diff options
Diffstat (limited to 'lib/mesa/src/gallium/drivers/radeonsi/si_fence.c')
-rw-r--r-- | lib/mesa/src/gallium/drivers/radeonsi/si_fence.c | 656 |
1 files changed, 656 insertions, 0 deletions
diff --git a/lib/mesa/src/gallium/drivers/radeonsi/si_fence.c b/lib/mesa/src/gallium/drivers/radeonsi/si_fence.c new file mode 100644 index 000000000..3f22ee31a --- /dev/null +++ b/lib/mesa/src/gallium/drivers/radeonsi/si_fence.c @@ -0,0 +1,656 @@ +/* + * Copyright 2013-2017 Advanced Micro Devices, Inc. + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + * + */ + +#include <libsync.h> + +#include "util/os_time.h" +#include "util/u_memory.h" +#include "util/u_queue.h" +#include "util/u_upload_mgr.h" + +#include "si_build_pm4.h" + +struct si_fine_fence { + struct r600_resource *buf; + unsigned offset; +}; + +struct si_multi_fence { + struct pipe_reference reference; + struct pipe_fence_handle *gfx; + struct pipe_fence_handle *sdma; + struct tc_unflushed_batch_token *tc_token; + struct util_queue_fence ready; + + /* If the context wasn't flushed at fence creation, this is non-NULL. */ + struct { + struct si_context *ctx; + unsigned ib_index; + } gfx_unflushed; + + struct si_fine_fence fine; +}; + +/** + * Write an EOP event. + * + * \param event EVENT_TYPE_* + * \param event_flags Optional cache flush flags (TC) + * \param dst_sel MEM or TC_L2 + * \param int_sel NONE or SEND_DATA_AFTER_WR_CONFIRM + * \param data_sel DISCARD, VALUE_32BIT, TIMESTAMP, or GDS + * \param buf Buffer + * \param va GPU address + * \param old_value Previous fence value (for a bug workaround) + * \param new_value Fence value to write for this event. + */ +void si_cp_release_mem(struct si_context *ctx, + unsigned event, unsigned event_flags, + unsigned dst_sel, unsigned int_sel, unsigned data_sel, + struct r600_resource *buf, uint64_t va, + uint32_t new_fence, unsigned query_type) +{ + struct radeon_cmdbuf *cs = ctx->gfx_cs; + unsigned op = EVENT_TYPE(event) | + EVENT_INDEX(event == V_028A90_CS_DONE || + event == V_028A90_PS_DONE ? 6 : 5) | + event_flags; + unsigned sel = EOP_DST_SEL(dst_sel) | + EOP_INT_SEL(int_sel) | + EOP_DATA_SEL(data_sel); + + if (ctx->chip_class >= GFX9) { + /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion + * counters) must immediately precede every timestamp event to + * prevent a GPU hang on GFX9. + * + * Occlusion queries don't need to do it here, because they + * always do ZPASS_DONE before the timestamp. + */ + if (ctx->chip_class == GFX9 && + query_type != PIPE_QUERY_OCCLUSION_COUNTER && + query_type != PIPE_QUERY_OCCLUSION_PREDICATE && + query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) { + struct r600_resource *scratch = ctx->eop_bug_scratch; + + assert(16 * ctx->screen->info.num_render_backends <= + scratch->b.b.width0); + radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); + radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1)); + radeon_emit(cs, scratch->gpu_address); + radeon_emit(cs, scratch->gpu_address >> 32); + + radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, + RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); + } + + radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, 6, 0)); + radeon_emit(cs, op); + radeon_emit(cs, sel); + radeon_emit(cs, va); /* address lo */ + radeon_emit(cs, va >> 32); /* address hi */ + radeon_emit(cs, new_fence); /* immediate data lo */ + radeon_emit(cs, 0); /* immediate data hi */ + radeon_emit(cs, 0); /* unused */ + } else { + if (ctx->chip_class == CIK || + ctx->chip_class == VI) { + struct r600_resource *scratch = ctx->eop_bug_scratch; + uint64_t va = scratch->gpu_address; + + /* Two EOP events are required to make all engines go idle + * (and optional cache flushes executed) before the timestamp + * is written. + */ + radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); + radeon_emit(cs, op); + radeon_emit(cs, va); + radeon_emit(cs, ((va >> 32) & 0xffff) | sel); + radeon_emit(cs, 0); /* immediate data */ + radeon_emit(cs, 0); /* unused */ + + radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, + RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); + } + + radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); + radeon_emit(cs, op); + radeon_emit(cs, va); + radeon_emit(cs, ((va >> 32) & 0xffff) | sel); + radeon_emit(cs, new_fence); /* immediate data */ + radeon_emit(cs, 0); /* unused */ + } + + if (buf) { + radeon_add_to_buffer_list(ctx, ctx->gfx_cs, buf, RADEON_USAGE_WRITE, + RADEON_PRIO_QUERY); + } +} + +unsigned si_cp_write_fence_dwords(struct si_screen *screen) +{ + unsigned dwords = 6; + + if (screen->info.chip_class == CIK || + screen->info.chip_class == VI) + dwords *= 2; + + return dwords; +} + +void si_cp_wait_mem(struct si_context *ctx, + uint64_t va, uint32_t ref, uint32_t mask, unsigned flags) +{ + struct radeon_cmdbuf *cs = ctx->gfx_cs; + + radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0)); + radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1) | flags); + radeon_emit(cs, va); + radeon_emit(cs, va >> 32); + radeon_emit(cs, ref); /* reference value */ + radeon_emit(cs, mask); /* mask */ + radeon_emit(cs, 4); /* poll interval */ +} + +static void si_add_fence_dependency(struct si_context *sctx, + struct pipe_fence_handle *fence) +{ + struct radeon_winsys *ws = sctx->ws; + + if (sctx->dma_cs) + ws->cs_add_fence_dependency(sctx->dma_cs, fence); + ws->cs_add_fence_dependency(sctx->gfx_cs, fence); +} + +static void si_add_syncobj_signal(struct si_context *sctx, + struct pipe_fence_handle *fence) +{ + sctx->ws->cs_add_syncobj_signal(sctx->gfx_cs, fence); +} + +static void si_fence_reference(struct pipe_screen *screen, + struct pipe_fence_handle **dst, + struct pipe_fence_handle *src) +{ + struct radeon_winsys *ws = ((struct si_screen*)screen)->ws; + struct si_multi_fence **rdst = (struct si_multi_fence **)dst; + struct si_multi_fence *rsrc = (struct si_multi_fence *)src; + + if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) { + ws->fence_reference(&(*rdst)->gfx, NULL); + ws->fence_reference(&(*rdst)->sdma, NULL); + tc_unflushed_batch_token_reference(&(*rdst)->tc_token, NULL); + r600_resource_reference(&(*rdst)->fine.buf, NULL); + FREE(*rdst); + } + *rdst = rsrc; +} + +static struct si_multi_fence *si_create_multi_fence() +{ + struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence); + if (!fence) + return NULL; + + pipe_reference_init(&fence->reference, 1); + util_queue_fence_init(&fence->ready); + + return fence; +} + +struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx, + struct tc_unflushed_batch_token *tc_token) +{ + struct si_multi_fence *fence = si_create_multi_fence(); + if (!fence) + return NULL; + + util_queue_fence_reset(&fence->ready); + tc_unflushed_batch_token_reference(&fence->tc_token, tc_token); + + return (struct pipe_fence_handle *)fence; +} + +static bool si_fine_fence_signaled(struct radeon_winsys *rws, + const struct si_fine_fence *fine) +{ + char *map = rws->buffer_map(fine->buf->buf, NULL, PIPE_TRANSFER_READ | + PIPE_TRANSFER_UNSYNCHRONIZED); + if (!map) + return false; + + uint32_t *fence = (uint32_t*)(map + fine->offset); + return *fence != 0; +} + +static void si_fine_fence_set(struct si_context *ctx, + struct si_fine_fence *fine, + unsigned flags) +{ + uint32_t *fence_ptr; + + assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1); + + /* Use uncached system memory for the fence. */ + u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, + &fine->offset, (struct pipe_resource **)&fine->buf, (void **)&fence_ptr); + if (!fine->buf) + return; + + *fence_ptr = 0; + + uint64_t fence_va = fine->buf->gpu_address + fine->offset; + + radeon_add_to_buffer_list(ctx, ctx->gfx_cs, fine->buf, + RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); + if (flags & PIPE_FLUSH_TOP_OF_PIPE) { + struct radeon_cmdbuf *cs = ctx->gfx_cs; + radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0)); + radeon_emit(cs, S_370_DST_SEL(V_370_MEM_ASYNC) | + S_370_WR_CONFIRM(1) | + S_370_ENGINE_SEL(V_370_PFP)); + radeon_emit(cs, fence_va); + radeon_emit(cs, fence_va >> 32); + radeon_emit(cs, 0x80000000); + } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) { + si_cp_release_mem(ctx, + V_028A90_BOTTOM_OF_PIPE_TS, 0, + EOP_DST_SEL_MEM, + EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM, + EOP_DATA_SEL_VALUE_32BIT, + NULL, fence_va, 0x80000000, + PIPE_QUERY_GPU_FINISHED); + } else { + assert(false); + } +} + +static boolean si_fence_finish(struct pipe_screen *screen, + struct pipe_context *ctx, + struct pipe_fence_handle *fence, + uint64_t timeout) +{ + struct radeon_winsys *rws = ((struct si_screen*)screen)->ws; + struct si_multi_fence *rfence = (struct si_multi_fence *)fence; + struct si_context *sctx; + int64_t abs_timeout = os_time_get_absolute_timeout(timeout); + + ctx = threaded_context_unwrap_sync(ctx); + sctx = (struct si_context*)(ctx ? ctx : NULL); + + if (!util_queue_fence_is_signalled(&rfence->ready)) { + if (rfence->tc_token) { + /* Ensure that si_flush_from_st will be called for + * this fence, but only if we're in the API thread + * where the context is current. + * + * Note that the batch containing the flush may already + * be in flight in the driver thread, so the fence + * may not be ready yet when this call returns. + */ + threaded_context_flush(ctx, rfence->tc_token, + timeout == 0); + } + + if (!timeout) + return false; + + if (timeout == PIPE_TIMEOUT_INFINITE) { + util_queue_fence_wait(&rfence->ready); + } else { + if (!util_queue_fence_wait_timeout(&rfence->ready, abs_timeout)) + return false; + } + + if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { + int64_t time = os_time_get_nano(); + timeout = abs_timeout > time ? abs_timeout - time : 0; + } + } + + if (rfence->sdma) { + if (!rws->fence_wait(rws, rfence->sdma, timeout)) + return false; + + /* Recompute the timeout after waiting. */ + if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { + int64_t time = os_time_get_nano(); + timeout = abs_timeout > time ? abs_timeout - time : 0; + } + } + + if (!rfence->gfx) + return true; + + if (rfence->fine.buf && + si_fine_fence_signaled(rws, &rfence->fine)) { + rws->fence_reference(&rfence->gfx, NULL); + r600_resource_reference(&rfence->fine.buf, NULL); + return true; + } + + /* Flush the gfx IB if it hasn't been flushed yet. */ + if (sctx && rfence->gfx_unflushed.ctx == sctx && + rfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) { + /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile) + * spec says: + * + * "If the sync object being blocked upon will not be + * signaled in finite time (for example, by an associated + * fence command issued previously, but not yet flushed to + * the graphics pipeline), then ClientWaitSync may hang + * forever. To help prevent this behavior, if + * ClientWaitSync is called and all of the following are + * true: + * + * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags, + * * sync is unsignaled when ClientWaitSync is called, + * * and the calls to ClientWaitSync and FenceSync were + * issued from the same context, + * + * then the GL will behave as if the equivalent of Flush + * were inserted immediately after the creation of sync." + * + * This means we need to flush for such fences even when we're + * not going to wait. + */ + si_flush_gfx_cs(sctx, + (timeout ? 0 : PIPE_FLUSH_ASYNC) | + RADEON_FLUSH_START_NEXT_GFX_IB_NOW, + NULL); + rfence->gfx_unflushed.ctx = NULL; + + if (!timeout) + return false; + + /* Recompute the timeout after all that. */ + if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { + int64_t time = os_time_get_nano(); + timeout = abs_timeout > time ? abs_timeout - time : 0; + } + } + + if (rws->fence_wait(rws, rfence->gfx, timeout)) + return true; + + /* Re-check in case the GPU is slow or hangs, but the commands before + * the fine-grained fence have completed. */ + if (rfence->fine.buf && + si_fine_fence_signaled(rws, &rfence->fine)) + return true; + + return false; +} + +static void si_create_fence_fd(struct pipe_context *ctx, + struct pipe_fence_handle **pfence, int fd, + enum pipe_fd_type type) +{ + struct si_screen *sscreen = (struct si_screen*)ctx->screen; + struct radeon_winsys *ws = sscreen->ws; + struct si_multi_fence *rfence; + + *pfence = NULL; + + rfence = si_create_multi_fence(); + if (!rfence) + return; + + switch (type) { + case PIPE_FD_TYPE_NATIVE_SYNC: + if (!sscreen->info.has_fence_to_handle) + goto finish; + + rfence->gfx = ws->fence_import_sync_file(ws, fd); + break; + + case PIPE_FD_TYPE_SYNCOBJ: + if (!sscreen->info.has_syncobj) + goto finish; + + rfence->gfx = ws->fence_import_syncobj(ws, fd); + break; + + default: + unreachable("bad fence fd type when importing"); + } + +finish: + if (!rfence->gfx) { + FREE(rfence); + return; + } + + *pfence = (struct pipe_fence_handle*)rfence; +} + +static int si_fence_get_fd(struct pipe_screen *screen, + struct pipe_fence_handle *fence) +{ + struct si_screen *sscreen = (struct si_screen*)screen; + struct radeon_winsys *ws = sscreen->ws; + struct si_multi_fence *rfence = (struct si_multi_fence *)fence; + int gfx_fd = -1, sdma_fd = -1; + + if (!sscreen->info.has_fence_to_handle) + return -1; + + util_queue_fence_wait(&rfence->ready); + + /* Deferred fences aren't supported. */ + assert(!rfence->gfx_unflushed.ctx); + if (rfence->gfx_unflushed.ctx) + return -1; + + if (rfence->sdma) { + sdma_fd = ws->fence_export_sync_file(ws, rfence->sdma); + if (sdma_fd == -1) + return -1; + } + if (rfence->gfx) { + gfx_fd = ws->fence_export_sync_file(ws, rfence->gfx); + if (gfx_fd == -1) { + if (sdma_fd != -1) + close(sdma_fd); + return -1; + } + } + + /* If we don't have FDs at this point, it means we don't have fences + * either. */ + if (sdma_fd == -1 && gfx_fd == -1) + return ws->export_signalled_sync_file(ws); + if (sdma_fd == -1) + return gfx_fd; + if (gfx_fd == -1) + return sdma_fd; + + /* Get a fence that will be a combination of both fences. */ + sync_accumulate("radeonsi", &gfx_fd, sdma_fd); + close(sdma_fd); + return gfx_fd; +} + +static void si_flush_from_st(struct pipe_context *ctx, + struct pipe_fence_handle **fence, + unsigned flags) +{ + struct pipe_screen *screen = ctx->screen; + struct si_context *sctx = (struct si_context *)ctx; + struct radeon_winsys *ws = sctx->ws; + struct pipe_fence_handle *gfx_fence = NULL; + struct pipe_fence_handle *sdma_fence = NULL; + bool deferred_fence = false; + struct si_fine_fence fine = {}; + unsigned rflags = PIPE_FLUSH_ASYNC; + + if (flags & PIPE_FLUSH_END_OF_FRAME) + rflags |= PIPE_FLUSH_END_OF_FRAME; + + if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) { + assert(flags & PIPE_FLUSH_DEFERRED); + assert(fence); + + si_fine_fence_set(sctx, &fine, flags); + } + + /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */ + if (sctx->dma_cs) + si_flush_dma_cs(sctx, rflags, fence ? &sdma_fence : NULL); + + if (!radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size)) { + if (fence) + ws->fence_reference(&gfx_fence, sctx->last_gfx_fence); + if (!(flags & PIPE_FLUSH_DEFERRED)) + ws->cs_sync_flush(sctx->gfx_cs); + } else { + /* Instead of flushing, create a deferred fence. Constraints: + * - The state tracker must allow a deferred flush. + * - The state tracker must request a fence. + * - fence_get_fd is not allowed. + * Thread safety in fence_finish must be ensured by the state tracker. + */ + if (flags & PIPE_FLUSH_DEFERRED && + !(flags & PIPE_FLUSH_FENCE_FD) && + fence) { + gfx_fence = sctx->ws->cs_get_next_fence(sctx->gfx_cs); + deferred_fence = true; + } else { + si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL); + } + } + + /* Both engines can signal out of order, so we need to keep both fences. */ + if (fence) { + struct si_multi_fence *multi_fence; + + if (flags & TC_FLUSH_ASYNC) { + multi_fence = (struct si_multi_fence *)*fence; + assert(multi_fence); + } else { + multi_fence = si_create_multi_fence(); + if (!multi_fence) { + ws->fence_reference(&sdma_fence, NULL); + ws->fence_reference(&gfx_fence, NULL); + goto finish; + } + + screen->fence_reference(screen, fence, NULL); + *fence = (struct pipe_fence_handle*)multi_fence; + } + + /* If both fences are NULL, fence_finish will always return true. */ + multi_fence->gfx = gfx_fence; + multi_fence->sdma = sdma_fence; + + if (deferred_fence) { + multi_fence->gfx_unflushed.ctx = sctx; + multi_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes; + } + + multi_fence->fine = fine; + fine.buf = NULL; + + if (flags & TC_FLUSH_ASYNC) { + util_queue_fence_signal(&multi_fence->ready); + tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL); + } + } + assert(!fine.buf); +finish: + if (!(flags & PIPE_FLUSH_DEFERRED)) { + if (sctx->dma_cs) + ws->cs_sync_flush(sctx->dma_cs); + ws->cs_sync_flush(sctx->gfx_cs); + } +} + +static void si_fence_server_signal(struct pipe_context *ctx, + struct pipe_fence_handle *fence) +{ + struct si_context *sctx = (struct si_context *)ctx; + struct si_multi_fence *rfence = (struct si_multi_fence *)fence; + + /* We should have at least one syncobj to signal */ + assert(rfence->sdma || rfence->gfx); + + if (rfence->sdma) + si_add_syncobj_signal(sctx, rfence->sdma); + if (rfence->gfx) + si_add_syncobj_signal(sctx, rfence->gfx); + + /** + * The spec does not require a flush here. We insert a flush + * because syncobj based signals are not directly placed into + * the command stream. Instead the signal happens when the + * submission associated with the syncobj finishes execution. + * + * Therefore, we must make sure that we flush the pipe to avoid + * new work being emitted and getting executed before the signal + * operation. + */ + si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC); +} + +static void si_fence_server_sync(struct pipe_context *ctx, + struct pipe_fence_handle *fence) +{ + struct si_context *sctx = (struct si_context *)ctx; + struct si_multi_fence *rfence = (struct si_multi_fence *)fence; + + util_queue_fence_wait(&rfence->ready); + + /* Unflushed fences from the same context are no-ops. */ + if (rfence->gfx_unflushed.ctx && + rfence->gfx_unflushed.ctx == sctx) + return; + + /* All unflushed commands will not start execution before + * this fence dependency is signalled. + * + * Therefore we must flush before inserting the dependency + */ + si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC); + + if (rfence->sdma) + si_add_fence_dependency(sctx, rfence->sdma); + if (rfence->gfx) + si_add_fence_dependency(sctx, rfence->gfx); +} + +void si_init_fence_functions(struct si_context *ctx) +{ + ctx->b.flush = si_flush_from_st; + ctx->b.create_fence_fd = si_create_fence_fd; + ctx->b.fence_server_sync = si_fence_server_sync; + ctx->b.fence_server_signal = si_fence_server_signal; +} + +void si_init_screen_fence_functions(struct si_screen *screen) +{ + screen->b.fence_finish = si_fence_finish; + screen->b.fence_reference = si_fence_reference; + screen->b.fence_get_fd = si_fence_get_fd; +} |