summaryrefslogtreecommitdiff
path: root/lib/mesa/src/intel/isl/isl.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mesa/src/intel/isl/isl.h')
-rw-r--r--lib/mesa/src/intel/isl/isl.h484
1 files changed, 466 insertions, 18 deletions
diff --git a/lib/mesa/src/intel/isl/isl.h b/lib/mesa/src/intel/isl/isl.h
index 11ad8919e..dafe95229 100644
--- a/lib/mesa/src/intel/isl/isl.h
+++ b/lib/mesa/src/intel/isl/isl.h
@@ -353,6 +353,20 @@ enum isl_format {
ISL_FORMAT_ASTC_LDR_2D_10X10_FLT16 = 630,
ISL_FORMAT_ASTC_LDR_2D_12X10_FLT16 = 638,
ISL_FORMAT_ASTC_LDR_2D_12X12_FLT16 = 639,
+ ISL_FORMAT_ASTC_HDR_2D_4X4_FLT16 = 832,
+ ISL_FORMAT_ASTC_HDR_2D_5X4_FLT16 = 840,
+ ISL_FORMAT_ASTC_HDR_2D_5X5_FLT16 = 841,
+ ISL_FORMAT_ASTC_HDR_2D_6X5_FLT16 = 849,
+ ISL_FORMAT_ASTC_HDR_2D_6X6_FLT16 = 850,
+ ISL_FORMAT_ASTC_HDR_2D_8X5_FLT16 = 865,
+ ISL_FORMAT_ASTC_HDR_2D_8X6_FLT16 = 866,
+ ISL_FORMAT_ASTC_HDR_2D_8X8_FLT16 = 868,
+ ISL_FORMAT_ASTC_HDR_2D_10X5_FLT16 = 881,
+ ISL_FORMAT_ASTC_HDR_2D_10X6_FLT16 = 882,
+ ISL_FORMAT_ASTC_HDR_2D_10X8_FLT16 = 884,
+ ISL_FORMAT_ASTC_HDR_2D_10X10_FLT16 = 886,
+ ISL_FORMAT_ASTC_HDR_2D_12X10_FLT16 = 894,
+ ISL_FORMAT_ASTC_HDR_2D_12X12_FLT16 = 895,
/* The formats that follow are internal to ISL and as such don't have an
* explicit number. We'll just let the C compiler assign it for us. Any
@@ -514,6 +528,46 @@ enum isl_dim_layout {
ISL_DIM_LAYOUT_GEN4_3D,
/**
+ * Special layout used for HiZ and stencil on Sandy Bridge to work around
+ * the hardware's lack of mipmap support. On gen6, HiZ and stencil buffers
+ * work the same as on gen7+ except that they don't technically support
+ * mipmapping. That does not, however, stop us from doing it. As far as
+ * Sandy Bridge hardware is concerned, HiZ and stencil always operates on a
+ * single miplevel 2D (possibly array) image. The dimensions of that image
+ * are NOT minified.
+ *
+ * In order to implement HiZ and stencil on Sandy Bridge, we create one
+ * full-sized 2D (possibly array) image for every LOD with every image
+ * aligned to a page boundary. When the surface is used with the stencil
+ * or HiZ hardware, we manually offset to the image for the given LOD.
+ *
+ * As a memory saving measure, we pretend that the width of each miplevel
+ * is minified and we place LOD1 and above below LOD0 but horizontally
+ * adjacent to each other. When considered as full-sized images, LOD1 and
+ * above technically overlap. However, since we only write to part of that
+ * image, the hardware will never notice the overlap.
+ *
+ * This layout looks something like this:
+ *
+ * +---------+
+ * | |
+ * | |
+ * +---------+
+ * | |
+ * | |
+ * +---------+
+ *
+ * +----+ +-+ .
+ * | | +-+
+ * +----+
+ *
+ * +----+ +-+ .
+ * | | +-+
+ * +----+
+ */
+ ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ,
+
+ /**
* For details, see the Skylake BSpec >> Memory Views >> Common Surface
* Formats >> Surface Layout and Tiling >> ยป 1D Surfaces.
*/
@@ -546,6 +600,193 @@ enum isl_aux_usage {
ISL_AUX_USAGE_CCS_E,
};
+/**
+ * Enum for keeping track of the state an auxiliary compressed surface.
+ *
+ * For any given auxiliary surface compression format (HiZ, CCS, or MCS), any
+ * given slice (lod + array layer) can be in one of the six states described
+ * by this enum. Draw and resolve operations may cause the slice to change
+ * from one state to another. The six valid states are:
+ *
+ * 1) Clear: In this state, each block in the auxiliary surface contains a
+ * magic value that indicates that the block is in the clear state. If
+ * a block is in the clear state, it's values in the primary surface are
+ * ignored and the color of the samples in the block is taken either the
+ * RENDER_SURFACE_STATE packet for color or 3DSTATE_CLEAR_PARAMS for
+ * depth. Since neither the primary surface nor the auxiliary surface
+ * contains the clear value, the surface can be cleared to a different
+ * color by simply changing the clear color without modifying either
+ * surface.
+ *
+ * 2) Partial Clear: In this state, each block in the auxiliary surface
+ * contains either the magic clear or pass-through value. See Clear and
+ * Pass-through for more details.
+ *
+ * 3) Compressed w/ Clear: In this state, neither the auxiliary surface
+ * nor the primary surface has a complete representation of the data.
+ * Instead, both surfaces must be used together or else rendering
+ * corruption may occur. Depending on the auxiliary compression format
+ * and the data, any given block in the primary surface may contain all,
+ * some, or none of the data required to reconstruct the actual sample
+ * values. Blocks may also be in the clear state (see Clear) and have
+ * their value taken from outside the surface.
+ *
+ * 4) Compressed w/o Clear: This state is identical to the state above
+ * except that no blocks are in the clear state. In this state, all of
+ * the data required to reconstruct the final sample values is contained
+ * in the auxiliary and primary surface and the clear value is not
+ * considered.
+ *
+ * 5) Resolved: In this state, the primary surface contains 100% of the
+ * data. The auxiliary surface is also valid so the surface can be
+ * validly used with or without aux enabled. The auxiliary surface may,
+ * however, contain non-trivial data and any update to the primary
+ * surface with aux disabled will cause the two to get out of sync.
+ *
+ * 6) Pass-through: In this state, the primary surface contains 100% of the
+ * data and every block in the auxiliary surface contains a magic value
+ * which indicates that the auxiliary surface should be ignored and the
+ * only the primary surface should be considered. Updating the primary
+ * surface without aux works fine and can be done repeatedly in this
+ * mode. Writing to a surface in pass-through mode with aux enabled may
+ * cause the auxiliary buffer to contain non-trivial data and no longer
+ * be in the pass-through state.
+ *
+ * 7) Aux Invalid: In this state, the primary surface contains 100% of the
+ * data and the auxiliary surface is completely bogus. Any attempt to
+ * use the auxiliary surface is liable to result in rendering
+ * corruption. The only thing that one can do to re-enable aux once
+ * this state is reached is to use an ambiguate pass to transition into
+ * the pass-through state.
+ *
+ * Drawing with or without aux enabled may implicitly cause the surface to
+ * transition between these states. There are also four types of auxiliary
+ * compression operations which cause an explicit transition:
+ *
+ * 1) Fast Clear: This operation writes the magic "clear" value to the
+ * auxiliary surface. This operation will safely transition any slice
+ * of a surface from any state to the clear state so long as the entire
+ * slice is fast cleared at once. A fast clear that only covers part of
+ * a slice of a surface is called a partial fast clear.
+ *
+ * 2) Full Resolve: This operation combines the auxiliary surface data
+ * with the primary surface data and writes the result to the primary.
+ * For HiZ, the docs call this a depth resolve. For CCS, the hardware
+ * full resolve operation does both a full resolve and an ambiguate so
+ * it actually takes you all the way to the pass-through state.
+ *
+ * 3) Partial Resolve: This operation considers blocks which are in the
+ * "clear" state and writes the clear value directly into the primary or
+ * auxiliary surface. Once this operation completes, the surface is
+ * still compressed but no longer references the clear color. This
+ * operation is only available for CCS.
+ *
+ * 4) Ambiguate: This operation throws away the current auxiliary data and
+ * replaces it with the magic pass-through value. If an ambiguate
+ * operation is performed when the primary surface does not contain 100%
+ * of the data, data will be lost. This operation is only implemented
+ * in hardware for depth where it is called a HiZ resolve.
+ *
+ * Not all operations are valid or useful in all states. The diagram below
+ * contains a complete description of the states and all valid and useful
+ * transitions except clear.
+ *
+ * Draw w/ Aux
+ * +----------+
+ * | |
+ * | +-------------+ Draw w/ Aux +-------------+
+ * +------>| Compressed |<-------------------| Clear |
+ * | w/ Clear |----->----+ | |
+ * +-------------+ | +-------------+
+ * | /|\ | | |
+ * | | | | |
+ * | | +------<-----+ | Draw w/
+ * | | | | Clear Only
+ * | | Full | | +----------+
+ * Partial | | Resolve | \|/ | |
+ * Resolve | | | +-------------+ |
+ * | | | | Partial |<------+
+ * | | | | Clear |<----------+
+ * | | | +-------------+ |
+ * | | | | |
+ * | | +------>---------+ Full |
+ * | | | Resolve |
+ * Draw w/ aux | | Partial Fast Clear | |
+ * +----------+ | +--------------------------+ | |
+ * | | \|/ | \|/ |
+ * | +-------------+ Full Resolve +-------------+ |
+ * +------>| Compressed |------------------->| Resolved | |
+ * | w/o Clear |<-------------------| | |
+ * +-------------+ Draw w/ Aux +-------------+ |
+ * /|\ | | |
+ * | Draw | | Draw |
+ * | w/ Aux | | w/o Aux |
+ * | Ambiguate | | |
+ * | +--------------------------+ | |
+ * Draw w/o Aux | | | Draw w/o Aux |
+ * +----------+ | | | +----------+ |
+ * | | | \|/ \|/ | | |
+ * | +-------------+ Ambiguate +-------------+ | |
+ * +------>| Pass- |<-------------------| Aux |<------+ |
+ * +------>| through | | Invalid | |
+ * | +-------------+ +-------------+ |
+ * | | | |
+ * +----------+ +-----------------------------------------------------+
+ * Draw w/ Partial Fast Clear
+ * Clear Only
+ *
+ *
+ * While the above general theory applies to all forms of auxiliary
+ * compression on Intel hardware, not all states and operations are available
+ * on all compression types. However, each of the auxiliary states and
+ * operations can be fairly easily mapped onto the above diagram:
+ *
+ * HiZ: Hierarchical depth compression is capable of being in any of the
+ * states above. Hardware provides three HiZ operations: "Depth
+ * Clear", "Depth Resolve", and "HiZ Resolve" which map to "Fast
+ * Clear", "Full Resolve", and "Ambiguate" respectively. The
+ * hardware provides no HiZ partial resolve operation so the only way
+ * to get into the "Compressed w/o Clear" state is to render with HiZ
+ * when the surface is in the resolved or pass-through states.
+ *
+ * MCS: Multisample compression is technically capable of being in any of
+ * the states above except that most of them aren't useful. Both the
+ * render engine and the sampler support MCS compression and, apart
+ * from clear color, MCS is format-unaware so we leave the surface
+ * compressed 100% of the time. The hardware provides no MCS
+ * operations.
+ *
+ * CCS_D: Single-sample fast-clears (also called CCS_D in ISL) are one of
+ * the simplest forms of compression since they don't do anything
+ * beyond clear color tracking. They really only support three of
+ * the six states: Clear, Partial Clear, and Pass-through. The
+ * only CCS_D operation is "Resolve" which maps to a full resolve
+ * followed by an ambiguate.
+ *
+ * CCS_E: Single-sample render target compression (also called CCS_E in ISL)
+ * is capable of being in almost all of the above states. THe only
+ * exception is that it does not have separate resolved and pass-
+ * through states. Instead, the CCS_E full resolve operation does
+ * both a resolve and an ambiguate so it goes directly into the
+ * pass-through state. CCS_E also provides fast clear and partial
+ * resolve operations which work as described above.
+ *
+ * While it is technically possible to perform a CCS_E ambiguate, it
+ * is not provided by Sky Lake hardware so we choose to avoid the aux
+ * invalid state. If the aux invalid state were determined to be
+ * useful, a CCS ambiguate could be done by carefully rendering to
+ * the CCS and filling it with zeros.
+ */
+enum isl_aux_state {
+ ISL_AUX_STATE_CLEAR = 0,
+ ISL_AUX_STATE_PARTIAL_CLEAR,
+ ISL_AUX_STATE_COMPRESSED_CLEAR,
+ ISL_AUX_STATE_COMPRESSED_NO_CLEAR,
+ ISL_AUX_STATE_RESOLVED,
+ ISL_AUX_STATE_PASS_THROUGH,
+ ISL_AUX_STATE_AUX_INVALID,
+};
+
/* TODO(chadv): Explain */
enum isl_array_pitch_span {
ISL_ARRAY_PITCH_SPAN_FULL,
@@ -576,6 +817,21 @@ typedef uint64_t isl_surf_usage_flags_t;
/** @} */
/**
+ * @defgroup Channel Mask
+ *
+ * These #define values are chosen to match the values of
+ * RENDER_SURFACE_STATE::Color Buffer Component Write Disables
+ *
+ * @{
+ */
+typedef uint8_t isl_channel_mask_t;
+#define ISL_CHANNEL_BLUE_BIT (1 << 0)
+#define ISL_CHANNEL_GREEN_BIT (1 << 1)
+#define ISL_CHANNEL_RED_BIT (1 << 2)
+#define ISL_CHANNEL_ALPHA_BIT (1 << 3)
+/** @} */
+
+/**
* @brief A channel select (also known as texture swizzle) value
*/
enum isl_channel_select {
@@ -671,6 +927,32 @@ struct isl_device {
const struct gen_device_info *info;
bool use_separate_stencil;
bool has_bit6_swizzling;
+
+ /**
+ * Describes the layout of a RENDER_SURFACE_STATE structure for the
+ * current gen.
+ */
+ struct {
+ uint8_t size;
+ uint8_t align;
+ uint8_t addr_offset;
+ uint8_t aux_addr_offset;
+
+ /* Rounded up to the nearest dword to simplify GPU memcpy operations. */
+ uint8_t clear_value_size;
+ uint8_t clear_value_offset;
+ } ss;
+
+ /**
+ * Describes the layout of the depth/stencil/hiz commands as emitted by
+ * isl_emit_depth_stencil_hiz.
+ */
+ struct {
+ uint8_t size;
+ uint8_t depth_offset;
+ uint8_t stencil_offset;
+ uint8_t hiz_offset;
+ } ds;
};
struct isl_extent2d {
@@ -772,6 +1054,25 @@ struct isl_tile_info {
};
/**
+ * Metadata about a DRM format modifier.
+ */
+struct isl_drm_modifier_info {
+ uint64_t modifier;
+
+ /** Text name of the modifier */
+ const char *name;
+
+ /** ISL tiling implied by this modifier */
+ enum isl_tiling tiling;
+
+ /** ISL aux usage implied by this modifier */
+ enum isl_aux_usage aux_usage;
+
+ /** Whether or not this modifier supports clear color */
+ bool supports_clear_color;
+};
+
+/**
* @brief Input to surface initialization
*
* @invariant width >= 1
@@ -799,8 +1100,11 @@ struct isl_surf_init_info {
/** Lower bound for isl_surf::alignment, in bytes. */
uint32_t min_alignment;
- /** Lower bound for isl_surf::pitch, in bytes. */
- uint32_t min_pitch;
+ /**
+ * Exact value for isl_surf::row_pitch. Ignored if zero. isl_surf_init()
+ * will fail if this is misaligned or out of bounds.
+ */
+ uint32_t row_pitch;
isl_surf_usage_flags_t usage;
@@ -843,7 +1147,7 @@ struct isl_surf {
uint32_t samples;
/** Total size of the surface, in bytes. */
- uint32_t size;
+ uint64_t size;
/** Required alignment for the surface's base address. */
uint32_t alignment;
@@ -923,6 +1227,12 @@ struct isl_view {
* for texturing, they are ignored.
*/
uint32_t base_array_layer;
+
+ /**
+ * Array Length
+ *
+ * Indicates the number of array elements starting at Base Array Layer.
+ */
uint32_t array_len;
struct isl_swizzle swizzle;
@@ -964,6 +1274,11 @@ struct isl_surf_fill_state_info {
*/
union isl_color_value clear_color;
+ /**
+ * Surface write disables for gen4-5
+ */
+ isl_channel_mask_t write_disables;
+
/* Intra-tile offset */
uint16_t x_offset_sa, y_offset_sa;
};
@@ -997,6 +1312,61 @@ struct isl_buffer_fill_state_info {
uint32_t stride;
};
+struct isl_depth_stencil_hiz_emit_info {
+ /**
+ * The depth surface
+ */
+ const struct isl_surf *depth_surf;
+
+ /**
+ * The stencil surface
+ *
+ * If separate stencil is not available, this must point to the same
+ * isl_surf as depth_surf.
+ */
+ const struct isl_surf *stencil_surf;
+
+ /**
+ * The view into the depth and stencil surfaces.
+ *
+ * This view applies to both surfaces simultaneously.
+ */
+ const struct isl_view *view;
+
+ /**
+ * The address of the depth surface in GPU memory
+ */
+ uint64_t depth_address;
+
+ /**
+ * The address of the stencil surface in GPU memory
+ *
+ * If separate stencil is not available, this must have the same value as
+ * depth_address.
+ */
+ uint64_t stencil_address;
+
+ /**
+ * The Memory Object Control state for depth and stencil buffers
+ *
+ * Both depth and stencil will get the same MOCS value. The exact format
+ * of this value depends on hardware generation.
+ */
+ uint32_t mocs;
+
+ /**
+ * The HiZ surface or NULL if HiZ is disabled.
+ */
+ const struct isl_surf *hiz_surf;
+ enum isl_aux_usage hiz_usage;
+ uint64_t hiz_address;
+
+ /**
+ * The depth clear value
+ */
+ float depth_clear_value;
+};
+
extern const struct isl_format_layout isl_format_layouts[];
void
@@ -1029,11 +1399,21 @@ bool isl_format_supports_filtering(const struct gen_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_vertex_fetch(const struct gen_device_info *devinfo,
enum isl_format format);
-bool isl_format_supports_lossless_compression(const struct gen_device_info *devinfo,
- enum isl_format format);
+bool isl_format_supports_typed_writes(const struct gen_device_info *devinfo,
+ enum isl_format format);
+bool isl_format_supports_typed_reads(const struct gen_device_info *devinfo,
+ enum isl_format format);
+bool isl_format_supports_ccs_d(const struct gen_device_info *devinfo,
+ enum isl_format format);
+bool isl_format_supports_ccs_e(const struct gen_device_info *devinfo,
+ enum isl_format format);
bool isl_format_supports_multisampling(const struct gen_device_info *devinfo,
enum isl_format format);
+bool isl_formats_are_ccs_e_compatible(const struct gen_device_info *devinfo,
+ enum isl_format format1,
+ enum isl_format format2);
+
bool isl_format_has_unorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
bool isl_format_has_snorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
bool isl_format_has_ufloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
@@ -1119,6 +1499,14 @@ isl_format_block_is_1x1x1(enum isl_format fmt)
}
static inline bool
+isl_format_is_srgb(enum isl_format fmt)
+{
+ return isl_format_layouts[fmt].colorspace == ISL_COLORSPACE_SRGB;
+}
+
+enum isl_format isl_format_srgb_to_linear(enum isl_format fmt);
+
+static inline bool
isl_format_is_rgb(enum isl_format fmt)
{
return isl_format_layouts[fmt].channels.r.bits > 0 &&
@@ -1155,6 +1543,15 @@ isl_tiling_is_std_y(enum isl_tiling tiling)
return (1u << tiling) & ISL_TILING_STD_Y_MASK;
}
+uint32_t
+isl_tiling_to_i915_tiling(enum isl_tiling tiling);
+
+enum isl_tiling
+isl_tiling_from_i915_tiling(uint32_t tiling);
+
+const struct isl_drm_modifier_info * ATTRIBUTE_CONST
+isl_drm_modifier_get_info(uint64_t modifier);
+
struct isl_extent2d ATTRIBUTE_CONST
isl_get_interleaved_msaa_px_size_sa(uint32_t samples);
@@ -1240,6 +1637,9 @@ isl_extent4d(uint32_t width, uint32_t height, uint32_t depth,
return e;
}
+bool isl_color_value_is_zero_one(union isl_color_value value,
+ enum isl_format format);
+
#define isl_surf_init(dev, surf, ...) \
isl_surf_init_s((dev), (surf), \
&(struct isl_surf_init_info) { __VA_ARGS__ });
@@ -1250,16 +1650,15 @@ isl_surf_init_s(const struct isl_device *dev,
const struct isl_surf_init_info *restrict info);
void
-isl_surf_get_tile_info(const struct isl_device *dev,
- const struct isl_surf *surf,
+isl_surf_get_tile_info(const struct isl_surf *surf,
struct isl_tile_info *tile_info);
-void
+bool
isl_surf_get_hiz_surf(const struct isl_device *dev,
const struct isl_surf *surf,
struct isl_surf *hiz_surf);
-void
+bool
isl_surf_get_mcs_surf(const struct isl_device *dev,
const struct isl_surf *surf,
struct isl_surf *mcs_surf);
@@ -1267,7 +1666,8 @@ isl_surf_get_mcs_surf(const struct isl_device *dev,
bool
isl_surf_get_ccs_surf(const struct isl_device *dev,
const struct isl_surf *surf,
- struct isl_surf *ccs_surf);
+ struct isl_surf *ccs_surf,
+ uint32_t row_pitch /**< Ignored if 0 */);
#define isl_surf_fill_state(dev, state, ...) \
isl_surf_fill_state_s((dev), (state), \
@@ -1285,6 +1685,14 @@ void
isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
const struct isl_buffer_fill_state_info *restrict info);
+#define isl_emit_depth_stencil_hiz(dev, batch, ...) \
+ isl_emit_depth_stencil_hiz_s((dev), (batch), \
+ &(struct isl_depth_stencil_hiz_emit_info) { __VA_ARGS__ })
+
+void
+isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch,
+ const struct isl_depth_stencil_hiz_emit_info *restrict info);
+
void
isl_surf_fill_image_param(const struct isl_device *dev,
struct brw_image_param *param,
@@ -1413,6 +1821,50 @@ isl_surf_get_image_offset_el(const struct isl_surf *surf,
uint32_t *y_offset_el);
/**
+ * Calculate the offset, in bytes and intratile surface samples, to a
+ * subimage in the surface.
+ *
+ * This is equivalent to calling isl_surf_get_image_offset_el, passing the
+ * result to isl_tiling_get_intratile_offset_el, and converting the tile
+ * offsets to samples.
+ *
+ * @invariant level < surface levels
+ * @invariant logical_array_layer < logical array length of surface
+ * @invariant logical_z_offset_px < logical depth of surface at level
+ */
+void
+isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
+ uint32_t level,
+ uint32_t logical_array_layer,
+ uint32_t logical_z_offset_px,
+ uint32_t *offset_B,
+ uint32_t *x_offset_sa,
+ uint32_t *y_offset_sa);
+
+/**
+ * Create an isl_surf that represents a particular subimage in the surface.
+ *
+ * The newly created surface will have a single miplevel and array slice. The
+ * surface lives at the returned byte and intratile offsets, in samples.
+ *
+ * It is safe to call this function with surf == image_surf.
+ *
+ * @invariant level < surface levels
+ * @invariant logical_array_layer < logical array length of surface
+ * @invariant logical_z_offset_px < logical depth of surface at level
+ */
+void
+isl_surf_get_image_surf(const struct isl_device *dev,
+ const struct isl_surf *surf,
+ uint32_t level,
+ uint32_t logical_array_layer,
+ uint32_t logical_z_offset_px,
+ struct isl_surf *image_surf,
+ uint32_t *offset_B,
+ uint32_t *x_offset_sa,
+ uint32_t *y_offset_sa);
+
+/**
* @brief Calculate the intratile offsets to a surface.
*
* In @a base_address_offset return the offset from the base of the surface to
@@ -1423,9 +1875,8 @@ isl_surf_get_image_offset_el(const struct isl_surf *surf,
* surface's tiling format.
*/
void
-isl_tiling_get_intratile_offset_el(const struct isl_device *dev,
- enum isl_tiling tiling,
- uint8_t bs,
+isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
+ uint32_t bpb,
uint32_t row_pitch,
uint32_t total_x_offset_el,
uint32_t total_y_offset_el,
@@ -1434,8 +1885,7 @@ isl_tiling_get_intratile_offset_el(const struct isl_device *dev,
uint32_t *y_offset_el);
static inline void
-isl_tiling_get_intratile_offset_sa(const struct isl_device *dev,
- enum isl_tiling tiling,
+isl_tiling_get_intratile_offset_sa(enum isl_tiling tiling,
enum isl_format format,
uint32_t row_pitch,
uint32_t total_x_offset_sa,
@@ -1446,8 +1896,6 @@ isl_tiling_get_intratile_offset_sa(const struct isl_device *dev,
{
const struct isl_format_layout *fmtl = isl_format_get_layout(format);
- assert(fmtl->bpb % 8 == 0);
-
/* For computing the intratile offsets, we actually want a strange unit
* which is samples for multisampled surfaces but elements for compressed
* surfaces.
@@ -1457,7 +1905,7 @@ isl_tiling_get_intratile_offset_sa(const struct isl_device *dev,
const uint32_t total_x_offset = total_x_offset_sa / fmtl->bw;
const uint32_t total_y_offset = total_y_offset_sa / fmtl->bh;
- isl_tiling_get_intratile_offset_el(dev, tiling, fmtl->bpb / 8, row_pitch,
+ isl_tiling_get_intratile_offset_el(tiling, fmtl->bpb, row_pitch,
total_x_offset, total_y_offset,
base_address_offset,
x_offset_sa, y_offset_sa);