summaryrefslogtreecommitdiff
path: root/lib/mesa/src/gallium/drivers/radeonsi/si_fence.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mesa/src/gallium/drivers/radeonsi/si_fence.c')
-rw-r--r--lib/mesa/src/gallium/drivers/radeonsi/si_fence.c656
1 files changed, 656 insertions, 0 deletions
diff --git a/lib/mesa/src/gallium/drivers/radeonsi/si_fence.c b/lib/mesa/src/gallium/drivers/radeonsi/si_fence.c
new file mode 100644
index 000000000..3f22ee31a
--- /dev/null
+++ b/lib/mesa/src/gallium/drivers/radeonsi/si_fence.c
@@ -0,0 +1,656 @@
+/*
+ * Copyright 2013-2017 Advanced Micro Devices, Inc.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ *
+ */
+
+#include <libsync.h>
+
+#include "util/os_time.h"
+#include "util/u_memory.h"
+#include "util/u_queue.h"
+#include "util/u_upload_mgr.h"
+
+#include "si_build_pm4.h"
+
+struct si_fine_fence {
+ struct r600_resource *buf;
+ unsigned offset;
+};
+
+struct si_multi_fence {
+ struct pipe_reference reference;
+ struct pipe_fence_handle *gfx;
+ struct pipe_fence_handle *sdma;
+ struct tc_unflushed_batch_token *tc_token;
+ struct util_queue_fence ready;
+
+ /* If the context wasn't flushed at fence creation, this is non-NULL. */
+ struct {
+ struct si_context *ctx;
+ unsigned ib_index;
+ } gfx_unflushed;
+
+ struct si_fine_fence fine;
+};
+
+/**
+ * Write an EOP event.
+ *
+ * \param event EVENT_TYPE_*
+ * \param event_flags Optional cache flush flags (TC)
+ * \param dst_sel MEM or TC_L2
+ * \param int_sel NONE or SEND_DATA_AFTER_WR_CONFIRM
+ * \param data_sel DISCARD, VALUE_32BIT, TIMESTAMP, or GDS
+ * \param buf Buffer
+ * \param va GPU address
+ * \param old_value Previous fence value (for a bug workaround)
+ * \param new_value Fence value to write for this event.
+ */
+void si_cp_release_mem(struct si_context *ctx,
+ unsigned event, unsigned event_flags,
+ unsigned dst_sel, unsigned int_sel, unsigned data_sel,
+ struct r600_resource *buf, uint64_t va,
+ uint32_t new_fence, unsigned query_type)
+{
+ struct radeon_cmdbuf *cs = ctx->gfx_cs;
+ unsigned op = EVENT_TYPE(event) |
+ EVENT_INDEX(event == V_028A90_CS_DONE ||
+ event == V_028A90_PS_DONE ? 6 : 5) |
+ event_flags;
+ unsigned sel = EOP_DST_SEL(dst_sel) |
+ EOP_INT_SEL(int_sel) |
+ EOP_DATA_SEL(data_sel);
+
+ if (ctx->chip_class >= GFX9) {
+ /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
+ * counters) must immediately precede every timestamp event to
+ * prevent a GPU hang on GFX9.
+ *
+ * Occlusion queries don't need to do it here, because they
+ * always do ZPASS_DONE before the timestamp.
+ */
+ if (ctx->chip_class == GFX9 &&
+ query_type != PIPE_QUERY_OCCLUSION_COUNTER &&
+ query_type != PIPE_QUERY_OCCLUSION_PREDICATE &&
+ query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) {
+ struct r600_resource *scratch = ctx->eop_bug_scratch;
+
+ assert(16 * ctx->screen->info.num_render_backends <=
+ scratch->b.b.width0);
+ radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
+ radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
+ radeon_emit(cs, scratch->gpu_address);
+ radeon_emit(cs, scratch->gpu_address >> 32);
+
+ radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch,
+ RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
+ }
+
+ radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, 6, 0));
+ radeon_emit(cs, op);
+ radeon_emit(cs, sel);
+ radeon_emit(cs, va); /* address lo */
+ radeon_emit(cs, va >> 32); /* address hi */
+ radeon_emit(cs, new_fence); /* immediate data lo */
+ radeon_emit(cs, 0); /* immediate data hi */
+ radeon_emit(cs, 0); /* unused */
+ } else {
+ if (ctx->chip_class == CIK ||
+ ctx->chip_class == VI) {
+ struct r600_resource *scratch = ctx->eop_bug_scratch;
+ uint64_t va = scratch->gpu_address;
+
+ /* Two EOP events are required to make all engines go idle
+ * (and optional cache flushes executed) before the timestamp
+ * is written.
+ */
+ radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
+ radeon_emit(cs, op);
+ radeon_emit(cs, va);
+ radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
+ radeon_emit(cs, 0); /* immediate data */
+ radeon_emit(cs, 0); /* unused */
+
+ radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch,
+ RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
+ }
+
+ radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
+ radeon_emit(cs, op);
+ radeon_emit(cs, va);
+ radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
+ radeon_emit(cs, new_fence); /* immediate data */
+ radeon_emit(cs, 0); /* unused */
+ }
+
+ if (buf) {
+ radeon_add_to_buffer_list(ctx, ctx->gfx_cs, buf, RADEON_USAGE_WRITE,
+ RADEON_PRIO_QUERY);
+ }
+}
+
+unsigned si_cp_write_fence_dwords(struct si_screen *screen)
+{
+ unsigned dwords = 6;
+
+ if (screen->info.chip_class == CIK ||
+ screen->info.chip_class == VI)
+ dwords *= 2;
+
+ return dwords;
+}
+
+void si_cp_wait_mem(struct si_context *ctx,
+ uint64_t va, uint32_t ref, uint32_t mask, unsigned flags)
+{
+ struct radeon_cmdbuf *cs = ctx->gfx_cs;
+
+ radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
+ radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1) | flags);
+ radeon_emit(cs, va);
+ radeon_emit(cs, va >> 32);
+ radeon_emit(cs, ref); /* reference value */
+ radeon_emit(cs, mask); /* mask */
+ radeon_emit(cs, 4); /* poll interval */
+}
+
+static void si_add_fence_dependency(struct si_context *sctx,
+ struct pipe_fence_handle *fence)
+{
+ struct radeon_winsys *ws = sctx->ws;
+
+ if (sctx->dma_cs)
+ ws->cs_add_fence_dependency(sctx->dma_cs, fence);
+ ws->cs_add_fence_dependency(sctx->gfx_cs, fence);
+}
+
+static void si_add_syncobj_signal(struct si_context *sctx,
+ struct pipe_fence_handle *fence)
+{
+ sctx->ws->cs_add_syncobj_signal(sctx->gfx_cs, fence);
+}
+
+static void si_fence_reference(struct pipe_screen *screen,
+ struct pipe_fence_handle **dst,
+ struct pipe_fence_handle *src)
+{
+ struct radeon_winsys *ws = ((struct si_screen*)screen)->ws;
+ struct si_multi_fence **rdst = (struct si_multi_fence **)dst;
+ struct si_multi_fence *rsrc = (struct si_multi_fence *)src;
+
+ if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
+ ws->fence_reference(&(*rdst)->gfx, NULL);
+ ws->fence_reference(&(*rdst)->sdma, NULL);
+ tc_unflushed_batch_token_reference(&(*rdst)->tc_token, NULL);
+ r600_resource_reference(&(*rdst)->fine.buf, NULL);
+ FREE(*rdst);
+ }
+ *rdst = rsrc;
+}
+
+static struct si_multi_fence *si_create_multi_fence()
+{
+ struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence);
+ if (!fence)
+ return NULL;
+
+ pipe_reference_init(&fence->reference, 1);
+ util_queue_fence_init(&fence->ready);
+
+ return fence;
+}
+
+struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
+ struct tc_unflushed_batch_token *tc_token)
+{
+ struct si_multi_fence *fence = si_create_multi_fence();
+ if (!fence)
+ return NULL;
+
+ util_queue_fence_reset(&fence->ready);
+ tc_unflushed_batch_token_reference(&fence->tc_token, tc_token);
+
+ return (struct pipe_fence_handle *)fence;
+}
+
+static bool si_fine_fence_signaled(struct radeon_winsys *rws,
+ const struct si_fine_fence *fine)
+{
+ char *map = rws->buffer_map(fine->buf->buf, NULL, PIPE_TRANSFER_READ |
+ PIPE_TRANSFER_UNSYNCHRONIZED);
+ if (!map)
+ return false;
+
+ uint32_t *fence = (uint32_t*)(map + fine->offset);
+ return *fence != 0;
+}
+
+static void si_fine_fence_set(struct si_context *ctx,
+ struct si_fine_fence *fine,
+ unsigned flags)
+{
+ uint32_t *fence_ptr;
+
+ assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
+
+ /* Use uncached system memory for the fence. */
+ u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4,
+ &fine->offset, (struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
+ if (!fine->buf)
+ return;
+
+ *fence_ptr = 0;
+
+ uint64_t fence_va = fine->buf->gpu_address + fine->offset;
+
+ radeon_add_to_buffer_list(ctx, ctx->gfx_cs, fine->buf,
+ RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
+ if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
+ struct radeon_cmdbuf *cs = ctx->gfx_cs;
+ radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
+ radeon_emit(cs, S_370_DST_SEL(V_370_MEM_ASYNC) |
+ S_370_WR_CONFIRM(1) |
+ S_370_ENGINE_SEL(V_370_PFP));
+ radeon_emit(cs, fence_va);
+ radeon_emit(cs, fence_va >> 32);
+ radeon_emit(cs, 0x80000000);
+ } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
+ si_cp_release_mem(ctx,
+ V_028A90_BOTTOM_OF_PIPE_TS, 0,
+ EOP_DST_SEL_MEM,
+ EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM,
+ EOP_DATA_SEL_VALUE_32BIT,
+ NULL, fence_va, 0x80000000,
+ PIPE_QUERY_GPU_FINISHED);
+ } else {
+ assert(false);
+ }
+}
+
+static boolean si_fence_finish(struct pipe_screen *screen,
+ struct pipe_context *ctx,
+ struct pipe_fence_handle *fence,
+ uint64_t timeout)
+{
+ struct radeon_winsys *rws = ((struct si_screen*)screen)->ws;
+ struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
+ struct si_context *sctx;
+ int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
+
+ ctx = threaded_context_unwrap_sync(ctx);
+ sctx = (struct si_context*)(ctx ? ctx : NULL);
+
+ if (!util_queue_fence_is_signalled(&rfence->ready)) {
+ if (rfence->tc_token) {
+ /* Ensure that si_flush_from_st will be called for
+ * this fence, but only if we're in the API thread
+ * where the context is current.
+ *
+ * Note that the batch containing the flush may already
+ * be in flight in the driver thread, so the fence
+ * may not be ready yet when this call returns.
+ */
+ threaded_context_flush(ctx, rfence->tc_token,
+ timeout == 0);
+ }
+
+ if (!timeout)
+ return false;
+
+ if (timeout == PIPE_TIMEOUT_INFINITE) {
+ util_queue_fence_wait(&rfence->ready);
+ } else {
+ if (!util_queue_fence_wait_timeout(&rfence->ready, abs_timeout))
+ return false;
+ }
+
+ if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
+ int64_t time = os_time_get_nano();
+ timeout = abs_timeout > time ? abs_timeout - time : 0;
+ }
+ }
+
+ if (rfence->sdma) {
+ if (!rws->fence_wait(rws, rfence->sdma, timeout))
+ return false;
+
+ /* Recompute the timeout after waiting. */
+ if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
+ int64_t time = os_time_get_nano();
+ timeout = abs_timeout > time ? abs_timeout - time : 0;
+ }
+ }
+
+ if (!rfence->gfx)
+ return true;
+
+ if (rfence->fine.buf &&
+ si_fine_fence_signaled(rws, &rfence->fine)) {
+ rws->fence_reference(&rfence->gfx, NULL);
+ r600_resource_reference(&rfence->fine.buf, NULL);
+ return true;
+ }
+
+ /* Flush the gfx IB if it hasn't been flushed yet. */
+ if (sctx && rfence->gfx_unflushed.ctx == sctx &&
+ rfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) {
+ /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
+ * spec says:
+ *
+ * "If the sync object being blocked upon will not be
+ * signaled in finite time (for example, by an associated
+ * fence command issued previously, but not yet flushed to
+ * the graphics pipeline), then ClientWaitSync may hang
+ * forever. To help prevent this behavior, if
+ * ClientWaitSync is called and all of the following are
+ * true:
+ *
+ * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
+ * * sync is unsignaled when ClientWaitSync is called,
+ * * and the calls to ClientWaitSync and FenceSync were
+ * issued from the same context,
+ *
+ * then the GL will behave as if the equivalent of Flush
+ * were inserted immediately after the creation of sync."
+ *
+ * This means we need to flush for such fences even when we're
+ * not going to wait.
+ */
+ si_flush_gfx_cs(sctx,
+ (timeout ? 0 : PIPE_FLUSH_ASYNC) |
+ RADEON_FLUSH_START_NEXT_GFX_IB_NOW,
+ NULL);
+ rfence->gfx_unflushed.ctx = NULL;
+
+ if (!timeout)
+ return false;
+
+ /* Recompute the timeout after all that. */
+ if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
+ int64_t time = os_time_get_nano();
+ timeout = abs_timeout > time ? abs_timeout - time : 0;
+ }
+ }
+
+ if (rws->fence_wait(rws, rfence->gfx, timeout))
+ return true;
+
+ /* Re-check in case the GPU is slow or hangs, but the commands before
+ * the fine-grained fence have completed. */
+ if (rfence->fine.buf &&
+ si_fine_fence_signaled(rws, &rfence->fine))
+ return true;
+
+ return false;
+}
+
+static void si_create_fence_fd(struct pipe_context *ctx,
+ struct pipe_fence_handle **pfence, int fd,
+ enum pipe_fd_type type)
+{
+ struct si_screen *sscreen = (struct si_screen*)ctx->screen;
+ struct radeon_winsys *ws = sscreen->ws;
+ struct si_multi_fence *rfence;
+
+ *pfence = NULL;
+
+ rfence = si_create_multi_fence();
+ if (!rfence)
+ return;
+
+ switch (type) {
+ case PIPE_FD_TYPE_NATIVE_SYNC:
+ if (!sscreen->info.has_fence_to_handle)
+ goto finish;
+
+ rfence->gfx = ws->fence_import_sync_file(ws, fd);
+ break;
+
+ case PIPE_FD_TYPE_SYNCOBJ:
+ if (!sscreen->info.has_syncobj)
+ goto finish;
+
+ rfence->gfx = ws->fence_import_syncobj(ws, fd);
+ break;
+
+ default:
+ unreachable("bad fence fd type when importing");
+ }
+
+finish:
+ if (!rfence->gfx) {
+ FREE(rfence);
+ return;
+ }
+
+ *pfence = (struct pipe_fence_handle*)rfence;
+}
+
+static int si_fence_get_fd(struct pipe_screen *screen,
+ struct pipe_fence_handle *fence)
+{
+ struct si_screen *sscreen = (struct si_screen*)screen;
+ struct radeon_winsys *ws = sscreen->ws;
+ struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
+ int gfx_fd = -1, sdma_fd = -1;
+
+ if (!sscreen->info.has_fence_to_handle)
+ return -1;
+
+ util_queue_fence_wait(&rfence->ready);
+
+ /* Deferred fences aren't supported. */
+ assert(!rfence->gfx_unflushed.ctx);
+ if (rfence->gfx_unflushed.ctx)
+ return -1;
+
+ if (rfence->sdma) {
+ sdma_fd = ws->fence_export_sync_file(ws, rfence->sdma);
+ if (sdma_fd == -1)
+ return -1;
+ }
+ if (rfence->gfx) {
+ gfx_fd = ws->fence_export_sync_file(ws, rfence->gfx);
+ if (gfx_fd == -1) {
+ if (sdma_fd != -1)
+ close(sdma_fd);
+ return -1;
+ }
+ }
+
+ /* If we don't have FDs at this point, it means we don't have fences
+ * either. */
+ if (sdma_fd == -1 && gfx_fd == -1)
+ return ws->export_signalled_sync_file(ws);
+ if (sdma_fd == -1)
+ return gfx_fd;
+ if (gfx_fd == -1)
+ return sdma_fd;
+
+ /* Get a fence that will be a combination of both fences. */
+ sync_accumulate("radeonsi", &gfx_fd, sdma_fd);
+ close(sdma_fd);
+ return gfx_fd;
+}
+
+static void si_flush_from_st(struct pipe_context *ctx,
+ struct pipe_fence_handle **fence,
+ unsigned flags)
+{
+ struct pipe_screen *screen = ctx->screen;
+ struct si_context *sctx = (struct si_context *)ctx;
+ struct radeon_winsys *ws = sctx->ws;
+ struct pipe_fence_handle *gfx_fence = NULL;
+ struct pipe_fence_handle *sdma_fence = NULL;
+ bool deferred_fence = false;
+ struct si_fine_fence fine = {};
+ unsigned rflags = PIPE_FLUSH_ASYNC;
+
+ if (flags & PIPE_FLUSH_END_OF_FRAME)
+ rflags |= PIPE_FLUSH_END_OF_FRAME;
+
+ if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
+ assert(flags & PIPE_FLUSH_DEFERRED);
+ assert(fence);
+
+ si_fine_fence_set(sctx, &fine, flags);
+ }
+
+ /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
+ if (sctx->dma_cs)
+ si_flush_dma_cs(sctx, rflags, fence ? &sdma_fence : NULL);
+
+ if (!radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size)) {
+ if (fence)
+ ws->fence_reference(&gfx_fence, sctx->last_gfx_fence);
+ if (!(flags & PIPE_FLUSH_DEFERRED))
+ ws->cs_sync_flush(sctx->gfx_cs);
+ } else {
+ /* Instead of flushing, create a deferred fence. Constraints:
+ * - The state tracker must allow a deferred flush.
+ * - The state tracker must request a fence.
+ * - fence_get_fd is not allowed.
+ * Thread safety in fence_finish must be ensured by the state tracker.
+ */
+ if (flags & PIPE_FLUSH_DEFERRED &&
+ !(flags & PIPE_FLUSH_FENCE_FD) &&
+ fence) {
+ gfx_fence = sctx->ws->cs_get_next_fence(sctx->gfx_cs);
+ deferred_fence = true;
+ } else {
+ si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL);
+ }
+ }
+
+ /* Both engines can signal out of order, so we need to keep both fences. */
+ if (fence) {
+ struct si_multi_fence *multi_fence;
+
+ if (flags & TC_FLUSH_ASYNC) {
+ multi_fence = (struct si_multi_fence *)*fence;
+ assert(multi_fence);
+ } else {
+ multi_fence = si_create_multi_fence();
+ if (!multi_fence) {
+ ws->fence_reference(&sdma_fence, NULL);
+ ws->fence_reference(&gfx_fence, NULL);
+ goto finish;
+ }
+
+ screen->fence_reference(screen, fence, NULL);
+ *fence = (struct pipe_fence_handle*)multi_fence;
+ }
+
+ /* If both fences are NULL, fence_finish will always return true. */
+ multi_fence->gfx = gfx_fence;
+ multi_fence->sdma = sdma_fence;
+
+ if (deferred_fence) {
+ multi_fence->gfx_unflushed.ctx = sctx;
+ multi_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes;
+ }
+
+ multi_fence->fine = fine;
+ fine.buf = NULL;
+
+ if (flags & TC_FLUSH_ASYNC) {
+ util_queue_fence_signal(&multi_fence->ready);
+ tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL);
+ }
+ }
+ assert(!fine.buf);
+finish:
+ if (!(flags & PIPE_FLUSH_DEFERRED)) {
+ if (sctx->dma_cs)
+ ws->cs_sync_flush(sctx->dma_cs);
+ ws->cs_sync_flush(sctx->gfx_cs);
+ }
+}
+
+static void si_fence_server_signal(struct pipe_context *ctx,
+ struct pipe_fence_handle *fence)
+{
+ struct si_context *sctx = (struct si_context *)ctx;
+ struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
+
+ /* We should have at least one syncobj to signal */
+ assert(rfence->sdma || rfence->gfx);
+
+ if (rfence->sdma)
+ si_add_syncobj_signal(sctx, rfence->sdma);
+ if (rfence->gfx)
+ si_add_syncobj_signal(sctx, rfence->gfx);
+
+ /**
+ * The spec does not require a flush here. We insert a flush
+ * because syncobj based signals are not directly placed into
+ * the command stream. Instead the signal happens when the
+ * submission associated with the syncobj finishes execution.
+ *
+ * Therefore, we must make sure that we flush the pipe to avoid
+ * new work being emitted and getting executed before the signal
+ * operation.
+ */
+ si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC);
+}
+
+static void si_fence_server_sync(struct pipe_context *ctx,
+ struct pipe_fence_handle *fence)
+{
+ struct si_context *sctx = (struct si_context *)ctx;
+ struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
+
+ util_queue_fence_wait(&rfence->ready);
+
+ /* Unflushed fences from the same context are no-ops. */
+ if (rfence->gfx_unflushed.ctx &&
+ rfence->gfx_unflushed.ctx == sctx)
+ return;
+
+ /* All unflushed commands will not start execution before
+ * this fence dependency is signalled.
+ *
+ * Therefore we must flush before inserting the dependency
+ */
+ si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC);
+
+ if (rfence->sdma)
+ si_add_fence_dependency(sctx, rfence->sdma);
+ if (rfence->gfx)
+ si_add_fence_dependency(sctx, rfence->gfx);
+}
+
+void si_init_fence_functions(struct si_context *ctx)
+{
+ ctx->b.flush = si_flush_from_st;
+ ctx->b.create_fence_fd = si_create_fence_fd;
+ ctx->b.fence_server_sync = si_fence_server_sync;
+ ctx->b.fence_server_signal = si_fence_server_signal;
+}
+
+void si_init_screen_fence_functions(struct si_screen *screen)
+{
+ screen->b.fence_finish = si_fence_finish;
+ screen->b.fence_reference = si_fence_reference;
+ screen->b.fence_get_fd = si_fence_get_fd;
+}