summaryrefslogtreecommitdiff
path: root/lib/mesa/src/amd/compiler/aco_ssa_elimination.cpp
blob: 42a860d10d7e07ebe8c671b9365283f3ca7e911b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
/*
 * Copyright © 2018 Valve Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#include "aco_ir.h"

#include <algorithm>
#include <map>
#include <vector>

namespace aco {
namespace {

struct phi_info_item {
   Definition def;
   Operand op;
};

struct ssa_elimination_ctx {
   /* The outer vectors should be indexed by block index. The inner vectors store phi information
    * for each block. */
   std::vector<std::vector<phi_info_item>> logical_phi_info;
   std::vector<std::vector<phi_info_item>> linear_phi_info;
   std::vector<bool> empty_blocks;
   std::vector<bool> blocks_incoming_exec_used;
   Program* program;

   ssa_elimination_ctx(Program* program_)
       : logical_phi_info(program_->blocks.size()), linear_phi_info(program_->blocks.size()),
         empty_blocks(program_->blocks.size(), true),
         blocks_incoming_exec_used(program_->blocks.size(), true), program(program_)
   {}
};

void
collect_phi_info(ssa_elimination_ctx& ctx)
{
   for (Block& block : ctx.program->blocks) {
      for (aco_ptr<Instruction>& phi : block.instructions) {
         if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
            break;

         for (unsigned i = 0; i < phi->operands.size(); i++) {
            if (phi->operands[i].isUndefined())
               continue;
            if (phi->operands[i].physReg() == phi->definitions[0].physReg())
               continue;

            assert(phi->definitions[0].size() == phi->operands[i].size());

            std::vector<unsigned>& preds =
               phi->opcode == aco_opcode::p_phi ? block.logical_preds : block.linear_preds;
            uint32_t pred_idx = preds[i];
            auto& info_vec = phi->opcode == aco_opcode::p_phi ? ctx.logical_phi_info[pred_idx]
                                                              : ctx.linear_phi_info[pred_idx];
            info_vec.push_back({phi->definitions[0], phi->operands[i]});
            ctx.empty_blocks[pred_idx] = false;
         }
      }
   }
}

void
insert_parallelcopies(ssa_elimination_ctx& ctx)
{
   /* insert the parallelcopies from logical phis before p_logical_end */
   for (unsigned block_idx = 0; block_idx < ctx.program->blocks.size(); ++block_idx) {
      auto& logical_phi_info = ctx.logical_phi_info[block_idx];
      if (logical_phi_info.empty())
         continue;

      Block& block = ctx.program->blocks[block_idx];
      unsigned idx = block.instructions.size() - 1;
      while (block.instructions[idx]->opcode != aco_opcode::p_logical_end) {
         assert(idx > 0);
         idx--;
      }

      std::vector<aco_ptr<Instruction>>::iterator it = std::next(block.instructions.begin(), idx);
      aco_ptr<Pseudo_instruction> pc{
         create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO,
                                                logical_phi_info.size(), logical_phi_info.size())};
      unsigned i = 0;
      for (auto& phi_info : logical_phi_info) {
         pc->definitions[i] = phi_info.def;
         pc->operands[i] = phi_info.op;
         i++;
      }
      /* this shouldn't be needed since we're only copying vgprs */
      pc->tmp_in_scc = false;
      block.instructions.insert(it, std::move(pc));
   }

   /* insert parallelcopies for the linear phis at the end of blocks just before the branch */
   for (unsigned block_idx = 0; block_idx < ctx.program->blocks.size(); ++block_idx) {
      auto& linear_phi_info = ctx.linear_phi_info[block_idx];
      if (linear_phi_info.empty())
         continue;

      Block& block = ctx.program->blocks[block_idx];
      std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.end();
      --it;
      assert((*it)->isBranch());
      PhysReg scratch_sgpr = (*it)->definitions[0].physReg();
      aco_ptr<Pseudo_instruction> pc{
         create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO,
                                                linear_phi_info.size(), linear_phi_info.size())};
      unsigned i = 0;
      for (auto& phi_info : linear_phi_info) {
         pc->definitions[i] = phi_info.def;
         pc->operands[i] = phi_info.op;
         i++;
      }
      pc->tmp_in_scc = block.scc_live_out;
      pc->scratch_sgpr = scratch_sgpr;
      block.instructions.insert(it, std::move(pc));
   }
}

bool
is_empty_block(Block* block, bool ignore_exec_writes)
{
   /* check if this block is empty and the exec mask is not needed */
   for (aco_ptr<Instruction>& instr : block->instructions) {
      switch (instr->opcode) {
      case aco_opcode::p_linear_phi:
      case aco_opcode::p_phi:
      case aco_opcode::p_logical_start:
      case aco_opcode::p_logical_end:
      case aco_opcode::p_branch: break;
      case aco_opcode::p_parallelcopy:
         for (unsigned i = 0; i < instr->definitions.size(); i++) {
            if (ignore_exec_writes && instr->definitions[i].physReg() == exec)
               continue;
            if (instr->definitions[i].physReg() != instr->operands[i].physReg())
               return false;
         }
         break;
      case aco_opcode::s_andn2_b64:
      case aco_opcode::s_andn2_b32:
         if (ignore_exec_writes && instr->definitions[0].physReg() == exec)
            break;
         return false;
      default: return false;
      }
   }
   return true;
}

void
try_remove_merge_block(ssa_elimination_ctx& ctx, Block* block)
{
   /* check if the successor is another merge block which restores exec */
   // TODO: divergent loops also restore exec
   if (block->linear_succs.size() != 1 ||
       !(ctx.program->blocks[block->linear_succs[0]].kind & block_kind_merge))
      return;

   /* check if this block is empty */
   if (!is_empty_block(block, true))
      return;

   /* keep the branch instruction and remove the rest */
   aco_ptr<Instruction> branch = std::move(block->instructions.back());
   block->instructions.clear();
   block->instructions.emplace_back(std::move(branch));
}

void
try_remove_invert_block(ssa_elimination_ctx& ctx, Block* block)
{
   assert(block->linear_succs.size() == 2);
   /* only remove this block if the successor got removed as well */
   if (block->linear_succs[0] != block->linear_succs[1])
      return;

   /* check if block is otherwise empty */
   if (!is_empty_block(block, true))
      return;

   unsigned succ_idx = block->linear_succs[0];
   assert(block->linear_preds.size() == 2);
   for (unsigned i = 0; i < 2; i++) {
      Block* pred = &ctx.program->blocks[block->linear_preds[i]];
      pred->linear_succs[0] = succ_idx;
      ctx.program->blocks[succ_idx].linear_preds[i] = pred->index;

      Pseudo_branch_instruction& branch = pred->instructions.back()->branch();
      assert(branch.isBranch());
      branch.target[0] = succ_idx;
      branch.target[1] = succ_idx;
   }

   block->instructions.clear();
   block->linear_preds.clear();
   block->linear_succs.clear();
}

void
try_remove_simple_block(ssa_elimination_ctx& ctx, Block* block)
{
   if (!is_empty_block(block, false))
      return;

   Block& pred = ctx.program->blocks[block->linear_preds[0]];
   Block& succ = ctx.program->blocks[block->linear_succs[0]];
   Pseudo_branch_instruction& branch = pred.instructions.back()->branch();
   if (branch.opcode == aco_opcode::p_branch) {
      branch.target[0] = succ.index;
      branch.target[1] = succ.index;
   } else if (branch.target[0] == block->index) {
      branch.target[0] = succ.index;
   } else if (branch.target[0] == succ.index) {
      assert(branch.target[1] == block->index);
      branch.target[1] = succ.index;
      branch.opcode = aco_opcode::p_branch;
   } else if (branch.target[1] == block->index) {
      /* check if there is a fall-through path from block to succ */
      bool falls_through = block->index < succ.index;
      for (unsigned j = block->index + 1; falls_through && j < succ.index; j++) {
         assert(ctx.program->blocks[j].index == j);
         if (!ctx.program->blocks[j].instructions.empty())
            falls_through = false;
      }
      if (falls_through) {
         branch.target[1] = succ.index;
      } else {
         /* check if there is a fall-through path for the alternative target */
         if (block->index >= branch.target[0])
            return;
         for (unsigned j = block->index + 1; j < branch.target[0]; j++) {
            if (!ctx.program->blocks[j].instructions.empty())
               return;
         }

         /* This is a (uniform) break or continue block. The branch condition has to be inverted. */
         if (branch.opcode == aco_opcode::p_cbranch_z)
            branch.opcode = aco_opcode::p_cbranch_nz;
         else if (branch.opcode == aco_opcode::p_cbranch_nz)
            branch.opcode = aco_opcode::p_cbranch_z;
         else
            assert(false);
         /* also invert the linear successors */
         pred.linear_succs[0] = pred.linear_succs[1];
         pred.linear_succs[1] = succ.index;
         branch.target[1] = branch.target[0];
         branch.target[0] = succ.index;
      }
   } else {
      assert(false);
   }

   if (branch.target[0] == branch.target[1])
      branch.opcode = aco_opcode::p_branch;

   for (unsigned i = 0; i < pred.linear_succs.size(); i++)
      if (pred.linear_succs[i] == block->index)
         pred.linear_succs[i] = succ.index;

   for (unsigned i = 0; i < succ.linear_preds.size(); i++)
      if (succ.linear_preds[i] == block->index)
         succ.linear_preds[i] = pred.index;

   block->instructions.clear();
   block->linear_preds.clear();
   block->linear_succs.clear();
}

bool
instr_writes_exec(Instruction* instr)
{
   for (Definition& def : instr->definitions)
      if (def.physReg() == exec || def.physReg() == exec_hi)
         return true;

   return false;
}

template <typename T, typename U>
bool
regs_intersect(const T& a, const U& b)
{
   const unsigned a_lo = a.physReg();
   const unsigned a_hi = a_lo + a.size();
   const unsigned b_lo = b.physReg();
   const unsigned b_hi = b_lo + b.size();

   return a_hi > b_lo && b_hi > a_lo;
}

void
try_optimize_branching_sequence(ssa_elimination_ctx& ctx, Block& block, const int exec_val_idx,
                                const int exec_copy_idx)
{
   /* Try to optimize the branching sequence at the end of a block.
    *
    * We are looking for blocks that look like this:
    *
    * BB:
    * ... instructions ...
    * s[N:M] = <exec_val instruction>
    * ... other instructions that don't depend on exec ...
    * p_logical_end
    * exec = <exec_copy instruction> s[N:M]
    * p_cbranch exec
    *
    * The main motivation is to eliminate exec_copy.
    * Depending on the context, we try to do the following:
    *
    * 1. Reassign exec_val to write exec directly
    * 2. If possible, eliminate exec_copy
    * 3. When exec_copy also saves the old exec mask, insert a
    *    new copy instruction before exec_val
    * 4. Reassign any instruction that used s[N:M] to use exec
    *
    * This is beneficial for the following reasons:
    *
    * - Fewer instructions in the block when exec_copy can be eliminated
    * - As a result, when exec_val is VOPC this also improves the stalls
    *   due to SALU waiting for VALU. This works best when we can also
    *   remove the branching instruction, in which case the stall
    *   is entirely eliminated.
    * - When exec_copy can't be removed, the reassignment may still be
    *   very slightly beneficial to latency.
    */

   aco_ptr<Instruction>& exec_val = block.instructions[exec_val_idx];
   aco_ptr<Instruction>& exec_copy = block.instructions[exec_copy_idx];

   const aco_opcode and_saveexec = ctx.program->lane_mask == s2 ? aco_opcode::s_and_saveexec_b64
                                                                : aco_opcode::s_and_saveexec_b32;

   if (exec_copy->opcode != and_saveexec && exec_copy->opcode != aco_opcode::p_parallelcopy)
      return;

   if (exec_val->definitions.size() > 1)
      return;

   /* Check if a suitable v_cmpx opcode exists. */
   const aco_opcode v_cmpx_op =
      exec_val->isVOPC() ? get_vcmpx(exec_val->opcode) : aco_opcode::num_opcodes;
   const bool vopc = v_cmpx_op != aco_opcode::num_opcodes;

   /* V_CMPX+DPP returns 0 with reads from disabled lanes, unlike V_CMP+DPP (RDNA3 ISA doc, 7.7) */
   if (vopc && exec_val->isDPP())
      return;

   /* If s_and_saveexec is used, we'll need to insert a new instruction to save the old exec. */
   const bool save_original_exec = exec_copy->opcode == and_saveexec;
   /* Position where the original exec mask copy should be inserted. */
   const int save_original_exec_idx = exec_val_idx;
   /* The copy can be removed when it kills its operand.
    * v_cmpx also writes the original destination pre GFX10.
    */
   const bool can_remove_copy =
      exec_copy->operands[0].isKill() || (vopc && ctx.program->gfx_level < GFX10);

   /* Always allow reassigning when the value is written by (usable) VOPC.
    * Note, VOPC implicitly contains "& exec" because it yields zero on inactive lanes.
    * Additionally, when value is copied as-is, also allow SALU and parallelcopies.
    */
   const bool can_reassign =
      vopc || (exec_copy->opcode == aco_opcode::p_parallelcopy &&
               (exec_val->isSALU() || exec_val->opcode == aco_opcode::p_parallelcopy));

   /* The reassignment is not worth it when both the original exec needs to be copied
    * and the new exec copy can't be removed. In this case we'd end up with more instructions.
    */
   if (!can_reassign || (save_original_exec && !can_remove_copy))
      return;

   const Definition exec_wr_def = exec_val->definitions[0];
   const Definition exec_copy_def = exec_copy->definitions[0];

   /* When exec_val and exec_copy are non-adjacent, check whether there are any
    * instructions inbetween (besides p_logical_end) which may inhibit the optimization.
    */
   for (int idx = exec_val_idx + 1; idx < exec_copy_idx; ++idx) {
      aco_ptr<Instruction>& instr = block.instructions[idx];

      if (save_original_exec) {
         /* Check if the instruction uses the exec_copy_def register, in which case we can't
          * optimize. */
         for (const Operand& op : instr->operands)
            if (regs_intersect(exec_copy_def, op))
               return;
         for (const Definition& def : instr->definitions)
            if (regs_intersect(exec_copy_def, def))
               return;
      }

      /* Check if the instruction may implicitly read VCC, eg. v_cndmask or add with carry.
       * Rewriting these operands may require format conversion because of encoding limitations.
       */
      if (exec_wr_def.physReg() == vcc && instr->isVALU() && instr->operands.size() >= 3 &&
          !instr->isVOP3())
         return;
   }

   if (save_original_exec) {
      /* We insert the exec copy before exec_val, so exec_val can't use those registers. */
      for (const Operand& op : exec_val->operands)
         if (regs_intersect(exec_copy_def, op))
            return;
      /* We would write over the saved exec value in this case. */
      if (((vopc && ctx.program->gfx_level < GFX10) || !can_remove_copy) &&
          regs_intersect(exec_copy_def, exec_wr_def))
         return;
   }

   if (vopc) {
      /* Add one extra definition for exec and copy the VOP3-specific fields if present. */
      if (ctx.program->gfx_level < GFX10) {
         if (exec_val->isSDWA()) {
            /* This might work but it needs testing and more code to copy the instruction. */
            return;
         } else if (!exec_val->isVOP3()) {
            aco_ptr<Instruction> tmp = std::move(exec_val);
            exec_val.reset(create_instruction<VOPC_instruction>(
               tmp->opcode, tmp->format, tmp->operands.size(), tmp->definitions.size() + 1));
            std::copy(tmp->operands.cbegin(), tmp->operands.cend(), exec_val->operands.begin());
            std::copy(tmp->definitions.cbegin(), tmp->definitions.cend(),
                      exec_val->definitions.begin());
         } else {
            aco_ptr<Instruction> tmp = std::move(exec_val);
            exec_val.reset(create_instruction<VOP3_instruction>(
               tmp->opcode, tmp->format, tmp->operands.size(), tmp->definitions.size() + 1));
            std::copy(tmp->operands.cbegin(), tmp->operands.cend(), exec_val->operands.begin());
            std::copy(tmp->definitions.cbegin(), tmp->definitions.cend(),
                      exec_val->definitions.begin());

            VOP3_instruction& src = tmp->vop3();
            VOP3_instruction& dst = exec_val->vop3();
            dst.opsel = src.opsel;
            dst.omod = src.omod;
            dst.clamp = src.clamp;
            std::copy(std::cbegin(src.abs), std::cend(src.abs), std::begin(dst.abs));
            std::copy(std::cbegin(src.neg), std::cend(src.neg), std::begin(dst.neg));
         }
      }

      /* Set v_cmpx opcode. */
      exec_val->opcode = v_cmpx_op;

      *exec_val->definitions.rbegin() = Definition(exec, ctx.program->lane_mask);

      /* Change instruction from VOP3 to plain VOPC when possible. */
      if (ctx.program->gfx_level >= GFX10 && !exec_val->usesModifiers() &&
          (exec_val->operands.size() < 2 || exec_val->operands[1].isOfType(RegType::vgpr)))
         exec_val->format = Format::VOPC;
   } else {
      /* Reassign the instruction to write exec directly. */
      exec_val->definitions[0] = Definition(exec, ctx.program->lane_mask);
   }

   /* If there are other instructions (besides p_logical_end) between
    * writing the value and copying it to exec, reassign uses
    * of the old definition.
    */
   for (int idx = exec_val_idx + 1; idx < exec_copy_idx; ++idx) {
      aco_ptr<Instruction>& instr = block.instructions[idx];
      for (Operand& op : instr->operands) {
         if (op.physReg() == exec_wr_def.physReg())
            op = Operand(exec, op.regClass());
         if (exec_wr_def.size() == 2 && op.physReg() == exec_wr_def.physReg().advance(4))
            op = Operand(exec_hi, op.regClass());
      }
   }

   if (can_remove_copy) {
      /* Remove the copy. */
      exec_copy.reset();
   } else {
      /* Reassign the copy to write the register of the original value. */
      exec_copy.reset(
         create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, 1, 1));
      exec_copy->definitions[0] = exec_wr_def;
      exec_copy->operands[0] = Operand(exec, ctx.program->lane_mask);
   }

   if (exec_val->opcode == aco_opcode::p_parallelcopy && exec_val->operands[0].isConstant() &&
       exec_val->operands[0].constantValue()) {
      /* Remove the branch instruction when exec is constant non-zero. */
      aco_ptr<Instruction>& branch = block.instructions.back();
      if (branch->opcode == aco_opcode::p_cbranch_z && branch->operands[0].physReg() == exec)
         block.instructions.back().reset();
   }

   if (save_original_exec) {
      /* Insert a new instruction that saves the original exec before it is overwritten.
       * Do this last, because inserting in the instructions vector may invalidate the exec_val
       * reference.
       */
      const auto it = std::next(block.instructions.begin(), save_original_exec_idx);
      aco_ptr<Instruction> copy(
         create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, 1, 1));
      copy->definitions[0] = exec_copy_def;
      copy->operands[0] = Operand(exec, ctx.program->lane_mask);
      block.instructions.insert(it, std::move(copy));
   }
}

void
eliminate_useless_exec_writes_in_block(ssa_elimination_ctx& ctx, Block& block)
{
   /* Check if any successor needs the outgoing exec mask from the current block. */

   bool exec_write_used;

   if (!ctx.logical_phi_info[block.index].empty()) {
      exec_write_used = true;
   } else {
      bool copy_to_exec = false;
      bool copy_from_exec = false;

      for (const auto& successor_phi_info : ctx.linear_phi_info[block.index]) {
         copy_to_exec |= successor_phi_info.def.physReg() == exec;
         copy_from_exec |= successor_phi_info.op.physReg() == exec;
      }

      if (copy_from_exec)
         exec_write_used = true;
      else if (copy_to_exec)
         exec_write_used = false;
      else
         /* blocks_incoming_exec_used is initialized to true, so this is correct even for loops. */
         exec_write_used =
            std::any_of(block.linear_succs.begin(), block.linear_succs.end(),
                        [&ctx](int succ_idx) { return ctx.blocks_incoming_exec_used[succ_idx]; });
   }

   /* Collect information about the branching sequence. */

   bool logical_end_found = false;
   bool branch_reads_exec = false;
   bool branch_exec_val_found = false;
   int branch_exec_val_idx = -1;
   int branch_exec_copy_idx = -1;
   unsigned branch_exec_tempid = 0;

   /* Go through all instructions and eliminate useless exec writes. */

   for (int i = block.instructions.size() - 1; i >= 0; --i) {
      aco_ptr<Instruction>& instr = block.instructions[i];

      /* We already take information from phis into account before the loop, so let's just break on
       * phis. */
      if (instr->opcode == aco_opcode::p_linear_phi || instr->opcode == aco_opcode::p_phi)
         break;

      /* See if the current instruction needs or writes exec. */
      bool needs_exec = needs_exec_mask(instr.get());
      bool writes_exec = instr_writes_exec(instr.get());

      logical_end_found |= instr->opcode == aco_opcode::p_logical_end;
      branch_reads_exec |= i == (int)(block.instructions.size() - 1) && instr->isBranch() &&
                           instr->operands.size() && instr->operands[0].physReg() == exec;

      /* See if we found an unused exec write. */
      if (writes_exec && !exec_write_used) {
         instr.reset();
         continue;
      }

      /* For a newly encountered exec write, clear the used flag. */
      if (writes_exec) {
         if (!logical_end_found && branch_reads_exec && instr->operands.size() &&
             !branch_exec_val_found) {
            /* We are in a branch that jumps according to exec.
             * We just found the instruction that copies to exec before the branch.
             */
            assert(branch_exec_copy_idx == -1);
            branch_exec_copy_idx = i;
            branch_exec_tempid = instr->operands[0].tempId();
            branch_exec_val_found = true;
         } else if (branch_exec_val_idx == -1) {
            /* The current instruction overwrites exec before branch_exec_val_idx was
             * found, therefore we can't optimize the branching sequence.
             */
            branch_exec_copy_idx = -1;
            branch_exec_tempid = 0;
         }

         exec_write_used = false;
      } else if (branch_exec_tempid && instr->definitions.size() &&
                 instr->definitions[0].tempId() == branch_exec_tempid) {
         /* We just found the instruction that produces the exec mask that is copied. */
         assert(branch_exec_val_idx == -1);
         branch_exec_val_idx = i;
      } else if (branch_exec_tempid && branch_exec_val_idx == -1 && needs_exec) {
         /* There is an instruction that needs the original exec mask before
          * branch_exec_val_idx was found, so we can't optimize the branching sequence. */
         branch_exec_copy_idx = -1;
         branch_exec_tempid = 0;
      }

      /* If the current instruction needs exec, mark it as used. */
      exec_write_used |= needs_exec;
   }

   /* Remember if the current block needs an incoming exec mask from its predecessors. */
   ctx.blocks_incoming_exec_used[block.index] = exec_write_used;

   /* See if we can optimize the instruction that produces the exec mask. */
   if (branch_exec_val_idx != -1) {
      assert(logical_end_found && branch_reads_exec && branch_exec_tempid &&
             branch_exec_copy_idx != -1);
      try_optimize_branching_sequence(ctx, block, branch_exec_val_idx, branch_exec_copy_idx);
   }

   /* Cleanup: remove deleted instructions from the vector. */
   auto new_end = std::remove(block.instructions.begin(), block.instructions.end(), nullptr);
   block.instructions.resize(new_end - block.instructions.begin());
}

void
jump_threading(ssa_elimination_ctx& ctx)
{
   for (int i = ctx.program->blocks.size() - 1; i >= 0; i--) {
      Block* block = &ctx.program->blocks[i];
      eliminate_useless_exec_writes_in_block(ctx, *block);

      if (!ctx.empty_blocks[i])
         continue;

      if (block->kind & block_kind_invert) {
         try_remove_invert_block(ctx, block);
         continue;
      }

      if (block->linear_succs.size() > 1)
         continue;

      if (block->kind & block_kind_merge || block->kind & block_kind_loop_exit)
         try_remove_merge_block(ctx, block);

      if (block->linear_preds.size() == 1)
         try_remove_simple_block(ctx, block);
   }
}

} /* end namespace */

void
ssa_elimination(Program* program)
{
   ssa_elimination_ctx ctx(program);

   /* Collect information about every phi-instruction */
   collect_phi_info(ctx);

   /* eliminate empty blocks */
   jump_threading(ctx);

   /* insert parallelcopies from SSA elimination */
   insert_parallelcopies(ctx);
}
} // namespace aco