
ns->name, LDNS_RR_TYPE_A,
qstate->qinfo.qclass);
ns->resolved = 1;
}
}
}
void
iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
{
struct delegpt_ns* ns;
for(ns = dp->nslist; ns; ns = ns->next) {
if(ns->done_pside4 && ns->done_pside6)
continue;
/* see if this ns as target causes dependency cycle */
if(causes_cycle(qstate, ns->name, ns->namelen,
LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
log_nametypeclass(VERB_QUERY, "skipping target due "
"to dependency cycle", ns->name,
LDNS_RR_TYPE_A, qstate->qinfo.qclass);
ns->done_pside4 = 1;
}
if(causes_cycle(qstate, ns->name, ns->namelen,
LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) {
log_nametypeclass(VERB_QUERY, "skipping target due "
"to dependency cycle", ns->name,
LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass);
ns->done_pside6 = 1;
}
}
}
int
iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags,
struct delegpt* dp, int supports_ipv4, int supports_ipv6)
{
struct delegpt_ns* ns;
struct delegpt_addr* a;
/* check:
* o RD qflag is on.
* o no addresses are provided.
* o all NS items are required glue.
* OR
* o RD qflag is on.
* o no addresses are provided.
* o the query is for one of the nameservers in dp,
* and that nameserver is a glue-name for this dp.
*/
if(!(qflags&BIT_RD))
return 0;
/* either available or unused targets,
* if they exist, the dp is not useless. */
for(a = dp->usable_list; a; a = a->next_usable) {
if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4)
return 0;
else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6)
return 0;
}
for(a = dp->result_list; a; a = a->next_result) {
if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4)
return 0;
else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6)
return 0;
}
/* see if query is for one of the nameservers, which is glue */
if( ((qinfo->qtype == LDNS_RR_TYPE_A && supports_ipv4) ||
(qinfo->qtype == LDNS_RR_TYPE_AAAA && supports_ipv6)) &&
dname_subdomain_c(qinfo->qname, dp->name) &&
delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len))
return 1;
for(ns = dp->nslist; ns; ns = ns->next) {
if(ns->resolved) /* skip failed targets */
continue;
if(!dname_subdomain_c(ns->name, dp->name))
return 0; /* one address is not required glue */
}
return 1;
}
int
iter_qname_indicates_dnssec(struct module_env* env, struct query_info *qinfo)
{
struct trust_anchor* a;
if(!env || !env->anchors || !qinfo || !qinfo->qname)
return 0;
/* a trust anchor exists above the name? */
if((a=anchors_lookup(env->anchors, qinfo->qname, qinfo->qname_len,
qinfo->qclass))) {
if(a->numDS == 0 && a->numDNSKEY == 0) {
/* insecure trust point */
lock_basic_unlock(&a->lock);
return 0;
}
lock_basic_unlock(&a->lock);
return 1;
}
/* no trust anchor above it. */
return 0;
}
int
iter_indicates_dnssec(struct module_env* env, struct delegpt* dp,
struct dns_msg* msg, uint16_t dclass)
{
struct trust_anchor* a;
/* information not available, !env->anchors can be common */
if(!env || !env->anchors || !dp || !dp->name)
return 0;
/* a trust anchor exists with this name, RRSIGs expected */
if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen,
dclass))) {
if(a->numDS == 0 && a->numDNSKEY == 0) {
/* insecure trust point */
lock_basic_unlock(&a->lock);
return 0;
}
lock_basic_unlock(&a->lock);
return 1;
}
/* see if DS rrset was given, in AUTH section */
if(msg && msg->rep &&
reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
LDNS_RR_TYPE_DS, dclass))
return 1;
/* look in key cache */
if(env->key_cache) {
struct key_entry_key* kk = key_cache_obtain(env->key_cache,
dp->name, dp->namelen, dclass, env->scratch, *env->now);
if(kk) {
if(query_dname_compare(kk->name, dp->name) == 0) {
if(key_entry_isgood(kk) || key_entry_isbad(kk)) {
regional_free_all(env->scratch);
return 1;
} else if(key_entry_isnull(kk)) {
regional_free_all(env->scratch);
return 0;
}
}
regional_free_all(env->scratch);
}
}
return 0;
}
int
iter_msg_has_dnssec(struct dns_msg* msg)
{
size_t i;
if(!msg || !msg->rep)
return 0;
for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
if(((struct packed_rrset_data*)msg->rep->rrsets[i]->
entry.data)->rrsig_count > 0)
return 1;
}
/* empty message has no DNSSEC info, with DNSSEC the reply is
* not empty (NSEC) */
return 0;
}
int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp,
enum response_type type, uint16_t dclass)
{
if(!msg || !dp || !msg->rep || !dp->name)
return 0;
/* SOA RRset - always from reply zone */
if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
LDNS_RR_TYPE_SOA, dclass) ||
reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
LDNS_RR_TYPE_SOA, dclass))
return 1;
if(type == RESPONSE_TYPE_REFERRAL) {
size_t i;
/* if it adds a single label, i.e. we expect .com,
* and referral to example.com. NS ... , then origin zone
* is .com. For a referral to sub.example.com. NS ... then
* we do not know, since example.com. may be in between. */
for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets;
i++) {
struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS &&
ntohs(s->rk.rrset_class) == dclass) {
int l = dname_count_labels(s->rk.dname);
if(l == dp->namelabs + 1 &&
dname_strict_subdomain(s->rk.dname,
l, dp->name, dp->namelabs))
return 1;
}
}
return 0;
}
log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME);
/* not a referral, and not lame delegation (upwards), so,
* any NS rrset must be from the zone itself */
if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
LDNS_RR_TYPE_NS, dclass) ||
reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
LDNS_RR_TYPE_NS, dclass))
return 1;
/* a DNSKEY set is expected at the zone apex as well */
/* this is for 'minimal responses' for DNSKEYs */
if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
LDNS_RR_TYPE_DNSKEY, dclass))
return 1;
return 0;
}
/**
* check equality of two rrsets
* @param k1: rrset
* @param k2: rrset
* @return true if equal
*/
static int
rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
{
struct packed_rrset_data* d1 = (struct packed_rrset_data*)
k1->entry.data;
struct packed_rrset_data* d2 = (struct packed_rrset_data*)
k2->entry.data;
size_t i, t;
if(k1->rk.dname_len != k2->rk.dname_len ||
k1->rk.flags != k2->rk.flags ||
k1->rk.type != k2->rk.type ||
k1->rk.rrset_class != k2->rk.rrset_class ||
query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
return 0;
if( /* do not check ttl: d1->ttl != d2->ttl || */
d1->count != d2->count ||
d1->rrsig_count != d2->rrsig_count ||
d1->trust != d2->trust ||
d1->security != d2->security)
return 0;
t = d1->count + d1->rrsig_count;
for(i=0; i<t; i++) {
if(d1->rr_len[i] != d2->rr_len[i] ||
/* no ttl check: d1->rr_ttl[i] != d2->rr_ttl[i] ||*/
memcmp(d1->rr_data[i], d2->rr_data[i],
d1->rr_len[i]) != 0)
return 0;
}
return 1;
}
/** compare rrsets and sort canonically. Compares rrset name, type, class.
* return 0 if equal, +1 if x > y, and -1 if x < y.
*/
static int
rrset_canonical_sort_cmp(const void* x, const void* y)
{
struct ub_packed_rrset_key* rrx = *(struct ub_packed_rrset_key**)x;
struct ub_packed_rrset_key* rry = *(struct ub_packed_rrset_key**)y;
int r = dname_canonical_compare(rrx->rk.dname, rry->rk.dname);
if(r != 0)
return r;
if(rrx->rk.type != rry->rk.type) {
if(ntohs(rrx->rk.type) > ntohs(rry->rk.type))
return 1;
else return -1;
}
if(rrx->rk.rrset_class != rry->rk.rrset_class) {
if(ntohs(rrx->rk.rrset_class) > ntohs(rry->rk.rrset_class))
return 1;
else return -1;
}
return 0;
}
int
reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region)
{
size_t i;
struct ub_packed_rrset_key** sorted_p, **sorted_q;
if(p->flags != q->flags ||
p->qdcount != q->qdcount ||
/* do not check TTL, this may differ */
/*
p->ttl != q->ttl ||
p->prefetch_ttl != q->prefetch_ttl ||
*/
p->security != q->security ||
p->an_numrrsets != q->an_numrrsets ||
p->ns_numrrsets != q->ns_numrrsets ||
p->ar_numrrsets != q->ar_numrrsets ||
p->rrset_count != q->rrset_count)
return 0;
/* sort the rrsets in the authority and additional sections before
* compare, the query and answer sections are ordered in the sequence
* they should have (eg. one after the other for aliases). */
sorted_p = (struct ub_packed_rrset_key**)regional_alloc_init(
region, p->rrsets, sizeof(*sorted_p)*p->rrset_count);
if(!sorted_p) return 0;
log_assert(p->an_numrrsets + p->ns_numrrsets + p->ar_numrrsets <=
p->rrset_count);
qsort(sorted_p + p->an_numrrsets, p->ns_numrrsets,
sizeof(*sorted_p), rrset_canonical_sort_cmp);
qsort(sorted_p + p->an_numrrsets + p->ns_numrrsets, p->ar_numrrsets,
sizeof(*sorted_p), rrset_canonical_sort_cmp);
sorted_q = (struct ub_packed_rrset_key**)regional_alloc_init(
region, q->rrsets, sizeof(*sorted_q)*q->rrset_count);
if(!sorted_q) {
regional_free_all(region);
return 0;
}
log_assert(q->an_numrrsets + q->ns_numrrsets + q->ar_numrrsets <=
q->rrset_count);
qsort(sorted_q + q->an_numrrsets, q->ns_numrrsets,
sizeof(*sorted_q), rrset_canonical_sort_cmp);
qsort(sorted_q + q->an_numrrsets + q->ns_numrrsets, q->ar_numrrsets,
sizeof(*sorted_q), rrset_canonical_sort_cmp);
/* compare the rrsets */
for(i=0; i<p->rrset_count; i++) {
if(!rrset_equal(sorted_p[i], sorted_q[i])) {
if(!rrset_canonical_equal(region, sorted_p[i],
sorted_q[i])) {
regional_free_all(region);
return 0;
}
}
}
regional_free_all(region);
return 1;
}
void
caps_strip_reply(struct reply_info* rep)
{
size_t i;
if(!rep) return;
/* see if message is a referral, in which case the additional and
* NS record cannot be removed */
/* referrals have the AA flag unset (strict check, not elsewhere in
* unbound, but for 0x20 this is very convenient). */
if(!(rep->flags&BIT_AA))
return;
/* remove the additional section from the reply */
if(rep->ar_numrrsets != 0) {
verbose(VERB_ALGO, "caps fallback: removing additional section");
rep->rrset_count -= rep->ar_numrrsets;
rep->ar_numrrsets = 0;
}
/* is there an NS set in the authority section to remove? */
/* the failure case (Cisco firewalls) only has one rrset in authsec */
for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
struct ub_packed_rrset_key* s = rep->rrsets[i];
if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS) {
/* remove NS rrset and break from loop (loop limits
* have changed) */
/* move last rrset into this position (there is no
* additional section any more) */
verbose(VERB_ALGO, "caps fallback: removing NS rrset");
if(i < rep->rrset_count-1)
rep->rrsets[i]=rep->rrsets[rep->rrset_count-1];
rep->rrset_count --;
rep->ns_numrrsets --;
break;
}
}
}
int caps_failed_rcode(struct reply_info* rep)
{
return !(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR ||
FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN);
}
void
iter_store_parentside_rrset(struct module_env* env,
struct ub_packed_rrset_key* rrset)
{
struct rrset_ref ref;
rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now);
if(!rrset) {
log_err("malloc failure in store_parentside_rrset");
return;
}
rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE;
rrset->entry.hash = rrset_key_hash(&rrset->rk);
ref.key = rrset;
ref.id = rrset->id;
/* ignore ret: if it was in the cache, ref updated */
(void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now);
}
/** fetch NS record from reply, if any */
static struct ub_packed_rrset_key*
reply_get_NS_rrset(struct reply_info* rep)
{
size_t i;
for(i=0; i<rep->rrset_count; i++) {
if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) {
return rep->rrsets[i];
}
}
return NULL;
}
void
iter_store_parentside_NS(struct module_env* env, struct reply_info* rep)
{
struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
if(rrset) {
log_rrset_key(VERB_ALGO, "store parent-side NS", rrset);
iter_store_parentside_rrset(env, rrset);
}
}
void iter_store_parentside_neg(struct module_env* env,
struct query_info* qinfo, struct reply_info* rep)
{
/* TTL: NS from referral in iq->deleg_msg,
* or first RR from iq->response,
* or servfail5secs if !iq->response */
time_t ttl = NORR_TTL;
struct ub_packed_rrset_key* neg;
struct packed_rrset_data* newd;
if(rep) {
struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0];
if(rrset) ttl = ub_packed_rrset_ttl(rrset);
}
/* create empty rrset to store */
neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch,
sizeof(struct ub_packed_rrset_key));
if(!neg) {
log_err("out of memory in store_parentside_neg");
return;
}
memset(&neg->entry, 0, sizeof(neg->entry));
neg->entry.key = neg;
neg->rk.type = htons(qinfo->qtype);
neg->rk.rrset_class = htons(qinfo->qclass);
neg->rk.flags = 0;
neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname,
qinfo->qname_len);
if(!neg->rk.dname) {
log_err("out of memory in store_parentside_neg");
return;
}
neg->rk.dname_len = qinfo->qname_len;
neg->entry.hash = rrset_key_hash(&neg->rk);
newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch,
sizeof(struct packed_rrset_data) + sizeof(size_t) +
sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t));
if(!newd) {
log_err("out of memory in store_parentside_neg");
return;
}
neg->entry.data = newd;
newd->ttl = ttl;
/* entry must have one RR, otherwise not valid in cache.
* put in one RR with empty rdata: those are ignored as nameserver */
newd->count = 1;
newd->rrsig_count = 0;
newd->trust = rrset_trust_ans_noAA;
newd->rr_len = (size_t*)((uint8_t*)newd +
sizeof(struct packed_rrset_data));
newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t);
packed_rrset_ptr_fixup(newd);
newd->rr_ttl[0] = newd->ttl;
sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */);
/* store it */
log_rrset_key(VERB_ALGO, "store parent-side negative", neg);
iter_store_parentside_rrset(env, neg);
}
int
iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp,
struct regional* region, struct query_info* qinfo)
{
struct ub_packed_rrset_key* akey;
akey = rrset_cache_lookup(env->rrset_cache, dp->name,
dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass,
PACKED_RRSET_PARENT_SIDE, *env->now, 0);
if(akey) {
log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey);
dp->has_parent_side_NS = 1;
/* and mark the new names as lame */
if(!delegpt_rrset_add_ns(dp, region, akey, 1)) {
lock_rw_unlock(&akey->entry.lock);
return 0;
}
lock_rw_unlock(&akey->entry.lock);
}
return 1;
}
int iter_lookup_parent_glue_from_cache(struct module_env* env,
struct delegpt* dp, struct regional* region, struct query_info* qinfo)
{
struct ub_packed_rrset_key* akey;
struct delegpt_ns* ns;
size_t num = delegpt_count_targets(dp);
for(ns = dp->nslist; ns; ns = ns->next) {
/* get cached parentside A */
akey = rrset_cache_lookup(env->rrset_cache, ns->name,
ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass,
PACKED_RRSET_PARENT_SIDE, *env->now, 0);
if(akey) {
log_rrset_key(VERB_ALGO, "found parent-side", akey);
ns->done_pside4 = 1;
/* a negative-cache-element has no addresses it adds */
if(!delegpt_add_rrset_A(dp, region, akey, 1, NULL))
log_err("malloc failure in lookup_parent_glue");
lock_rw_unlock(&akey->entry.lock);
}
/* get cached parentside AAAA */
akey = rrset_cache_lookup(env->rrset_cache, ns->name,
ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass,
PACKED_RRSET_PARENT_SIDE, *env->now, 0);
if(akey) {
log_rrset_key(VERB_ALGO, "found parent-side", akey);
ns->done_pside6 = 1;
/* a negative-cache-element has no addresses it adds */
if(!delegpt_add_rrset_AAAA(dp, region, akey, 1, NULL))
log_err("malloc failure in lookup_parent_glue");
lock_rw_unlock(&akey->entry.lock);
}
}
/* see if new (but lame) addresses have become available */
return delegpt_count_targets(dp) != num;
}
int
iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd,
uint16_t* c)
{
uint16_t c1 = *c, c2 = *c;
int r1 = hints_next_root(hints, &c1);
int r2 = forwards_next_root(fwd, &c2);
if(!r1 && !r2) /* got none, end of list */
return 0;
else if(!r1) /* got one, return that */
*c = c2;
else if(!r2)
*c = c1;
else if(c1 < c2) /* got both take smallest */
*c = c1;
else *c = c2;
return 1;
}
void
iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z)
{
/* Only the DS record for the delegation itself is expected.
* We allow DS for everything between the bailiwick and the
* zonecut, thus DS records must be at or above the zonecut.
* And the DS records must be below the server authority zone.
* The answer section is already scrubbed. */
size_t i = msg->rep->an_numrrsets;
while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) {
struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS &&
(!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname)
|| query_dname_compare(z, s->rk.dname) == 0)) {
log_nametypeclass(VERB_ALGO, "removing irrelevant DS",
s->rk.dname, ntohs(s->rk.type),
ntohs(s->rk.rrset_class));
memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1,
sizeof(struct ub_packed_rrset_key*) *
(msg->rep->rrset_count-i-1));
msg->rep->ns_numrrsets--;
msg->rep->rrset_count--;
/* stay at same i, but new record */
continue;
}
i++;
}
}
void
iter_scrub_nxdomain(struct dns_msg* msg)
{
if(msg->rep->an_numrrsets == 0)
return;
memmove(msg->rep->rrsets, msg->rep->rrsets+msg->rep->an_numrrsets,
sizeof(struct ub_packed_rrset_key*) *
(msg->rep->rrset_count-msg->rep->an_numrrsets));
msg->rep->rrset_count -= msg->rep->an_numrrsets;
msg->rep->an_numrrsets = 0;
}
void iter_dec_attempts(struct delegpt* dp, int d, int outbound_msg_retry)
{
struct delegpt_addr* a;
for(a=dp->target_list; a; a = a->next_target) {
if(a->attempts >= outbound_msg_retry) {
/* add back to result list */
a->next_result = dp->result_list;
dp->result_list = a;
}
if(a->attempts > d)
a->attempts -= d;
else a->attempts = 0;
}
}
void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old,
int outbound_msg_retry)
{
struct delegpt_addr* a, *o, *prev;
for(a=dp->target_list; a; a = a->next_target) {
o = delegpt_find_addr(old, &a->addr, a->addrlen);
if(o) {
log_addr(VERB_ALGO, "copy attempt count previous dp",
&a->addr, a->addrlen);
a->attempts = o->attempts;
}
}
prev = NULL;
a = dp->usable_list;
while(a) {
if(a->attempts >= outbound_msg_retry) {
log_addr(VERB_ALGO, "remove from usable list dp",
&a->addr, a->addrlen);
/* remove from result list */
if(prev)
prev->next_usable = a->next_usable;
else dp->usable_list = a->next_usable;
/* prev stays the same */
a = a->next_usable;
continue;
}
prev = a;
a = a->next_usable;
}
}
int
iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp)
{
/* if for query example.com, there is example.com SOA or a subdomain
* of example.com, then we are too low and need to fetch NS. */
size_t i;
/* if we have a DNAME or CNAME we are probably wrong */
/* if we have a qtype DS in the answer section, its fine */
for(i=0; i < msg->rep->an_numrrsets; i++) {
struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME ||
ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) {
/* not the right answer, maybe too low, check the
* RRSIG signer name (if there is any) for a hint
* that it is from the dp zone anyway */
uint8_t* sname;
size_t slen;
val_find_rrset_signer(s, &sname, &slen);
if(sname && query_dname_compare(dp->name, sname)==0)
return 0; /* it is fine, from the right dp */
return 1;
}
if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS)
return 0; /* fine, we have a DS record */
}
for(i=msg->rep->an_numrrsets;
i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname))
return 1; /* point is too low */
if(query_dname_compare(s->rk.dname, dp->name)==0)
return 0; /* right dp */
}
if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
uint8_t* sname;
size_t slen;
val_find_rrset_signer(s, &sname, &slen);
if(sname && query_dname_compare(dp->name, sname)==0)
return 0; /* it is fine, from the right dp */
return 1;
}
}
/* we do not know */
return 1;
}
int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp)
{
/* no delegation point, do not see how we can go down,
* robust check, it should really exist */
if(!dp) return 0;
/* see if dp equals the qname, then we cannot go down further */
if(query_dname_compare(qinfo->qname, dp->name) == 0)
return 0;
/* if dp is one label above the name we also cannot go down further */
if(dname_count_labels(qinfo->qname) == dp->namelabs+1)
return 0;
return 1;
}
int
iter_stub_fwd_no_cache(struct module_qstate *qstate, struct query_info *qinf,
uint8_t** retdpname, size_t* retdpnamelen)
{
struct iter_hints_stub *stub;
struct delegpt *dp;
/* Check for stub. */
stub = hints_lookup_stub(qstate->env->hints, qinf->qname,
qinf->qclass, NULL);
dp = forwards_lookup(qstate->env->fwds, qinf->qname, qinf->qclass);
/* see if forward or stub is more pertinent */
if(stub && stub->dp && dp) {
if(dname_strict_subdomain(dp->name, dp->namelabs,
stub->dp->name, stub->dp->namelabs)) {
stub = NULL; /* ignore stub, forward is lower */
} else {
dp = NULL; /* ignore forward, stub is lower */
}
}
/* check stub */
if (stub != NULL && stub->dp != NULL) {
if(stub->dp->no_cache) {
char qname[255+1];
char dpname[255+1];
dname_str(qinf->qname, qname);
dname_str(stub->dp->name, dpname);
verbose(VERB_ALGO, "stub for %s %s has no_cache", qname, dpname);
}
if(retdpname) {
*retdpname = stub->dp->name;
*retdpnamelen = stub->dp->namelen;
}
return (stub->dp->no_cache);
}
/* Check for forward. */
if (dp) {
if(dp->no_cache) {
char qname[255+1];
char dpname[255+1];
dname_str(qinf->qname, qname);
dname_str(dp->name, dpname);
verbose(VERB_ALGO, "forward for %s %s has no_cache", qname, dpname);
}
if(retdpname) {
*retdpname = dp->name;
*retdpnamelen = dp->namelen;
}
return (dp->no_cache);
}
if(retdpname) {
*retdpname = NULL;
*retdpnamelen = 0;
}
return 0;
}
void iterator_set_ip46_support(struct module_stack* mods,
struct module_env* env, struct outside_network* outnet)
{
int m = modstack_find(mods, "iterator");
struct iter_env* ie = NULL;
if(m == -1)
return;
ie = (struct iter_env*)env->modinfo[m];
if(outnet->pending == NULL)
return; /* we are in testbound, no rbtree for UDP */
if(outnet->num_ip4 == 0)
ie->supports_ipv4 = 0;
if(outnet->num_ip6 == 0)
ie->supports_ipv6 = 0;
}
|