1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
|
/* $OpenBSD: x86_vm.c,v 1.5 2024/10/02 17:05:56 dv Exp $ */
/*
* Copyright (c) 2015 Mike Larkin <mlarkin@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/stat.h>
#include <sys/types.h>
#include <dev/ic/i8253reg.h>
#include <dev/isa/isareg.h>
#include <machine/pte.h>
#include <machine/specialreg.h>
#include <machine/vmmvar.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <zlib.h>
#include "atomicio.h"
#include "fw_cfg.h"
#include "i8253.h"
#include "i8259.h"
#include "loadfile.h"
#include "mc146818.h"
#include "ns8250.h"
#include "pci.h"
#include "virtio.h"
typedef uint8_t (*io_fn_t)(struct vm_run_params *);
#define MAX_PORTS 65536
io_fn_t ioports_map[MAX_PORTS];
extern char *__progname;
void create_memory_map(struct vm_create_params *);
int translate_gva(struct vm_exit*, uint64_t, uint64_t *, int);
static int loadfile_bios(gzFile, off_t, struct vcpu_reg_state *);
static int vcpu_exit_eptviolation(struct vm_run_params *);
static void vcpu_exit_inout(struct vm_run_params *);
extern struct vmd_vm *current_vm;
extern int con_fd;
/*
* Represents a standard register set for an OS to be booted
* as a flat 64 bit address space.
*
* NOT set here are:
* RIP
* RSP
* GDTR BASE
*
* Specific bootloaders should clone this structure and override
* those fields as needed.
*
* Note - CR3 and various bits in CR0 may be overridden by vmm(4) based on
* features of the CPU in use.
*/
static const struct vcpu_reg_state vcpu_init_flat64 = {
.vrs_gprs[VCPU_REGS_RFLAGS] = 0x2,
.vrs_gprs[VCPU_REGS_RIP] = 0x0,
.vrs_gprs[VCPU_REGS_RSP] = 0x0,
.vrs_crs[VCPU_REGS_CR0] = CR0_ET | CR0_PE | CR0_PG,
.vrs_crs[VCPU_REGS_CR3] = PML4_PAGE,
.vrs_crs[VCPU_REGS_CR4] = CR4_PAE | CR4_PSE,
.vrs_crs[VCPU_REGS_PDPTE0] = 0ULL,
.vrs_crs[VCPU_REGS_PDPTE1] = 0ULL,
.vrs_crs[VCPU_REGS_PDPTE2] = 0ULL,
.vrs_crs[VCPU_REGS_PDPTE3] = 0ULL,
.vrs_sregs[VCPU_REGS_CS] = { 0x8, 0xFFFFFFFF, 0xC09F, 0x0},
.vrs_sregs[VCPU_REGS_DS] = { 0x10, 0xFFFFFFFF, 0xC093, 0x0},
.vrs_sregs[VCPU_REGS_ES] = { 0x10, 0xFFFFFFFF, 0xC093, 0x0},
.vrs_sregs[VCPU_REGS_FS] = { 0x10, 0xFFFFFFFF, 0xC093, 0x0},
.vrs_sregs[VCPU_REGS_GS] = { 0x10, 0xFFFFFFFF, 0xC093, 0x0},
.vrs_sregs[VCPU_REGS_SS] = { 0x10, 0xFFFFFFFF, 0xC093, 0x0},
.vrs_gdtr = { 0x0, 0xFFFF, 0x0, 0x0},
.vrs_idtr = { 0x0, 0xFFFF, 0x0, 0x0},
.vrs_sregs[VCPU_REGS_LDTR] = { 0x0, 0xFFFF, 0x0082, 0x0},
.vrs_sregs[VCPU_REGS_TR] = { 0x0, 0xFFFF, 0x008B, 0x0},
.vrs_msrs[VCPU_REGS_EFER] = EFER_LME | EFER_LMA,
.vrs_drs[VCPU_REGS_DR0] = 0x0,
.vrs_drs[VCPU_REGS_DR1] = 0x0,
.vrs_drs[VCPU_REGS_DR2] = 0x0,
.vrs_drs[VCPU_REGS_DR3] = 0x0,
.vrs_drs[VCPU_REGS_DR6] = 0xFFFF0FF0,
.vrs_drs[VCPU_REGS_DR7] = 0x400,
.vrs_msrs[VCPU_REGS_STAR] = 0ULL,
.vrs_msrs[VCPU_REGS_LSTAR] = 0ULL,
.vrs_msrs[VCPU_REGS_CSTAR] = 0ULL,
.vrs_msrs[VCPU_REGS_SFMASK] = 0ULL,
.vrs_msrs[VCPU_REGS_KGSBASE] = 0ULL,
.vrs_msrs[VCPU_REGS_MISC_ENABLE] = 0ULL,
.vrs_crs[VCPU_REGS_XCR0] = XFEATURE_X87
};
/*
* Represents a standard register set for an BIOS to be booted
* as a flat 16 bit address space.
*/
static const struct vcpu_reg_state vcpu_init_flat16 = {
.vrs_gprs[VCPU_REGS_RFLAGS] = 0x2,
.vrs_gprs[VCPU_REGS_RIP] = 0xFFF0,
.vrs_gprs[VCPU_REGS_RSP] = 0x0,
.vrs_crs[VCPU_REGS_CR0] = 0x60000010,
.vrs_crs[VCPU_REGS_CR3] = 0,
.vrs_sregs[VCPU_REGS_CS] = { 0xF000, 0xFFFF, 0x809F, 0xF0000},
.vrs_sregs[VCPU_REGS_DS] = { 0x0, 0xFFFF, 0x8093, 0x0},
.vrs_sregs[VCPU_REGS_ES] = { 0x0, 0xFFFF, 0x8093, 0x0},
.vrs_sregs[VCPU_REGS_FS] = { 0x0, 0xFFFF, 0x8093, 0x0},
.vrs_sregs[VCPU_REGS_GS] = { 0x0, 0xFFFF, 0x8093, 0x0},
.vrs_sregs[VCPU_REGS_SS] = { 0x0, 0xFFFF, 0x8093, 0x0},
.vrs_gdtr = { 0x0, 0xFFFF, 0x0, 0x0},
.vrs_idtr = { 0x0, 0xFFFF, 0x0, 0x0},
.vrs_sregs[VCPU_REGS_LDTR] = { 0x0, 0xFFFF, 0x0082, 0x0},
.vrs_sregs[VCPU_REGS_TR] = { 0x0, 0xFFFF, 0x008B, 0x0},
.vrs_msrs[VCPU_REGS_EFER] = 0ULL,
.vrs_drs[VCPU_REGS_DR0] = 0x0,
.vrs_drs[VCPU_REGS_DR1] = 0x0,
.vrs_drs[VCPU_REGS_DR2] = 0x0,
.vrs_drs[VCPU_REGS_DR3] = 0x0,
.vrs_drs[VCPU_REGS_DR6] = 0xFFFF0FF0,
.vrs_drs[VCPU_REGS_DR7] = 0x400,
.vrs_msrs[VCPU_REGS_STAR] = 0ULL,
.vrs_msrs[VCPU_REGS_LSTAR] = 0ULL,
.vrs_msrs[VCPU_REGS_CSTAR] = 0ULL,
.vrs_msrs[VCPU_REGS_SFMASK] = 0ULL,
.vrs_msrs[VCPU_REGS_KGSBASE] = 0ULL,
.vrs_crs[VCPU_REGS_XCR0] = XFEATURE_X87
};
/*
* create_memory_map
*
* Sets up the guest physical memory ranges that the VM can access.
*
* Parameters:
* vcp: VM create parameters describing the VM whose memory map
* is being created
*
* Return values:
* nothing
*/
void
create_memory_map(struct vm_create_params *vcp)
{
size_t len, mem_bytes;
size_t above_1m = 0, above_4g = 0;
mem_bytes = vcp->vcp_memranges[0].vmr_size;
vcp->vcp_nmemranges = 0;
if (mem_bytes == 0 || mem_bytes > VMM_MAX_VM_MEM_SIZE)
return;
/* First memory region: 0 - LOWMEM_KB (DOS low mem) */
len = LOWMEM_KB * 1024;
vcp->vcp_memranges[0].vmr_gpa = 0x0;
vcp->vcp_memranges[0].vmr_size = len;
vcp->vcp_memranges[0].vmr_type = VM_MEM_RAM;
mem_bytes -= len;
/*
* Second memory region: LOWMEM_KB - 1MB.
*
* N.B. - Normally ROMs or parts of video RAM are mapped here.
* We have to add this region, because some systems
* unconditionally write to 0xb8000 (VGA RAM), and
* we need to make sure that vmm(4) permits accesses
* to it. So allocate guest memory for it.
*/
len = MB(1) - (LOWMEM_KB * 1024);
vcp->vcp_memranges[1].vmr_gpa = LOWMEM_KB * 1024;
vcp->vcp_memranges[1].vmr_size = len;
vcp->vcp_memranges[1].vmr_type = VM_MEM_RESERVED;
mem_bytes -= len;
/* If we have less than 2MB remaining, still create a 2nd BIOS area. */
if (mem_bytes <= MB(2)) {
vcp->vcp_memranges[2].vmr_gpa = PCI_MMIO_BAR_END;
vcp->vcp_memranges[2].vmr_size = MB(2);
vcp->vcp_memranges[2].vmr_type = VM_MEM_RESERVED;
vcp->vcp_nmemranges = 3;
return;
}
/*
* Calculate the how to split any remaining memory across the 4GB
* boundary while making sure we do not place physical memory into
* MMIO ranges.
*/
if (mem_bytes > PCI_MMIO_BAR_BASE - MB(1)) {
above_1m = PCI_MMIO_BAR_BASE - MB(1);
above_4g = mem_bytes - above_1m;
} else {
above_1m = mem_bytes;
above_4g = 0;
}
/* Third memory region: area above 1MB to MMIO region */
vcp->vcp_memranges[2].vmr_gpa = MB(1);
vcp->vcp_memranges[2].vmr_size = above_1m;
vcp->vcp_memranges[2].vmr_type = VM_MEM_RAM;
/* Fourth region: PCI MMIO range */
vcp->vcp_memranges[3].vmr_gpa = PCI_MMIO_BAR_BASE;
vcp->vcp_memranges[3].vmr_size = PCI_MMIO_BAR_END -
PCI_MMIO_BAR_BASE + 1;
vcp->vcp_memranges[3].vmr_type = VM_MEM_MMIO;
/* Fifth region: 2nd copy of BIOS above MMIO ending at 4GB */
vcp->vcp_memranges[4].vmr_gpa = PCI_MMIO_BAR_END + 1;
vcp->vcp_memranges[4].vmr_size = MB(2);
vcp->vcp_memranges[4].vmr_type = VM_MEM_RESERVED;
/* Sixth region: any remainder above 4GB */
if (above_4g > 0) {
vcp->vcp_memranges[5].vmr_gpa = GB(4);
vcp->vcp_memranges[5].vmr_size = above_4g;
vcp->vcp_memranges[5].vmr_type = VM_MEM_RAM;
vcp->vcp_nmemranges = 6;
} else
vcp->vcp_nmemranges = 5;
}
int
load_firmware(struct vmd_vm *vm, struct vcpu_reg_state *vrs)
{
int ret;
gzFile fp;
struct stat sb;
/*
* Set up default "flat 64 bit" register state - RIP, RSP, and
* GDT info will be set in bootloader
*/
memcpy(vrs, &vcpu_init_flat64, sizeof(*vrs));
/* Find and open kernel image */
if ((fp = gzdopen(vm->vm_kernel, "r")) == NULL)
fatalx("failed to open kernel - exiting");
/* Load kernel image */
ret = loadfile_elf(fp, vm, vrs, vm->vm_params.vmc_bootdevice);
/*
* Try BIOS as a fallback (only if it was provided as an image
* with vm->vm_kernel and the file is not compressed)
*/
if (ret && errno == ENOEXEC && vm->vm_kernel != -1 &&
gzdirect(fp) && (ret = fstat(vm->vm_kernel, &sb)) == 0)
ret = loadfile_bios(fp, sb.st_size, vrs);
gzclose(fp);
return (ret);
}
/*
* loadfile_bios
*
* Alternatively to loadfile_elf, this function loads a non-ELF BIOS image
* directly into memory.
*
* Parameters:
* fp: file of a kernel file to load
* size: uncompressed size of the image
* (out) vrs: register state to set on init for this kernel
*
* Return values:
* 0 if successful
* various error codes returned from read(2) or loadelf functions
*/
int
loadfile_bios(gzFile fp, off_t size, struct vcpu_reg_state *vrs)
{
off_t off;
/* Set up a "flat 16 bit" register state for BIOS */
memcpy(vrs, &vcpu_init_flat16, sizeof(*vrs));
/* Seek to the beginning of the BIOS image */
if (gzseek(fp, 0, SEEK_SET) == -1)
return (-1);
/* The BIOS image must end at 1MB */
if ((off = MB(1) - size) < 0)
return (-1);
/* Read BIOS image into memory */
if (mread(fp, off, size) != (size_t)size) {
errno = EIO;
return (-1);
}
if (gzseek(fp, 0, SEEK_SET) == -1)
return (-1);
/* Read a second BIOS copy into memory ending at 4GB */
off = GB(4) - size;
if (mread(fp, off, size) != (size_t)size) {
errno = EIO;
return (-1);
}
log_debug("%s: loaded BIOS image", __func__);
return (0);
}
/*
* init_emulated_hw
*
* Initializes the userspace hardware emulation
*/
void
init_emulated_hw(struct vmop_create_params *vmc, int child_cdrom,
int child_disks[][VM_MAX_BASE_PER_DISK], int *child_taps)
{
struct vm_create_params *vcp = &vmc->vmc_params;
size_t i;
uint64_t memlo, memhi;
/* Calculate memory size for NVRAM registers */
memlo = memhi = 0;
for (i = 0; i < vcp->vcp_nmemranges; i++) {
if (vcp->vcp_memranges[i].vmr_gpa == MB(1) &&
vcp->vcp_memranges[i].vmr_size > (15 * MB(1)))
memlo = vcp->vcp_memranges[i].vmr_size - (15 * MB(1));
else if (vcp->vcp_memranges[i].vmr_gpa == GB(4))
memhi = vcp->vcp_memranges[i].vmr_size;
}
/* Reset the IO port map */
memset(&ioports_map, 0, sizeof(io_fn_t) * MAX_PORTS);
/* Init i8253 PIT */
i8253_init(vcp->vcp_id);
ioports_map[TIMER_CTRL] = vcpu_exit_i8253;
ioports_map[TIMER_BASE + TIMER_CNTR0] = vcpu_exit_i8253;
ioports_map[TIMER_BASE + TIMER_CNTR1] = vcpu_exit_i8253;
ioports_map[TIMER_BASE + TIMER_CNTR2] = vcpu_exit_i8253;
ioports_map[PCKBC_AUX] = vcpu_exit_i8253_misc;
/* Init mc146818 RTC */
mc146818_init(vcp->vcp_id, memlo, memhi);
ioports_map[IO_RTC] = vcpu_exit_mc146818;
ioports_map[IO_RTC + 1] = vcpu_exit_mc146818;
/* Init master and slave PICs */
i8259_init();
ioports_map[IO_ICU1] = vcpu_exit_i8259;
ioports_map[IO_ICU1 + 1] = vcpu_exit_i8259;
ioports_map[IO_ICU2] = vcpu_exit_i8259;
ioports_map[IO_ICU2 + 1] = vcpu_exit_i8259;
ioports_map[ELCR0] = vcpu_exit_elcr;
ioports_map[ELCR1] = vcpu_exit_elcr;
/* Init ns8250 UART */
ns8250_init(con_fd, vcp->vcp_id);
for (i = COM1_DATA; i <= COM1_SCR; i++)
ioports_map[i] = vcpu_exit_com;
/* Initialize PCI */
for (i = VM_PCI_IO_BAR_BASE; i <= VM_PCI_IO_BAR_END; i++)
ioports_map[i] = vcpu_exit_pci;
ioports_map[PCI_MODE1_ADDRESS_REG] = vcpu_exit_pci;
ioports_map[PCI_MODE1_DATA_REG] = vcpu_exit_pci;
ioports_map[PCI_MODE1_DATA_REG + 1] = vcpu_exit_pci;
ioports_map[PCI_MODE1_DATA_REG + 2] = vcpu_exit_pci;
ioports_map[PCI_MODE1_DATA_REG + 3] = vcpu_exit_pci;
pci_init();
/* Initialize virtio devices */
virtio_init(current_vm, child_cdrom, child_disks, child_taps);
/*
* Init QEMU fw_cfg interface. Must be done last for pci hardware
* detection.
*/
fw_cfg_init(vmc);
ioports_map[FW_CFG_IO_SELECT] = vcpu_exit_fw_cfg;
ioports_map[FW_CFG_IO_DATA] = vcpu_exit_fw_cfg;
ioports_map[FW_CFG_IO_DMA_ADDR_HIGH] = vcpu_exit_fw_cfg_dma;
ioports_map[FW_CFG_IO_DMA_ADDR_LOW] = vcpu_exit_fw_cfg_dma;
}
/*
* restore_emulated_hw
*
* Restores the userspace hardware emulation from fd
*/
void
restore_emulated_hw(struct vm_create_params *vcp, int fd,
int *child_taps, int child_disks[][VM_MAX_BASE_PER_DISK], int child_cdrom)
{
/* struct vm_create_params *vcp = &vmc->vmc_params; */
int i;
memset(&ioports_map, 0, sizeof(io_fn_t) * MAX_PORTS);
/* Init i8253 PIT */
i8253_restore(fd, vcp->vcp_id);
ioports_map[TIMER_CTRL] = vcpu_exit_i8253;
ioports_map[TIMER_BASE + TIMER_CNTR0] = vcpu_exit_i8253;
ioports_map[TIMER_BASE + TIMER_CNTR1] = vcpu_exit_i8253;
ioports_map[TIMER_BASE + TIMER_CNTR2] = vcpu_exit_i8253;
/* Init master and slave PICs */
i8259_restore(fd);
ioports_map[IO_ICU1] = vcpu_exit_i8259;
ioports_map[IO_ICU1 + 1] = vcpu_exit_i8259;
ioports_map[IO_ICU2] = vcpu_exit_i8259;
ioports_map[IO_ICU2 + 1] = vcpu_exit_i8259;
/* Init ns8250 UART */
ns8250_restore(fd, con_fd, vcp->vcp_id);
for (i = COM1_DATA; i <= COM1_SCR; i++)
ioports_map[i] = vcpu_exit_com;
/* Init mc146818 RTC */
mc146818_restore(fd, vcp->vcp_id);
ioports_map[IO_RTC] = vcpu_exit_mc146818;
ioports_map[IO_RTC + 1] = vcpu_exit_mc146818;
/* Init QEMU fw_cfg interface */
fw_cfg_restore(fd);
ioports_map[FW_CFG_IO_SELECT] = vcpu_exit_fw_cfg;
ioports_map[FW_CFG_IO_DATA] = vcpu_exit_fw_cfg;
ioports_map[FW_CFG_IO_DMA_ADDR_HIGH] = vcpu_exit_fw_cfg_dma;
ioports_map[FW_CFG_IO_DMA_ADDR_LOW] = vcpu_exit_fw_cfg_dma;
/* Initialize PCI */
for (i = VM_PCI_IO_BAR_BASE; i <= VM_PCI_IO_BAR_END; i++)
ioports_map[i] = vcpu_exit_pci;
ioports_map[PCI_MODE1_ADDRESS_REG] = vcpu_exit_pci;
ioports_map[PCI_MODE1_DATA_REG] = vcpu_exit_pci;
ioports_map[PCI_MODE1_DATA_REG + 1] = vcpu_exit_pci;
ioports_map[PCI_MODE1_DATA_REG + 2] = vcpu_exit_pci;
ioports_map[PCI_MODE1_DATA_REG + 3] = vcpu_exit_pci;
pci_restore(fd);
virtio_restore(fd, current_vm, child_cdrom, child_disks, child_taps);
}
void
pause_vm_md(struct vmd_vm *vm)
{
i8253_stop();
mc146818_stop();
ns8250_stop();
virtio_stop(vm);
}
void
unpause_vm_md(struct vmd_vm *vm)
{
i8253_start();
mc146818_start();
ns8250_start();
virtio_start(vm);
}
int
dump_devs(int fd)
{
int ret = 0;
if ((ret = i8253_dump(fd)))
return ret;
if ((ret = i8259_dump(fd)))
return ret;
if ((ret = ns8250_dump(fd)))
return ret;
if ((ret = mc146818_dump(fd)))
return ret;
ret = fw_cfg_dump(fd);
return ret;
}
int
dump_send_header(int fd) {
struct vm_dump_header vmh;
int i;
memcpy(&vmh.vmh_signature, VM_DUMP_SIGNATURE,
sizeof(vmh.vmh_signature));
vmh.vmh_cpuids[0].code = 0x00;
vmh.vmh_cpuids[0].leaf = 0x00;
vmh.vmh_cpuids[1].code = 0x01;
vmh.vmh_cpuids[1].leaf = 0x00;
vmh.vmh_cpuids[2].code = 0x07;
vmh.vmh_cpuids[2].leaf = 0x00;
vmh.vmh_cpuids[3].code = 0x0d;
vmh.vmh_cpuids[3].leaf = 0x00;
vmh.vmh_cpuids[4].code = 0x80000001;
vmh.vmh_cpuids[4].leaf = 0x00;
vmh.vmh_version = VM_DUMP_VERSION;
for (i=0; i < VM_DUMP_HEADER_CPUID_COUNT; i++) {
CPUID_LEAF(vmh.vmh_cpuids[i].code,
vmh.vmh_cpuids[i].leaf,
vmh.vmh_cpuids[i].a,
vmh.vmh_cpuids[i].b,
vmh.vmh_cpuids[i].c,
vmh.vmh_cpuids[i].d);
}
if (atomicio(vwrite, fd, &vmh, sizeof(vmh)) != sizeof(vmh))
return (-1);
return (0);
}
/*
* vcpu_exit_inout
*
* Handle all I/O exits that need to be emulated in vmd. This includes the
* i8253 PIT, the com1 ns8250 UART, and the MC146818 RTC/NVRAM device.
*
* Parameters:
* vrp: vcpu run parameters containing guest state for this exit
*/
void
vcpu_exit_inout(struct vm_run_params *vrp)
{
struct vm_exit *vei = vrp->vrp_exit;
uint8_t intr = 0xFF;
if (vei->vei.vei_rep || vei->vei.vei_string) {
#ifdef MMIO_DEBUG
log_info("%s: %s%s%s %d-byte, enc=%d, data=0x%08x, port=0x%04x",
__func__,
vei->vei.vei_rep == 0 ? "" : "REP ",
vei->vei.vei_dir == VEI_DIR_IN ? "IN" : "OUT",
vei->vei.vei_string == 0 ? "" : "S",
vei->vei.vei_size, vei->vei.vei_encoding,
vei->vei.vei_data, vei->vei.vei_port);
log_info("%s: ECX = 0x%llx, RDX = 0x%llx, RSI = 0x%llx",
__func__,
vei->vrs.vrs_gprs[VCPU_REGS_RCX],
vei->vrs.vrs_gprs[VCPU_REGS_RDX],
vei->vrs.vrs_gprs[VCPU_REGS_RSI]);
#endif /* MMIO_DEBUG */
fatalx("%s: can't emulate REP prefixed IN(S)/OUT(S)",
__func__);
}
if (ioports_map[vei->vei.vei_port] != NULL)
intr = ioports_map[vei->vei.vei_port](vrp);
else if (vei->vei.vei_dir == VEI_DIR_IN)
set_return_data(vei, 0xFFFFFFFF);
vei->vrs.vrs_gprs[VCPU_REGS_RIP] += vei->vei.vei_insn_len;
if (intr != 0xFF)
vcpu_assert_irq(vrp->vrp_vm_id, vrp->vrp_vcpu_id, intr);
}
/*
* vcpu_exit
*
* Handle a vcpu exit. This function is called when it is determined that
* vmm(4) requires the assistance of vmd to support a particular guest
* exit type (eg, accessing an I/O port or device). Guest state is contained
* in 'vrp', and will be resent to vmm(4) on exit completion.
*
* Upon conclusion of handling the exit, the function determines if any
* interrupts should be injected into the guest, and asserts the proper
* IRQ line whose interrupt should be vectored.
*
* Parameters:
* vrp: vcpu run parameters containing guest state for this exit
*
* Return values:
* 0: the exit was handled successfully
* 1: an error occurred (eg, unknown exit reason passed in 'vrp')
*/
int
vcpu_exit(struct vm_run_params *vrp)
{
int ret;
switch (vrp->vrp_exit_reason) {
case VMX_EXIT_INT_WINDOW:
case SVM_VMEXIT_VINTR:
case VMX_EXIT_CPUID:
case VMX_EXIT_EXTINT:
case SVM_VMEXIT_INTR:
case SVM_VMEXIT_MSR:
case SVM_VMEXIT_CPUID:
/*
* We may be exiting to vmd to handle a pending interrupt but
* at the same time the last exit type may have been one of
* these. In this case, there's nothing extra to be done
* here (and falling through to the default case below results
* in more vmd log spam).
*/
break;
case SVM_VMEXIT_NPF:
case VMX_EXIT_EPT_VIOLATION:
ret = vcpu_exit_eptviolation(vrp);
if (ret)
return (ret);
break;
case VMX_EXIT_IO:
case SVM_VMEXIT_IOIO:
vcpu_exit_inout(vrp);
break;
case VMX_EXIT_HLT:
case SVM_VMEXIT_HLT:
vcpu_halt(vrp->vrp_vcpu_id);
break;
case VMX_EXIT_TRIPLE_FAULT:
case SVM_VMEXIT_SHUTDOWN:
/* reset VM */
return (EAGAIN);
default:
log_debug("%s: unknown exit reason 0x%x",
__progname, vrp->vrp_exit_reason);
}
return (0);
}
/*
* vcpu_exit_eptviolation
*
* handle an EPT Violation
*
* Parameters:
* vrp: vcpu run parameters containing guest state for this exit
*
* Return values:
* 0: no action required
* EFAULT: a protection fault occured, kill the vm.
*/
static int
vcpu_exit_eptviolation(struct vm_run_params *vrp)
{
struct vm_exit *ve = vrp->vrp_exit;
int ret = 0;
#if MMIO_NOTYET
struct x86_insn insn;
uint64_t va, pa;
size_t len = 15; /* Max instruction length in x86. */
#endif /* MMIO_NOTYET */
switch (ve->vee.vee_fault_type) {
case VEE_FAULT_HANDLED:
break;
#if MMIO_NOTYET
case VEE_FAULT_MMIO_ASSIST:
/* Intel VMX might give us the length of the instruction. */
if (ve->vee.vee_insn_info & VEE_LEN_VALID)
len = ve->vee.vee_insn_len;
if (len > 15)
fatalx("%s: invalid instruction length %lu", __func__,
len);
/* If we weren't given instruction bytes, we need to fetch. */
if (!(ve->vee.vee_insn_info & VEE_BYTES_VALID)) {
memset(ve->vee.vee_insn_bytes, 0,
sizeof(ve->vee.vee_insn_bytes));
va = ve->vrs.vrs_gprs[VCPU_REGS_RIP];
/* XXX Only support instructions that fit on 1 page. */
if ((va & PAGE_MASK) + len > PAGE_SIZE) {
log_warnx("%s: instruction might cross page "
"boundary", __func__);
ret = EINVAL;
break;
}
ret = translate_gva(ve, va, &pa, PROT_EXEC);
if (ret != 0) {
log_warnx("%s: failed gva translation",
__func__);
break;
}
ret = read_mem(pa, ve->vee.vee_insn_bytes, len);
if (ret != 0) {
log_warnx("%s: failed to fetch instruction "
"bytes from 0x%llx", __func__, pa);
break;
}
}
ret = insn_decode(ve, &insn);
if (ret == 0)
ret = insn_emulate(ve, &insn);
break;
#endif /* MMIO_NOTYET */
case VEE_FAULT_PROTECT:
log_debug("%s: EPT Violation: rip=0x%llx", __progname,
ve->vrs.vrs_gprs[VCPU_REGS_RIP]);
ret = EFAULT;
break;
default:
fatalx("%s: invalid fault_type %d", __progname,
ve->vee.vee_fault_type);
/* UNREACHED */
}
return (ret);
}
/*
* vcpu_exit_pci
*
* Handle all I/O to the emulated PCI subsystem.
*
* Parameters:
* vrp: vcpu run parameters containing guest state for this exit
*
* Return value:
* Interrupt to inject to the guest VM, or 0xFF if no interrupt should
* be injected.
*/
uint8_t
vcpu_exit_pci(struct vm_run_params *vrp)
{
struct vm_exit *vei = vrp->vrp_exit;
uint8_t intr;
intr = 0xFF;
switch (vei->vei.vei_port) {
case PCI_MODE1_ADDRESS_REG:
pci_handle_address_reg(vrp);
break;
case PCI_MODE1_DATA_REG:
case PCI_MODE1_DATA_REG + 1:
case PCI_MODE1_DATA_REG + 2:
case PCI_MODE1_DATA_REG + 3:
pci_handle_data_reg(vrp);
break;
case VM_PCI_IO_BAR_BASE ... VM_PCI_IO_BAR_END:
intr = pci_handle_io(vrp);
break;
default:
log_warnx("%s: unknown PCI register 0x%llx",
__progname, (uint64_t)vei->vei.vei_port);
break;
}
return (intr);
}
/*
* find_gpa_range
*
* Search for a contiguous guest physical mem range.
*
* Parameters:
* vcp: VM create parameters that contain the memory map to search in
* gpa: the starting guest physical address
* len: the length of the memory range
*
* Return values:
* NULL: on failure if there is no memory range as described by the parameters
* Pointer to vm_mem_range that contains the start of the range otherwise.
*/
struct vm_mem_range *
find_gpa_range(struct vm_create_params *vcp, paddr_t gpa, size_t len)
{
size_t i, n;
struct vm_mem_range *vmr;
/* Find the first vm_mem_range that contains gpa */
for (i = 0; i < vcp->vcp_nmemranges; i++) {
vmr = &vcp->vcp_memranges[i];
if (gpa < vmr->vmr_gpa + vmr->vmr_size)
break;
}
/* No range found. */
if (i == vcp->vcp_nmemranges)
return (NULL);
/*
* vmr may cover the range [gpa, gpa + len) only partly. Make
* sure that the following vm_mem_ranges are contiguous and
* cover the rest.
*/
n = vmr->vmr_size - (gpa - vmr->vmr_gpa);
if (len < n)
len = 0;
else
len -= n;
gpa = vmr->vmr_gpa + vmr->vmr_size;
for (i = i + 1; len != 0 && i < vcp->vcp_nmemranges; i++) {
vmr = &vcp->vcp_memranges[i];
if (gpa != vmr->vmr_gpa)
return (NULL);
if (len <= vmr->vmr_size)
len = 0;
else
len -= vmr->vmr_size;
gpa = vmr->vmr_gpa + vmr->vmr_size;
}
if (len != 0)
return (NULL);
return (vmr);
}
/*
* write_mem
*
* Copies data from 'buf' into the guest VM's memory at paddr 'dst'.
*
* Parameters:
* dst: the destination paddr_t in the guest VM
* buf: data to copy (or NULL to zero the data)
* len: number of bytes to copy
*
* Return values:
* 0: success
* EINVAL: if the guest physical memory range [dst, dst + len) does not
* exist in the guest.
*/
int
write_mem(paddr_t dst, const void *buf, size_t len)
{
const char *from = buf;
char *to;
size_t n, off;
struct vm_mem_range *vmr;
vmr = find_gpa_range(¤t_vm->vm_params.vmc_params, dst, len);
if (vmr == NULL) {
errno = EINVAL;
log_warn("%s: failed - invalid memory range dst = 0x%lx, "
"len = 0x%zx", __func__, dst, len);
return (EINVAL);
}
off = dst - vmr->vmr_gpa;
while (len != 0) {
n = vmr->vmr_size - off;
if (len < n)
n = len;
to = (char *)vmr->vmr_va + off;
if (buf == NULL)
memset(to, 0, n);
else {
memcpy(to, from, n);
from += n;
}
len -= n;
off = 0;
vmr++;
}
return (0);
}
/*
* read_mem
*
* Reads memory at guest paddr 'src' into 'buf'.
*
* Parameters:
* src: the source paddr_t in the guest VM to read from.
* buf: destination (local) buffer
* len: number of bytes to read
*
* Return values:
* 0: success
* EINVAL: if the guest physical memory range [dst, dst + len) does not
* exist in the guest.
*/
int
read_mem(paddr_t src, void *buf, size_t len)
{
char *from, *to = buf;
size_t n, off;
struct vm_mem_range *vmr;
vmr = find_gpa_range(¤t_vm->vm_params.vmc_params, src, len);
if (vmr == NULL) {
errno = EINVAL;
log_warn("%s: failed - invalid memory range src = 0x%lx, "
"len = 0x%zx", __func__, src, len);
return (EINVAL);
}
off = src - vmr->vmr_gpa;
while (len != 0) {
n = vmr->vmr_size - off;
if (len < n)
n = len;
from = (char *)vmr->vmr_va + off;
memcpy(to, from, n);
to += n;
len -= n;
off = 0;
vmr++;
}
return (0);
}
/*
* hvaddr_mem
*
* Translate a guest physical address to a host virtual address, checking the
* provided memory range length to confirm it's contiguous within the same
* guest memory range (vm_mem_range).
*
* Parameters:
* gpa: guest physical address to translate
* len: number of bytes in the intended range
*
* Return values:
* void* to host virtual memory on success
* NULL on error, setting errno to:
* EFAULT: gpa falls outside guest memory ranges
* EINVAL: requested len extends beyond memory range
*/
void *
hvaddr_mem(paddr_t gpa, size_t len)
{
struct vm_mem_range *vmr;
size_t off;
vmr = find_gpa_range(¤t_vm->vm_params.vmc_params, gpa, len);
if (vmr == NULL) {
log_warnx("%s: failed - invalid gpa: 0x%lx\n", __func__, gpa);
errno = EFAULT;
return (NULL);
}
off = gpa - vmr->vmr_gpa;
if (len > (vmr->vmr_size - off)) {
log_warnx("%s: failed - invalid memory range: gpa=0x%lx, "
"len=%zu", __func__, gpa, len);
errno = EINVAL;
return (NULL);
}
return ((char *)vmr->vmr_va + off);
}
/*
* vcpu_assert_irq
*
* Injects the specified IRQ on the supplied vcpu/vm
*
* Parameters:
* vm_id: VM ID to inject to
* vcpu_id: VCPU ID to inject to
* irq: IRQ to inject
*/
void
vcpu_assert_irq(uint32_t vm_id, uint32_t vcpu_id, int irq)
{
i8259_assert_irq(irq);
if (i8259_is_pending()) {
if (vcpu_intr(vm_id, vcpu_id, 1))
fatalx("%s: can't assert INTR", __func__);
vcpu_unhalt(vcpu_id);
vcpu_signal_run(vcpu_id);
}
}
/*
* vcpu_deassert_pic_irq
*
* Clears the specified IRQ on the supplied vcpu/vm
*
* Parameters:
* vm_id: VM ID to clear in
* vcpu_id: VCPU ID to clear in
* irq: IRQ to clear
*/
void
vcpu_deassert_irq(uint32_t vm_id, uint32_t vcpu_id, int irq)
{
i8259_deassert_irq(irq);
if (!i8259_is_pending()) {
if (vcpu_intr(vm_id, vcpu_id, 0))
fatalx("%s: can't deassert INTR for vm_id %d, "
"vcpu_id %d", __func__, vm_id, vcpu_id);
}
}
/*
* set_return_data
*
* Utility function for manipulating register data in vm exit info structs. This
* function ensures that the data is copied to the vei->vei.vei_data field with
* the proper size for the operation being performed.
*
* Parameters:
* vei: exit information
* data: return data
*/
void
set_return_data(struct vm_exit *vei, uint32_t data)
{
switch (vei->vei.vei_size) {
case 1:
vei->vei.vei_data &= ~0xFF;
vei->vei.vei_data |= (uint8_t)data;
break;
case 2:
vei->vei.vei_data &= ~0xFFFF;
vei->vei.vei_data |= (uint16_t)data;
break;
case 4:
vei->vei.vei_data = data;
break;
}
}
/*
* get_input_data
*
* Utility function for manipulating register data in vm exit info
* structs. This function ensures that the data is copied from the
* vei->vei.vei_data field with the proper size for the operation being
* performed.
*
* Parameters:
* vei: exit information
* data: location to store the result
*/
void
get_input_data(struct vm_exit *vei, uint32_t *data)
{
switch (vei->vei.vei_size) {
case 1:
*data &= 0xFFFFFF00;
*data |= (uint8_t)vei->vei.vei_data;
break;
case 2:
*data &= 0xFFFF0000;
*data |= (uint16_t)vei->vei.vei_data;
break;
case 4:
*data = vei->vei.vei_data;
break;
default:
log_warnx("%s: invalid i/o size %d", __func__,
vei->vei.vei_size);
}
}
/*
* translate_gva
*
* Translates a guest virtual address to a guest physical address by walking
* the currently active page table (if needed).
*
* XXX ensure translate_gva updates the A bit in the PTE
* XXX ensure translate_gva respects segment base and limits in i386 mode
* XXX ensure translate_gva respects segment wraparound in i8086 mode
* XXX ensure translate_gva updates the A bit in the segment selector
* XXX ensure translate_gva respects CR4.LMSLE if available
*
* Parameters:
* exit: The VCPU this translation should be performed for (guest MMU settings
* are gathered from this VCPU)
* va: virtual address to translate
* pa: pointer to paddr_t variable that will receive the translated physical
* address. 'pa' is unchanged on error.
* mode: one of PROT_READ, PROT_WRITE, PROT_EXEC indicating the mode in which
* the address should be translated
*
* Return values:
* 0: the address was successfully translated - 'pa' contains the physical
* address currently mapped by 'va'.
* EFAULT: the PTE for 'VA' is unmapped. A #PF will be injected in this case
* and %cr2 set in the vcpu structure.
* EINVAL: an error occurred reading paging table structures
*/
int
translate_gva(struct vm_exit* exit, uint64_t va, uint64_t* pa, int mode)
{
int level, shift, pdidx;
uint64_t pte, pt_paddr, pte_paddr, mask, low_mask, high_mask;
uint64_t shift_width, pte_size;
struct vcpu_reg_state *vrs;
vrs = &exit->vrs;
if (!pa)
return (EINVAL);
if (!(vrs->vrs_crs[VCPU_REGS_CR0] & CR0_PG)) {
log_debug("%s: unpaged, va=pa=0x%llx", __func__, va);
*pa = va;
return (0);
}
pt_paddr = vrs->vrs_crs[VCPU_REGS_CR3];
log_debug("%s: guest %%cr0=0x%llx, %%cr3=0x%llx", __func__,
vrs->vrs_crs[VCPU_REGS_CR0], vrs->vrs_crs[VCPU_REGS_CR3]);
if (vrs->vrs_crs[VCPU_REGS_CR0] & CR0_PE) {
if (vrs->vrs_crs[VCPU_REGS_CR4] & CR4_PAE) {
pte_size = sizeof(uint64_t);
shift_width = 9;
if (vrs->vrs_msrs[VCPU_REGS_EFER] & EFER_LMA) {
/* 4 level paging */
level = 4;
mask = L4_MASK;
shift = L4_SHIFT;
} else {
/* 32 bit with PAE paging */
level = 3;
mask = L3_MASK;
shift = L3_SHIFT;
}
} else {
/* 32 bit paging */
level = 2;
shift_width = 10;
mask = 0xFFC00000;
shift = 22;
pte_size = sizeof(uint32_t);
}
} else
return (EINVAL);
/* XXX: Check for R bit in segment selector and set A bit */
for (;level > 0; level--) {
pdidx = (va & mask) >> shift;
pte_paddr = (pt_paddr) + (pdidx * pte_size);
log_debug("%s: read pte level %d @ GPA 0x%llx", __func__,
level, pte_paddr);
if (read_mem(pte_paddr, &pte, pte_size)) {
log_warn("%s: failed to read pte", __func__);
return (EFAULT);
}
log_debug("%s: PTE @ 0x%llx = 0x%llx", __func__, pte_paddr,
pte);
/* XXX: Set CR2 */
if (!(pte & PG_V))
return (EFAULT);
/* XXX: Check for SMAP */
if ((mode == PROT_WRITE) && !(pte & PG_RW))
return (EPERM);
if ((exit->cpl > 0) && !(pte & PG_u))
return (EPERM);
pte = pte | PG_U;
if (mode == PROT_WRITE)
pte = pte | PG_M;
if (write_mem(pte_paddr, &pte, pte_size)) {
log_warn("%s: failed to write back flags to pte",
__func__);
return (EIO);
}
/* XXX: EINVAL if in 32bit and PG_PS is 1 but CR4.PSE is 0 */
if (pte & PG_PS)
break;
if (level > 1) {
pt_paddr = pte & PG_FRAME;
shift -= shift_width;
mask = mask >> shift_width;
}
}
low_mask = (1 << shift) - 1;
high_mask = (((uint64_t)1ULL << ((pte_size * 8) - 1)) - 1) ^ low_mask;
*pa = (pte & high_mask) | (va & low_mask);
log_debug("%s: final GPA for GVA 0x%llx = 0x%llx\n", __func__, va, *pa);
return (0);
}
int
intr_pending(struct vmd_vm *vm)
{
/* XXX select active interrupt controller */
return i8259_is_pending();
}
int
intr_ack(struct vmd_vm *vm)
{
/* XXX select active interrupt controller */
return i8259_ack();
}
void
intr_toggle_el(struct vmd_vm *vm, int irq, int val)
{
/* XXX select active interrupt controller */
pic_set_elcr(irq, val);
}
int
vmd_check_vmh(struct vm_dump_header *vmh)
{
int i;
unsigned int code, leaf;
unsigned int a, b, c, d;
if (strncmp(vmh->vmh_signature, VM_DUMP_SIGNATURE, strlen(VM_DUMP_SIGNATURE)) != 0) {
log_warnx("%s: incompatible dump signature", __func__);
return (-1);
}
if (vmh->vmh_version != VM_DUMP_VERSION) {
log_warnx("%s: incompatible dump version", __func__);
return (-1);
}
for (i = 0; i < VM_DUMP_HEADER_CPUID_COUNT; i++) {
code = vmh->vmh_cpuids[i].code;
leaf = vmh->vmh_cpuids[i].leaf;
if (leaf != 0x00) {
log_debug("%s: invalid leaf 0x%x for code 0x%x",
__func__, leaf, code);
return (-1);
}
switch (code) {
case 0x00:
CPUID_LEAF(code, leaf, a, b, c, d);
if (vmh->vmh_cpuids[i].a > a) {
log_debug("%s: incompatible cpuid level",
__func__);
return (-1);
}
if (!(vmh->vmh_cpuids[i].b == b &&
vmh->vmh_cpuids[i].c == c &&
vmh->vmh_cpuids[i].d == d)) {
log_debug("%s: incompatible cpu brand",
__func__);
return (-1);
}
break;
case 0x01:
CPUID_LEAF(code, leaf, a, b, c, d);
if ((vmh->vmh_cpuids[i].c & c & VMM_CPUIDECX_MASK) !=
(vmh->vmh_cpuids[i].c & VMM_CPUIDECX_MASK)) {
log_debug("%s: incompatible cpu features "
"code: 0x%x leaf: 0x%x reg: c", __func__,
code, leaf);
return (-1);
}
if ((vmh->vmh_cpuids[i].d & d & VMM_CPUIDEDX_MASK) !=
(vmh->vmh_cpuids[i].d & VMM_CPUIDEDX_MASK)) {
log_debug("%s: incompatible cpu features "
"code: 0x%x leaf: 0x%x reg: d", __func__,
code, leaf);
return (-1);
}
break;
case 0x07:
CPUID_LEAF(code, leaf, a, b, c, d);
if ((vmh->vmh_cpuids[i].b & b & VMM_SEFF0EBX_MASK) !=
(vmh->vmh_cpuids[i].b & VMM_SEFF0EBX_MASK)) {
log_debug("%s: incompatible cpu features "
"code: 0x%x leaf: 0x%x reg: c", __func__,
code, leaf);
return (-1);
}
if ((vmh->vmh_cpuids[i].c & c & VMM_SEFF0ECX_MASK) !=
(vmh->vmh_cpuids[i].c & VMM_SEFF0ECX_MASK)) {
log_debug("%s: incompatible cpu features "
"code: 0x%x leaf: 0x%x reg: d", __func__,
code, leaf);
return (-1);
}
break;
case 0x0d:
CPUID_LEAF(code, leaf, a, b, c, d);
if (vmh->vmh_cpuids[i].b > b) {
log_debug("%s: incompatible cpu: insufficient "
"max save area for enabled XCR0 features",
__func__);
return (-1);
}
if (vmh->vmh_cpuids[i].c > c) {
log_debug("%s: incompatible cpu: insufficient "
"max save area for supported XCR0 features",
__func__);
return (-1);
}
break;
case 0x80000001:
CPUID_LEAF(code, leaf, a, b, c, d);
if ((vmh->vmh_cpuids[i].a & a) !=
vmh->vmh_cpuids[i].a) {
log_debug("%s: incompatible cpu features "
"code: 0x%x leaf: 0x%x reg: a", __func__,
code, leaf);
return (-1);
}
if ((vmh->vmh_cpuids[i].c & c) !=
vmh->vmh_cpuids[i].c) {
log_debug("%s: incompatible cpu features "
"code: 0x%x leaf: 0x%x reg: c", __func__,
code, leaf);
return (-1);
}
if ((vmh->vmh_cpuids[i].d & d) !=
vmh->vmh_cpuids[i].d) {
log_debug("%s: incompatible cpu features "
"code: 0x%x leaf: 0x%x reg: d", __func__,
code, leaf);
return (-1);
}
break;
default:
log_debug("%s: unknown code 0x%x", __func__, code);
return (-1);
}
}
return (0);
}
|