summaryrefslogtreecommitdiff
path: root/usr.sbin/vmd/loadfile_elf.c
blob: 6f93d50bed477cbdab5d73edb65c262ebbcb2daf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
/* $NetBSD: loadfile.c,v 1.10 2000/12/03 02:53:04 tsutsui Exp $ */
/* $OpenBSD: loadfile_elf.c,v 1.9 2016/01/16 08:55:40 stefan Exp $ */

/*-
 * Copyright (c) 1997 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
 * NASA Ames Research Center and by Christos Zoulas.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Copyright (c) 1992, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * Ralph Campbell.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)boot.c	8.1 (Berkeley) 6/10/93
 */

/*
 * Copyright (c) 2015 Mike Larkin <mlarkin@openbsd.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <err.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <stddef.h>

#include <sys/param.h>
#include <sys/exec.h>

#include <sys/exec_elf.h>
#include <machine/vmmvar.h>
#include <machine/biosvar.h>
#include <machine/segments.h>

#include "loadfile.h"
#include "vmd.h"

#define BOOTARGS_PAGE 0x2000
#define GDT_PAGE 0x10000
#define STACK_PAGE 0xF000

#define LOWMEM_KB 636

union {
	Elf32_Ehdr elf32;
	Elf64_Ehdr elf64;
} hdr;

static void setsegment(struct mem_segment_descriptor *, uint32_t,
    size_t, int, int, int, int);
static int elf32_exec(int, Elf32_Ehdr *, u_long *, int);
static int elf64_exec(int, Elf64_Ehdr *, u_long *, int);
static void push_bootargs(int);
static size_t push_stack(int, uint32_t);
static void push_gdt(void);
static size_t mread(int, uint32_t, size_t);
static void marc4random_buf(uint32_t, int);
static void mbzero(uint32_t, int);
static void mbcopy(char *, char *, int);

extern char *__progname;
extern int vm_id;

/*
 * setsegment
 *
 * Initializes a segment selector entry with the provided descriptor.
 * For the purposes of the bootloader mimiced by vmd(8), we only need
 * memory-type segment descriptor support.
 *
 * This function was copied from machdep.c
 *
 * Parameters:
 *  sd: Address of the entry to initialize
 *  base: base of the segment
 *  limit: limit of the segment
 *  type: type of the segment
 *  dpl: privilege level of the egment
 *  def32: default 16/32 bit size of the segment
 *  gran: granularity of the segment (byte/page)
 */
static void
setsegment(struct mem_segment_descriptor *sd, uint32_t base, size_t limit,
    int type, int dpl, int def32, int gran)
{
	sd->sd_lolimit = (int)limit;
	sd->sd_lobase = (int)base;
	sd->sd_type = type;
	sd->sd_dpl = dpl;
	sd->sd_p = 1;
	sd->sd_hilimit = (int)limit >> 16;
	sd->sd_avl = 0;
	sd->sd_long = 0;
	sd->sd_def32 = def32;
	sd->sd_gran = gran;
	sd->sd_hibase = (int)base >> 24;
}

/*
 * push_gdt
 *
 * Allocates and populates a page in the guest phys memory space to hold
 * the boot-time GDT. Since vmd(8) is acting as the bootloader, we need to
 * create the same GDT that a real bootloader would have created.
 * This is loaded into the guest phys RAM space at address GDT_PAGE.
 */
static void
push_gdt(void)
{
	uint8_t gdtpage[PAGE_SIZE];
	struct mem_segment_descriptor *sd;

	memset(&gdtpage, 0, sizeof(gdtpage));
	sd = (struct mem_segment_descriptor *)&gdtpage;

	/*
	 * Create three segment descriptors:
	 *
	 * GDT[0] : null desriptor. "Created" via memset above.
	 * GDT[1] (selector @ 0x8): Executable segment, for CS
	 * GDT[2] (selector @ 0x10): RW Data segment, for DS/ES/SS
	 */
	setsegment(&sd[1], 0, 0xffffffff, SDT_MEMERA, SEL_KPL, 1, 1);
	setsegment(&sd[2], 0, 0xffffffff, SDT_MEMRWA, SEL_KPL, 1, 1);

	write_mem(GDT_PAGE, gdtpage, PAGE_SIZE, 1);
}

/*
 * loadelf_main
 *
 * Loads an ELF kernel to it's defined load address in the guest VM whose
 * ID is provided in 'vm_id_in'. The kernel is loaded to its defined start
 * point as set in the ELF header.
 *
 * Parameters:
 *  fd: file descriptor of a kernel file to load
 *  vm_id_in: ID of the VM to load the kernel into
 *  mem_sz: memory size in MB assigned to the guest (passed through to
 *      push_bootargs)
 *  (out) vis: register state to set on init for this kernel
 *
 * Return values:
 *  0 if successful
 *  various error codes returned from read(2) or loadelf functions
 */
int
loadelf_main(int fd, int vm_id_in, int mem_sz, struct vcpu_init_state *vis)
{
	int r;
	size_t stacksize;
	u_long marks[MARK_MAX];

	vm_id = vm_id_in;

	if ((r = read(fd, &hdr, sizeof(hdr))) != sizeof(hdr))
		return 1;

	memset(&marks, 0, sizeof(marks));
	if (memcmp(hdr.elf32.e_ident, ELFMAG, SELFMAG) == 0 &&
	    hdr.elf32.e_ident[EI_CLASS] == ELFCLASS32) {
		r = elf32_exec(fd, &hdr.elf32, marks, LOAD_ALL);
	} else if (memcmp(hdr.elf64.e_ident, ELFMAG, SELFMAG) == 0 &&
	    hdr.elf64.e_ident[EI_CLASS] == ELFCLASS64) {
		r = elf64_exec(fd, &hdr.elf64, marks, LOAD_ALL);
	}

	if (r)
		return (r);

	push_bootargs(mem_sz);
	push_gdt();
	stacksize = push_stack(mem_sz, marks[MARK_END]);

	vis->vis_rip = (uint64_t)marks[MARK_ENTRY];
	vis->vis_rsp = (uint64_t)(STACK_PAGE + PAGE_SIZE) - stacksize;
	vis->vis_gdtr.vsi_base = GDT_PAGE;

	return (0);
}

/*
 * push_bootargs
 *
 * Creates the boot arguments page in the guest address space.
 * Since vmd(8) is acting as the bootloader, we need to create the same boot
 * arguments page that a real bootloader would have created. This is loaded
 * into the guest phys RAM space at address BOOTARGS_PAGE.
 *
 * Parameters:
 *  mem_sz: guest memory size in MB
 *
 * Return values:
 *  nothing
 */
static void
push_bootargs(int mem_sz)
{
	size_t sz;
	bios_memmap_t memmap[3];
	bios_consdev_t consdev;
	uint32_t ba[1024];

	/* First memory region: 0 - LOWMEM_KB (DOS low mem) */
	memmap[0].addr = 0x0;
	memmap[0].size = LOWMEM_KB * 1024;
	memmap[0].type = 0x1;	/* Type 1 : Normal memory */

	/* Second memory region: 1MB - n, reserve top 1MB */
	memmap[1].addr = 0x100000;
	memmap[1].size = (mem_sz - 1) * 1024 * 1024;
	memmap[1].type = 0x1;	/* Type 1 : Normal memory */

	/* Null mem map entry to denote the end of the ranges */
	memmap[2].addr = 0x0;
	memmap[2].size = 0x0;
	memmap[2].type = 0x0;

	sz = 3 * sizeof(int) + 3 * sizeof(bios_memmap_t);
	ba[0] = 0x0;    /* memory map */
	ba[1] = sz;
	ba[2] = sz;     /* next */
	memcpy(&ba[3], &memmap, 3 * sizeof(bios_memmap_t));
	sz = sz / sizeof(int);

	/* Serial console device, COM1 @ 0x3f8 */
	consdev.consdev = makedev(8, 0);        /* com1 @ 0x3f8 */
	consdev.conspeed = 9600;
	consdev.consaddr = 0x3f8;
	consdev.consfreq = 0;

	ba[sz] = 0x5;   /* consdev */
	ba[sz + 1] = (int)sizeof(bios_consdev_t) + 3 * sizeof(int);
	ba[sz + 2] = (int)sizeof(bios_consdev_t) + 3 * sizeof(int);
	memcpy(&ba[sz + 3], &consdev, sizeof(bios_consdev_t));

	write_mem(BOOTARGS_PAGE, ba, PAGE_SIZE, 1);
}

/*
 * push_stack
 *
 * Creates the boot stack page in the guest address space. When using a real
 * bootloader, the stack will be prepared using the following format before
 * transitioning to kernel start, so vmd(8) needs to mimic the same stack
 * layout. The stack content is pushed to the guest phys RAM at address
 * STACK_PAGE. The bootloader operates in 32 bit mode; each stack entry is
 * 4 bytes.
 *
 * Stack Layout: (TOS == Top Of Stack)
 *  TOS		location of boot arguments page
 *  TOS - 0x4	size of the content in the boot arguments page
 *  TOS - 0x8	size of low memory in KB
 *  TOS - 0xc	size of high memory in KB
 *  TOS - 0x10	kernel 'end' symbol value
 *  TOS - 0x14	version of bootarg API
 *
 * Parameters:
 *  mem_sz: size of guest VM memory, in MB
 *  end: kernel 'end' symbol value
 *
 * Return values:
 *  size of the stack
 */
static size_t
push_stack(int mem_sz, uint32_t end)
{
	uint32_t stack[1024];
	uint16_t loc;

	memset(&stack, 0, sizeof(stack));
	loc = 1024;

	stack[--loc] = BOOTARGS_PAGE;
	stack[--loc] = 3 * sizeof(bios_memmap_t) +
	    sizeof(bios_consdev_t) +
	    6 * sizeof(int);
	stack[--loc] = LOWMEM_KB;
	stack[--loc] = mem_sz * 1024 - LOWMEM_KB;
	stack[--loc] = end;
	stack[--loc] = 0x0e;
	stack[--loc] = 0x0;
	stack[--loc] = 0x0;

	write_mem(STACK_PAGE, &stack, PAGE_SIZE, 1);

	return (1024 - (loc - 1)) * sizeof(uint32_t);
}

/*
 * mread
 *
 * Reads 'sz' bytes from the file whose descriptor is provided in 'fd'
 * into the guest address space at paddr 'addr'. Note that the guest
 * paddr is limited to 32 bit (4GB).
 *
 * Parameters:
 *  fd: file descriptor of the kernel image file to read from.
 *  addr: guest paddr_t to load to
 *  sz: number of bytes to load
 *
 * Return values:
 *  returns 'sz' if successful, or 0 otherwise.
 */
static size_t
mread(int fd, uint32_t addr, size_t sz)
{
	int ct;
	size_t i, rd, osz;
	char buf[PAGE_SIZE];

	/*
	 * break up the 'sz' bytes into PAGE_SIZE chunks for use with
	 * write_mem
	 */
	ct = 0;
	rd = 0;
	osz = sz;
	if ((addr & PAGE_MASK) != 0) {
		memset(buf, 0, sizeof(buf));
		if (sz > PAGE_SIZE)
			ct = PAGE_SIZE - (addr & PAGE_MASK);
		else
			ct = sz;

		if (read(fd, buf, ct) != ct) {
			log_warn("%s: error %d in mread", __progname, errno);
			return (0);
		}
		rd += ct;

		if (write_mem(addr, buf, ct, 1))
			return (0);

		addr += ct;
	}

	sz = sz - ct;

	if (sz == 0)
		return (osz);

	for (i = 0; i < sz; i += PAGE_SIZE, addr += PAGE_SIZE) {
		memset(buf, 0, sizeof(buf));
		if (i + PAGE_SIZE > sz)
			ct = sz - i;
		else
			ct = PAGE_SIZE;

		if (read(fd, buf, ct) != ct) {
			log_warn("%s: error %d in mread", __progname, errno);
			return (0);
		}
		rd += ct;

		if (write_mem(addr, buf, ct, 1))
			return (0);
	}

	return (osz);
}

/*
 * marc4random_buf
 *
 * load 'sz' bytes of random data into the guest address space at paddr
 * 'addr'. Note that the guest paddr is limited to 32 bit (4GB).
 *
 * Parameters:
 *  addr: guest paddr_t to load random bytes into
 *  sz: number of random bytes to load
 *
 * Return values:
 *  nothing
 */
static void
marc4random_buf(uint32_t addr, int sz)
{
	int i, ct;
	char buf[PAGE_SIZE];

	/*
	 * break up the 'sz' bytes into PAGE_SIZE chunks for use with
	 * write_mem
	 */
	ct = 0;
	if (addr % PAGE_SIZE != 0) {
		memset(buf, 0, sizeof(buf));
		ct = PAGE_SIZE - (addr % PAGE_SIZE);

		arc4random_buf(buf, ct);

		if (write_mem(addr, buf, ct, 1))
			return;

		addr += ct;
	}

	for (i = 0; i < sz; i+= PAGE_SIZE, addr += PAGE_SIZE) {
		memset(buf, 0, sizeof(buf));
		if (i + PAGE_SIZE > sz)
			ct = sz - i;
		else
			ct = PAGE_SIZE;

		arc4random_buf(buf, ct);

		if (write_mem(addr, buf, ct, 1))
			return;
	}
}

/*
 * mbzero
 *
 * load 'sz' bytes of zeros into the guest address space at paddr
 * 'addr'. Note that the guest paddr is limited to 32 bit (4GB)
 *
 * Parameters:
 *  addr: guest paddr_t to zero
 *  sz: number of zero bytes to store
 *
 * Return values:
 *  nothing
 */
static void
mbzero(uint32_t addr, int sz)
{
	int i, ct;
	char buf[PAGE_SIZE];

	/*
	 * break up the 'sz' bytes into PAGE_SIZE chunks for use with
	 * write_mem
	 */
	ct = 0;
	memset(buf, 0, sizeof(buf));
	if (addr % PAGE_SIZE != 0) {
		ct = PAGE_SIZE - (addr % PAGE_SIZE);

		if (write_mem(addr, buf, ct, 1))
			return;

		addr += ct;
	}

	for (i = 0; i < sz; i+= PAGE_SIZE, addr += PAGE_SIZE) {
		if (i + PAGE_SIZE > sz)
			ct = sz - i;
		else
			ct = PAGE_SIZE;

		if (write_mem(addr, buf, ct, 1))
			return;
	}
}

/*
 * mbcopy
 *
 * copies 'sz' bytes from guest paddr 'src' to guest paddr 'dst'.
 * Both 'src' and 'dst' are limited to 32 bit (4GB)
 *
 * Parameters:
 *  src: source guest paddr_t to copy from
 *  dst: destination guest paddr_t to copy to
 *  sz: number of bytes to copy
 *
 * Return values:
 *  nothing
 *
 * XXX - unimplemented. this is used when loading symbols.
 */
static void
mbcopy(char *src, char *dst, int sz)
{
	log_warnx("warning: bcopy during ELF kernel load not supported");
}

/*
 * elf64_exec
 *
 * Load the kernel indicated by 'fd' into the guest physical memory
 * space, at the addresses defined in the ELF header.
 *
 * This function is used for 64 bit kernels.
 *
 * Parameters:
 *  fd: file descriptor of the kernel to load
 *  elf: ELF header of the kernel
 *  marks: array to store the offsets of various kernel structures
 *      (start, bss, etc)
 *  flags: flag value to indicate which section(s) to load (usually
 *      LOAD_ALL)
 *
 * Return values:
 *  0 if successful
 *  1 if unsuccessful
 */
static int
elf64_exec(int fd, Elf64_Ehdr *elf, u_long *marks, int flags)
{
	Elf64_Shdr *shp;
	Elf64_Phdr *phdr;
	Elf64_Off off;
	int i;
	ssize_t sz;
	int first;
	int havesyms, havelines;
	paddr_t minp = ~0, maxp = 0, pos = 0;
	paddr_t offset = marks[MARK_START], shpp, elfp;

	sz = elf->e_phnum * sizeof(Elf64_Phdr);
	phdr = malloc(sz);

	if (lseek(fd, (off_t)elf->e_phoff, SEEK_SET) == -1)  {
		free(phdr);
		return 1;
	}

	if (read(fd, phdr, sz) != sz) {
		free(phdr);
		return 1;
	}

	for (first = 1, i = 0; i < elf->e_phnum; i++) {
		if (phdr[i].p_type == PT_OPENBSD_RANDOMIZE) {
			int m;

			/* Fill segment if asked for. */
			if (flags & LOAD_RANDOM) {
				for (pos = 0; pos < phdr[i].p_filesz;
				    pos += m) {
					m = phdr[i].p_filesz - pos;
					marc4random_buf(phdr[i].p_paddr + pos,
					    m);
				}
			}
			if (flags & (LOAD_RANDOM | COUNT_RANDOM)) {
				marks[MARK_RANDOM] = LOADADDR(phdr[i].p_paddr);
				marks[MARK_ERANDOM] =
				    marks[MARK_RANDOM] + phdr[i].p_filesz;
			}
			continue;
		}

		if (phdr[i].p_type != PT_LOAD ||
		    (phdr[i].p_flags & (PF_W|PF_R|PF_X)) == 0)
			continue;

#define IS_TEXT(p)	(p.p_flags & PF_X)
#define IS_DATA(p)	((p.p_flags & PF_X) == 0)
#define IS_BSS(p)	(p.p_filesz < p.p_memsz)
		/*
		 * XXX: Assume first address is lowest
		 */
		if ((IS_TEXT(phdr[i]) && (flags & LOAD_TEXT)) ||
		    (IS_DATA(phdr[i]) && (flags & LOAD_DATA))) {

			/* Read in segment. */
			if (lseek(fd, (off_t)phdr[i].p_offset,
			    SEEK_SET) == -1) {
				free(phdr);
				return 1;
			}
			if (mread(fd, (uint32_t)(phdr[i].p_paddr -
			    0xffffffff80000000ULL), phdr[i].p_filesz) !=
			    phdr[i].p_filesz) {
				free(phdr);
				return 1;
			}

			first = 0;
		}

		if ((IS_TEXT(phdr[i]) && (flags & (LOAD_TEXT | COUNT_TEXT))) ||
		    (IS_DATA(phdr[i]) && (flags & (LOAD_DATA | COUNT_TEXT)))) {
			pos = phdr[i].p_paddr;
			if (minp > pos)
				minp = pos;
			pos += phdr[i].p_filesz;
			if (maxp < pos)
				maxp = pos;
		}

		/* Zero out BSS. */
		if (IS_BSS(phdr[i]) && (flags & LOAD_BSS)) {
			mbzero((uint32_t)(phdr[i].p_paddr -
			    0xffffffff80000000 + phdr[i].p_filesz),
			    phdr[i].p_memsz - phdr[i].p_filesz);
		}
		if (IS_BSS(phdr[i]) && (flags & (LOAD_BSS|COUNT_BSS))) {
			pos += phdr[i].p_memsz - phdr[i].p_filesz;
			if (maxp < pos)
				maxp = pos;
		}
	}
	free(phdr);

	/*
	 * Copy the ELF and section headers.
	 */
	elfp = maxp = roundup(maxp, sizeof(Elf64_Addr));
	if (flags & (LOAD_HDR | COUNT_HDR))
		maxp += sizeof(Elf64_Ehdr);

	if (flags & (LOAD_SYM | COUNT_SYM)) {
		if (lseek(fd, (off_t)elf->e_shoff, SEEK_SET) == -1)  {
			WARN(("lseek section headers"));
			return 1;
		}
		sz = elf->e_shnum * sizeof(Elf64_Shdr);
		shp = malloc(sz);

		if (read(fd, shp, sz) != sz) {
			free(shp);
			return 1;
		}

		shpp = maxp;
		maxp += roundup(sz, sizeof(Elf64_Addr));

		ssize_t shstrsz = shp[elf->e_shstrndx].sh_size;
		char *shstr = malloc(shstrsz);
		if (lseek(fd, (off_t)shp[elf->e_shstrndx].sh_offset,
		    SEEK_SET) == -1) {
			free(shstr);
			free(shp);
			return 1;
		}
		if (read(fd, shstr, shstrsz) != shstrsz) {
			free(shstr);
			free(shp);
			return 1;
		}

		/*
		 * Now load the symbol sections themselves. Make sure the
		 * sections are aligned. Don't bother with string tables if
		 * there are no symbol sections.
		 */
		off = roundup((sizeof(Elf64_Ehdr) + sz), sizeof(Elf64_Addr));

		for (havesyms = havelines = i = 0; i < elf->e_shnum; i++)
			if (shp[i].sh_type == SHT_SYMTAB)
				havesyms = 1;

		for (first = 1, i = 0; i < elf->e_shnum; i++) {
			if (shp[i].sh_type == SHT_SYMTAB ||
			    shp[i].sh_type == SHT_STRTAB ||
			    !strcmp(shstr + shp[i].sh_name, ".debug_line")) {
				if (havesyms && (flags & LOAD_SYM)) {
					if (lseek(fd, (off_t)shp[i].sh_offset,
					    SEEK_SET) == -1) {
						free(shstr);
						free(shp);
						return 1;
					}
					if (mread(fd, (uint32_t)maxp,
					    shp[i].sh_size) != shp[i].sh_size) {
						free(shstr);
						free(shp);
						return 1;
					}
				}
				maxp += roundup(shp[i].sh_size,
				    sizeof(Elf64_Addr));
				shp[i].sh_offset = off;
				shp[i].sh_flags |= SHF_ALLOC;
				off += roundup(shp[i].sh_size,
				    sizeof(Elf64_Addr));
				first = 0;
			}
		}
		if (flags & LOAD_SYM) {
			mbcopy((char *)shp, (char *)shpp, sz);
		}
		free(shstr);
		free(shp);
	}

	/*
	 * Frob the copied ELF header to give information relative
	 * to elfp.
	 */
	if (flags & LOAD_HDR) {
		elf->e_phoff = 0;
		elf->e_shoff = sizeof(Elf64_Ehdr);
		elf->e_phentsize = 0;
		elf->e_phnum = 0;
		mbcopy((char *)elf, (char *)elfp, sizeof(*elf));
	}

	marks[MARK_START] = LOADADDR(minp);
	marks[MARK_ENTRY] = LOADADDR(elf->e_entry);
	marks[MARK_NSYM] = 1;	/* XXX: Kernel needs >= 0 */
	marks[MARK_SYM] = LOADADDR(elfp);
	marks[MARK_END] = LOADADDR(maxp);

	return 0;
}

/*
 * elf32_exec
 *
 * Load the kernel indicated by 'fd' into the guest physical memory
 * space, at the addresses defined in the ELF header.
 *
 * This function is used for 32 bit kernels.
 *
 * Parameters:
 *  fd: file descriptor of the kernel to load
 *  elf: ELF header of the kernel
 *  marks: array to store the offsets of various kernel structures
 *      (start, bss, etc)
 *  flags: flag value to indicate which section(s) to load (usually
 *      LOAD_ALL)
 *
 * Return values:
 *  0 if successful
 *  1 if unsuccessful
 */
static int
elf32_exec(int fd, Elf32_Ehdr *elf, u_long *marks, int flags)
{
	Elf32_Shdr *shp;
	Elf32_Phdr *phdr;
	Elf32_Off off;
	int i;
	ssize_t sz;
	int first;
	int havesyms, havelines;
	paddr_t minp = ~0, maxp = 0, pos = 0;
	paddr_t offset = marks[MARK_START], shpp, elfp;

	sz = elf->e_phnum * sizeof(Elf32_Phdr);
	phdr = malloc(sz);

	if (lseek(fd, (off_t)elf->e_phoff, SEEK_SET) == -1)  {
		free(phdr);
		return 1;
	}

	if (read(fd, phdr, sz) != sz) {
		free(phdr);
		return 1;
	}

	for (first = 1, i = 0; i < elf->e_phnum; i++) {
		if (phdr[i].p_type == PT_OPENBSD_RANDOMIZE) {
			int m;

			/* Fill segment if asked for. */
			if (flags & LOAD_RANDOM) {
				for (pos = 0; pos < phdr[i].p_filesz;
				    pos += m) {
					m = phdr[i].p_filesz - pos;
					marc4random_buf(phdr[i].p_paddr + pos,
					    m);
				}
			}
			if (flags & (LOAD_RANDOM | COUNT_RANDOM)) {
				marks[MARK_RANDOM] = LOADADDR(phdr[i].p_paddr);
				marks[MARK_ERANDOM] =
				    marks[MARK_RANDOM] + phdr[i].p_filesz;
			}
			continue;
		}

		if (phdr[i].p_type != PT_LOAD ||
		    (phdr[i].p_flags & (PF_W|PF_R|PF_X)) == 0)
			continue;

#define IS_TEXT(p)	(p.p_flags & PF_X)
#define IS_DATA(p)	((p.p_flags & PF_X) == 0)
#define IS_BSS(p)	(p.p_filesz < p.p_memsz)
		/*
		 * XXX: Assume first address is lowest
		 */
		if ((IS_TEXT(phdr[i]) && (flags & LOAD_TEXT)) ||
		    (IS_DATA(phdr[i]) && (flags & LOAD_DATA))) {

			/* Read in segment. */
			if (lseek(fd, (off_t)phdr[i].p_offset,
			    SEEK_SET) == -1) {
				free(phdr);
				return 1;
			}
			if (mread(fd, phdr[i].p_paddr, phdr[i].p_filesz) !=
			    phdr[i].p_filesz) {
				free(phdr);
				return 1;
			}

			first = 0;
		}

		if ((IS_TEXT(phdr[i]) && (flags & (LOAD_TEXT | COUNT_TEXT))) ||
		    (IS_DATA(phdr[i]) && (flags & (LOAD_DATA | COUNT_TEXT)))) {
			pos = phdr[i].p_paddr;
			if (minp > pos)
				minp = pos;
			pos += phdr[i].p_filesz;
			if (maxp < pos)
				maxp = pos;
		}

		/* Zero out BSS. */
		if (IS_BSS(phdr[i]) && (flags & LOAD_BSS)) {
			mbzero((phdr[i].p_paddr + phdr[i].p_filesz),
			    phdr[i].p_memsz - phdr[i].p_filesz);
		}
		if (IS_BSS(phdr[i]) && (flags & (LOAD_BSS|COUNT_BSS))) {
			pos += phdr[i].p_memsz - phdr[i].p_filesz;
			if (maxp < pos)
				maxp = pos;
		}
	}
	free(phdr);

	/*
	 * Copy the ELF and section headers.
	 */
	elfp = maxp = roundup(maxp, sizeof(Elf32_Addr));
	if (flags & (LOAD_HDR | COUNT_HDR))
		maxp += sizeof(Elf32_Ehdr);

	if (flags & (LOAD_SYM | COUNT_SYM)) {
		if (lseek(fd, (off_t)elf->e_shoff, SEEK_SET) == -1)  {
			WARN(("lseek section headers"));
			return 1;
		}
		sz = elf->e_shnum * sizeof(Elf32_Shdr);
		shp = malloc(sz);

		if (read(fd, shp, sz) != sz) {
			free(shp);
			return 1;
		}

		shpp = maxp;
		maxp += roundup(sz, sizeof(Elf32_Addr));

		ssize_t shstrsz = shp[elf->e_shstrndx].sh_size;
		char *shstr = malloc(shstrsz);
		if (lseek(fd, (off_t)shp[elf->e_shstrndx].sh_offset,
		    SEEK_SET) == -1) {
			free(shstr);
			free(shp);
			return 1;
		}
		if (read(fd, shstr, shstrsz) != shstrsz) {
			free(shstr);
			free(shp);
			return 1;
		}

		/*
		 * Now load the symbol sections themselves. Make sure the
		 * sections are aligned. Don't bother with string tables if
		 * there are no symbol sections.
		 */
		off = roundup((sizeof(Elf32_Ehdr) + sz), sizeof(Elf32_Addr));

		for (havesyms = havelines = i = 0; i < elf->e_shnum; i++)
			if (shp[i].sh_type == SHT_SYMTAB)
				havesyms = 1;

		for (first = 1, i = 0; i < elf->e_shnum; i++) {
			if (shp[i].sh_type == SHT_SYMTAB ||
			    shp[i].sh_type == SHT_STRTAB ||
			    !strcmp(shstr + shp[i].sh_name, ".debug_line")) {
				if (havesyms && (flags & LOAD_SYM)) {
					if (lseek(fd, (off_t)shp[i].sh_offset,
					    SEEK_SET) == -1) {
						free(shstr);
						free(shp);
						return 1;
					}
					if (mread(fd, (uint32_t)maxp,
					    shp[i].sh_size) != shp[i].sh_size) {
						free(shstr);
						free(shp);
						return 1;
					}
				}
				maxp += roundup(shp[i].sh_size,
				    sizeof(Elf32_Addr));
				shp[i].sh_offset = off;
				shp[i].sh_flags |= SHF_ALLOC;
				off += roundup(shp[i].sh_size,
				    sizeof(Elf32_Addr));
				first = 0;
			}
		}
		if (flags & LOAD_SYM) {
			mbcopy((void *)shp, (void *)shpp, sz);
		}
		free(shstr);
		free(shp);
	}

	/*
	 * Frob the copied ELF header to give information relative
	 * to elfp.
	 */
	if (flags & LOAD_HDR) {
		elf->e_phoff = 0;
		elf->e_shoff = sizeof(Elf32_Ehdr);
		elf->e_phentsize = 0;
		elf->e_phnum = 0;
		mbcopy((void *)elf, (void *)elfp, sizeof(*elf));
	}

	marks[MARK_START] = LOADADDR(minp);
	marks[MARK_ENTRY] = LOADADDR(elf->e_entry);
	marks[MARK_NSYM] = 1;	/* XXX: Kernel needs >= 0 */
	marks[MARK_SYM] = LOADADDR(elfp);
	marks[MARK_END] = LOADADDR(maxp);

	return 0;
}