1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
|
/*
* Copyright © 2010 Intel Corporation
* Copyright © 2014-2017 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* @file
*
* The basic model of the list scheduler is to take a basic block, compute a
* DAG of the dependencies, and make a list of the DAG heads. Heuristically
* pick a DAG head, then put all the children that are now DAG heads into the
* list of things to schedule.
*
* The goal of scheduling here is to pack pairs of operations together in a
* single QPU instruction.
*/
#include "qpu/qpu_disasm.h"
#include "v3d_compiler.h"
#include "util/ralloc.h"
#include "util/dag.h"
static bool debug;
struct schedule_node_child;
struct schedule_node {
struct dag_node dag;
struct list_head link;
struct qinst *inst;
/* Longest cycles + instruction_latency() of any parent of this node. */
uint32_t unblocked_time;
/**
* Minimum number of cycles from scheduling this instruction until the
* end of the program, based on the slowest dependency chain through
* the children.
*/
uint32_t delay;
/**
* cycles between this instruction being scheduled and when its result
* can be consumed.
*/
uint32_t latency;
};
/* When walking the instructions in reverse, we need to swap before/after in
* add_dep().
*/
enum direction { F, R };
struct schedule_state {
const struct v3d_device_info *devinfo;
struct dag *dag;
struct schedule_node *last_r[6];
struct schedule_node *last_rf[64];
struct schedule_node *last_sf;
struct schedule_node *last_vpm_read;
struct schedule_node *last_tmu_write;
struct schedule_node *last_tmu_config;
struct schedule_node *last_tmu_read;
struct schedule_node *last_tlb;
struct schedule_node *last_vpm;
struct schedule_node *last_unif;
struct schedule_node *last_rtop;
struct schedule_node *last_unifa;
enum direction dir;
/* Estimated cycle when the current instruction would start. */
uint32_t time;
};
static void
add_dep(struct schedule_state *state,
struct schedule_node *before,
struct schedule_node *after,
bool write)
{
bool write_after_read = !write && state->dir == R;
uintptr_t edge_data = write_after_read;
if (!before || !after)
return;
assert(before != after);
if (state->dir == F)
dag_add_edge(&before->dag, &after->dag, edge_data);
else
dag_add_edge(&after->dag, &before->dag, edge_data);
}
static void
add_read_dep(struct schedule_state *state,
struct schedule_node *before,
struct schedule_node *after)
{
add_dep(state, before, after, false);
}
static void
add_write_dep(struct schedule_state *state,
struct schedule_node **before,
struct schedule_node *after)
{
add_dep(state, *before, after, true);
*before = after;
}
static bool
qpu_inst_is_tlb(const struct v3d_qpu_instr *inst)
{
if (inst->sig.ldtlb || inst->sig.ldtlbu)
return true;
if (inst->type != V3D_QPU_INSTR_TYPE_ALU)
return false;
if (inst->alu.add.op != V3D_QPU_A_NOP &&
inst->alu.add.magic_write &&
(inst->alu.add.waddr == V3D_QPU_WADDR_TLB ||
inst->alu.add.waddr == V3D_QPU_WADDR_TLBU))
return true;
if (inst->alu.mul.op != V3D_QPU_M_NOP &&
inst->alu.mul.magic_write &&
(inst->alu.mul.waddr == V3D_QPU_WADDR_TLB ||
inst->alu.mul.waddr == V3D_QPU_WADDR_TLBU))
return true;
return false;
}
static void
process_mux_deps(struct schedule_state *state, struct schedule_node *n,
enum v3d_qpu_mux mux)
{
assert(state->devinfo->ver < 71);
switch (mux) {
case V3D_QPU_MUX_A:
add_read_dep(state, state->last_rf[n->inst->qpu.raddr_a], n);
break;
case V3D_QPU_MUX_B:
if (!n->inst->qpu.sig.small_imm_b) {
add_read_dep(state,
state->last_rf[n->inst->qpu.raddr_b], n);
}
break;
default:
add_read_dep(state, state->last_r[mux - V3D_QPU_MUX_R0], n);
break;
}
}
static void
process_raddr_deps(struct schedule_state *state, struct schedule_node *n,
uint8_t raddr, bool is_small_imm)
{
assert(state->devinfo->ver >= 71);
if (!is_small_imm)
add_read_dep(state, state->last_rf[raddr], n);
}
static bool
tmu_write_is_sequence_terminator(uint32_t waddr)
{
switch (waddr) {
case V3D_QPU_WADDR_TMUS:
case V3D_QPU_WADDR_TMUSCM:
case V3D_QPU_WADDR_TMUSF:
case V3D_QPU_WADDR_TMUSLOD:
case V3D_QPU_WADDR_TMUA:
case V3D_QPU_WADDR_TMUAU:
return true;
default:
return false;
}
}
static bool
can_reorder_tmu_write(const struct v3d_device_info *devinfo, uint32_t waddr)
{
if (devinfo->ver < 40)
return false;
if (tmu_write_is_sequence_terminator(waddr))
return false;
if (waddr == V3D_QPU_WADDR_TMUD)
return false;
return true;
}
static void
process_waddr_deps(struct schedule_state *state, struct schedule_node *n,
uint32_t waddr, bool magic)
{
if (!magic) {
add_write_dep(state, &state->last_rf[waddr], n);
} else if (v3d_qpu_magic_waddr_is_tmu(state->devinfo, waddr)) {
if (can_reorder_tmu_write(state->devinfo, waddr))
add_read_dep(state, state->last_tmu_write, n);
else
add_write_dep(state, &state->last_tmu_write, n);
if (tmu_write_is_sequence_terminator(waddr))
add_write_dep(state, &state->last_tmu_config, n);
} else if (v3d_qpu_magic_waddr_is_sfu(waddr)) {
/* Handled by v3d_qpu_writes_r4() check. */
} else {
switch (waddr) {
case V3D_QPU_WADDR_R0:
case V3D_QPU_WADDR_R1:
case V3D_QPU_WADDR_R2:
add_write_dep(state,
&state->last_r[waddr - V3D_QPU_WADDR_R0],
n);
break;
case V3D_QPU_WADDR_R3:
case V3D_QPU_WADDR_R4:
case V3D_QPU_WADDR_R5:
/* Handled by v3d_qpu_writes_r*() checks below. */
break;
case V3D_QPU_WADDR_VPM:
case V3D_QPU_WADDR_VPMU:
add_write_dep(state, &state->last_vpm, n);
break;
case V3D_QPU_WADDR_TLB:
case V3D_QPU_WADDR_TLBU:
add_write_dep(state, &state->last_tlb, n);
break;
case V3D_QPU_WADDR_SYNC:
case V3D_QPU_WADDR_SYNCB:
case V3D_QPU_WADDR_SYNCU:
/* For CS barrier(): Sync against any other memory
* accesses. There doesn't appear to be any need for
* barriers to affect ALU operations.
*/
add_write_dep(state, &state->last_tmu_write, n);
add_write_dep(state, &state->last_tmu_read, n);
break;
case V3D_QPU_WADDR_UNIFA:
if (state->devinfo->ver >= 40)
add_write_dep(state, &state->last_unifa, n);
break;
case V3D_QPU_WADDR_NOP:
break;
default:
fprintf(stderr, "Unknown waddr %d\n", waddr);
abort();
}
}
}
/**
* Common code for dependencies that need to be tracked both forward and
* backward.
*
* This is for things like "all reads of r4 have to happen between the r4
* writes that surround them".
*/
static void
calculate_deps(struct schedule_state *state, struct schedule_node *n)
{
const struct v3d_device_info *devinfo = state->devinfo;
struct qinst *qinst = n->inst;
struct v3d_qpu_instr *inst = &qinst->qpu;
/* If the input and output segments are shared, then all VPM reads to
* a location need to happen before all writes. We handle this by
* serializing all VPM operations for now.
*
* FIXME: we are assuming that the segments are shared. That is
* correct right now as we are only using shared, but technically you
* can choose.
*/
bool separate_vpm_segment = false;
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH) {
if (inst->branch.cond != V3D_QPU_BRANCH_COND_ALWAYS)
add_read_dep(state, state->last_sf, n);
/* XXX: BDI */
/* XXX: BDU */
/* XXX: ub */
/* XXX: raddr_a */
add_write_dep(state, &state->last_unif, n);
return;
}
assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
/* XXX: LOAD_IMM */
if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 0) {
if (devinfo->ver < 71) {
process_mux_deps(state, n, inst->alu.add.a.mux);
} else {
process_raddr_deps(state, n, inst->alu.add.a.raddr,
inst->sig.small_imm_a);
}
}
if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 1) {
if (devinfo->ver < 71) {
process_mux_deps(state, n, inst->alu.add.b.mux);
} else {
process_raddr_deps(state, n, inst->alu.add.b.raddr,
inst->sig.small_imm_b);
}
}
if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 0) {
if (devinfo->ver < 71) {
process_mux_deps(state, n, inst->alu.mul.a.mux);
} else {
process_raddr_deps(state, n, inst->alu.mul.a.raddr,
inst->sig.small_imm_c);
}
}
if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 1) {
if (devinfo->ver < 71) {
process_mux_deps(state, n, inst->alu.mul.b.mux);
} else {
process_raddr_deps(state, n, inst->alu.mul.b.raddr,
inst->sig.small_imm_d);
}
}
switch (inst->alu.add.op) {
case V3D_QPU_A_VPMSETUP:
/* Could distinguish read/write by unpacking the uniform. */
add_write_dep(state, &state->last_vpm, n);
add_write_dep(state, &state->last_vpm_read, n);
break;
case V3D_QPU_A_STVPMV:
case V3D_QPU_A_STVPMD:
case V3D_QPU_A_STVPMP:
add_write_dep(state, &state->last_vpm, n);
break;
case V3D_QPU_A_LDVPMV_IN:
case V3D_QPU_A_LDVPMD_IN:
case V3D_QPU_A_LDVPMG_IN:
case V3D_QPU_A_LDVPMP:
if (!separate_vpm_segment)
add_write_dep(state, &state->last_vpm, n);
break;
case V3D_QPU_A_VPMWT:
add_read_dep(state, state->last_vpm, n);
break;
case V3D_QPU_A_MSF:
add_read_dep(state, state->last_tlb, n);
break;
case V3D_QPU_A_SETMSF:
case V3D_QPU_A_SETREVF:
add_write_dep(state, &state->last_tlb, n);
break;
default:
break;
}
switch (inst->alu.mul.op) {
case V3D_QPU_M_MULTOP:
case V3D_QPU_M_UMUL24:
/* MULTOP sets rtop, and UMUL24 implicitly reads rtop and
* resets it to 0. We could possibly reorder umul24s relative
* to each other, but for now just keep all the MUL parts in
* order.
*/
add_write_dep(state, &state->last_rtop, n);
break;
default:
break;
}
if (inst->alu.add.op != V3D_QPU_A_NOP) {
process_waddr_deps(state, n, inst->alu.add.waddr,
inst->alu.add.magic_write);
}
if (inst->alu.mul.op != V3D_QPU_M_NOP) {
process_waddr_deps(state, n, inst->alu.mul.waddr,
inst->alu.mul.magic_write);
}
if (v3d_qpu_sig_writes_address(devinfo, &inst->sig)) {
process_waddr_deps(state, n, inst->sig_addr,
inst->sig_magic);
}
if (v3d_qpu_writes_r3(devinfo, inst))
add_write_dep(state, &state->last_r[3], n);
if (v3d_qpu_writes_r4(devinfo, inst))
add_write_dep(state, &state->last_r[4], n);
if (v3d_qpu_writes_r5(devinfo, inst))
add_write_dep(state, &state->last_r[5], n);
if (v3d_qpu_writes_rf0_implicitly(devinfo, inst))
add_write_dep(state, &state->last_rf[0], n);
/* If we add any more dependencies here we should consider whether we
* also need to update qpu_inst_after_thrsw_valid_in_delay_slot.
*/
if (inst->sig.thrsw) {
/* All accumulator contents and flags are undefined after the
* switch.
*/
for (int i = 0; i < ARRAY_SIZE(state->last_r); i++)
add_write_dep(state, &state->last_r[i], n);
add_write_dep(state, &state->last_sf, n);
add_write_dep(state, &state->last_rtop, n);
/* Scoreboard-locking operations have to stay after the last
* thread switch.
*/
add_write_dep(state, &state->last_tlb, n);
add_write_dep(state, &state->last_tmu_write, n);
add_write_dep(state, &state->last_tmu_config, n);
}
if (v3d_qpu_waits_on_tmu(inst)) {
/* TMU loads are coming from a FIFO, so ordering is important.
*/
add_write_dep(state, &state->last_tmu_read, n);
/* Keep TMU loads after their TMU lookup terminator */
add_read_dep(state, state->last_tmu_config, n);
}
/* Allow wrtmuc to be reordered with other instructions in the
* same TMU sequence by using a read dependency on the last TMU
* sequence terminator.
*/
if (inst->sig.wrtmuc)
add_read_dep(state, state->last_tmu_config, n);
if (inst->sig.ldtlb | inst->sig.ldtlbu)
add_write_dep(state, &state->last_tlb, n);
if (inst->sig.ldvpm) {
add_write_dep(state, &state->last_vpm_read, n);
/* At least for now, we're doing shared I/O segments, so queue
* all writes after all reads.
*/
if (!separate_vpm_segment)
add_write_dep(state, &state->last_vpm, n);
}
/* inst->sig.ldunif or sideband uniform read */
if (vir_has_uniform(qinst))
add_write_dep(state, &state->last_unif, n);
/* Both unifa and ldunifa must preserve ordering */
if (inst->sig.ldunifa || inst->sig.ldunifarf)
add_write_dep(state, &state->last_unifa, n);
if (v3d_qpu_reads_flags(inst))
add_read_dep(state, state->last_sf, n);
if (v3d_qpu_writes_flags(inst))
add_write_dep(state, &state->last_sf, n);
}
static void
calculate_forward_deps(struct v3d_compile *c, struct dag *dag,
struct list_head *schedule_list)
{
struct schedule_state state;
memset(&state, 0, sizeof(state));
state.dag = dag;
state.devinfo = c->devinfo;
state.dir = F;
list_for_each_entry(struct schedule_node, node, schedule_list, link)
calculate_deps(&state, node);
}
static void
calculate_reverse_deps(struct v3d_compile *c, struct dag *dag,
struct list_head *schedule_list)
{
struct schedule_state state;
memset(&state, 0, sizeof(state));
state.dag = dag;
state.devinfo = c->devinfo;
state.dir = R;
list_for_each_entry_rev(struct schedule_node, node, schedule_list,
link) {
calculate_deps(&state, (struct schedule_node *)node);
}
}
struct choose_scoreboard {
struct dag *dag;
int tick;
int last_magic_sfu_write_tick;
int last_stallable_sfu_reg;
int last_stallable_sfu_tick;
int last_ldvary_tick;
int last_unifa_write_tick;
int last_uniforms_reset_tick;
int last_thrsw_tick;
int last_branch_tick;
int last_setmsf_tick;
bool first_thrsw_emitted;
bool last_thrsw_emitted;
bool fixup_ldvary;
int ldvary_count;
int pending_ldtmu_count;
bool first_ldtmu_after_thrsw;
/* V3D 7.x */
int last_implicit_rf0_write_tick;
bool has_rf0_flops_conflict;
};
static bool
mux_reads_too_soon(struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst, enum v3d_qpu_mux mux)
{
switch (mux) {
case V3D_QPU_MUX_R4:
if (scoreboard->tick - scoreboard->last_magic_sfu_write_tick <= 2)
return true;
break;
case V3D_QPU_MUX_R5:
if (scoreboard->tick - scoreboard->last_ldvary_tick <= 1)
return true;
break;
default:
break;
}
return false;
}
static bool
reads_too_soon(struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst, uint8_t raddr)
{
switch (raddr) {
case 0: /* ldvary delayed write of C coefficient to rf0 */
if (scoreboard->tick - scoreboard->last_ldvary_tick <= 1)
return true;
break;
default:
break;
}
return false;
}
static bool
reads_too_soon_after_write(const struct v3d_device_info *devinfo,
struct choose_scoreboard *scoreboard,
struct qinst *qinst)
{
const struct v3d_qpu_instr *inst = &qinst->qpu;
/* XXX: Branching off of raddr. */
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
return false;
assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
if (inst->alu.add.op != V3D_QPU_A_NOP) {
if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 0) {
if (devinfo->ver < 71) {
if (mux_reads_too_soon(scoreboard, inst, inst->alu.add.a.mux))
return true;
} else {
if (reads_too_soon(scoreboard, inst, inst->alu.add.a.raddr))
return true;
}
}
if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 1) {
if (devinfo->ver < 71) {
if (mux_reads_too_soon(scoreboard, inst, inst->alu.add.b.mux))
return true;
} else {
if (reads_too_soon(scoreboard, inst, inst->alu.add.b.raddr))
return true;
}
}
}
if (inst->alu.mul.op != V3D_QPU_M_NOP) {
if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 0) {
if (devinfo->ver < 71) {
if (mux_reads_too_soon(scoreboard, inst, inst->alu.mul.a.mux))
return true;
} else {
if (reads_too_soon(scoreboard, inst, inst->alu.mul.a.raddr))
return true;
}
}
if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 1) {
if (devinfo->ver < 71) {
if (mux_reads_too_soon(scoreboard, inst, inst->alu.mul.b.mux))
return true;
} else {
if (reads_too_soon(scoreboard, inst, inst->alu.mul.b.raddr))
return true;
}
}
}
/* XXX: imm */
return false;
}
static bool
writes_too_soon_after_write(const struct v3d_device_info *devinfo,
struct choose_scoreboard *scoreboard,
struct qinst *qinst)
{
const struct v3d_qpu_instr *inst = &qinst->qpu;
/* Don't schedule any other r4 write too soon after an SFU write.
* This would normally be prevented by dependency tracking, but might
* occur if a dead SFU computation makes it to scheduling.
*/
if (scoreboard->tick - scoreboard->last_magic_sfu_write_tick < 2 &&
v3d_qpu_writes_r4(devinfo, inst))
return true;
if (devinfo->ver <= 42)
return false;
/* Don't schedule anything that writes rf0 right after ldvary, since
* that would clash with the ldvary's delayed rf0 write (the exception
* is another ldvary, since its implicit rf0 write would also have
* one cycle of delay and would not clash).
*/
if (scoreboard->last_ldvary_tick + 1 == scoreboard->tick &&
(v3d71_qpu_writes_waddr_explicitly(devinfo, inst, 0) ||
(v3d_qpu_writes_rf0_implicitly(devinfo, inst) &&
!inst->sig.ldvary))) {
return true;
}
return false;
}
static bool
scoreboard_is_locked(struct choose_scoreboard *scoreboard,
bool lock_scoreboard_on_first_thrsw)
{
if (lock_scoreboard_on_first_thrsw) {
return scoreboard->first_thrsw_emitted &&
scoreboard->tick - scoreboard->last_thrsw_tick >= 3;
}
return scoreboard->last_thrsw_emitted &&
scoreboard->tick - scoreboard->last_thrsw_tick >= 3;
}
static bool
pixel_scoreboard_too_soon(struct v3d_compile *c,
struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst)
{
return qpu_inst_is_tlb(inst) &&
!scoreboard_is_locked(scoreboard,
c->lock_scoreboard_on_first_thrsw);
}
static bool
qpu_instruction_uses_rf(const struct v3d_device_info *devinfo,
const struct v3d_qpu_instr *inst,
uint32_t waddr) {
if (inst->type != V3D_QPU_INSTR_TYPE_ALU)
return false;
if (devinfo->ver < 71) {
if (v3d_qpu_uses_mux(inst, V3D_QPU_MUX_A) &&
inst->raddr_a == waddr)
return true;
if (v3d_qpu_uses_mux(inst, V3D_QPU_MUX_B) &&
!inst->sig.small_imm_b && (inst->raddr_b == waddr))
return true;
} else {
if (v3d71_qpu_reads_raddr(inst, waddr))
return true;
}
return false;
}
static bool
read_stalls(const struct v3d_device_info *devinfo,
struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst)
{
return scoreboard->tick == scoreboard->last_stallable_sfu_tick + 1 &&
qpu_instruction_uses_rf(devinfo, inst,
scoreboard->last_stallable_sfu_reg);
}
/* We define a max schedule priority to allow negative priorities as result of
* subtracting this max when an instruction stalls. So instructions that
* stall have lower priority than regular instructions. */
#define MAX_SCHEDULE_PRIORITY 16
static int
get_instruction_priority(const struct v3d_device_info *devinfo,
const struct v3d_qpu_instr *inst)
{
uint32_t baseline_score;
uint32_t next_score = 0;
/* Schedule TLB operations as late as possible, to get more
* parallelism between shaders.
*/
if (qpu_inst_is_tlb(inst))
return next_score;
next_score++;
/* Empirical testing shows that using priorities to hide latency of
* TMU operations when scheduling QPU leads to slightly worse
* performance, even at 2 threads. We think this is because the thread
* switching is already quite effective at hiding latency and NIR
* scheduling (and possibly TMU pipelining too) are sufficient to hide
* TMU latency, so piling up on that here doesn't provide any benefits
* and instead may cause us to postpone critical paths that depend on
* the TMU results.
*/
#if 0
/* Schedule texture read results collection late to hide latency. */
if (v3d_qpu_waits_on_tmu(inst))
return next_score;
next_score++;
#endif
/* Default score for things that aren't otherwise special. */
baseline_score = next_score;
next_score++;
#if 0
/* Schedule texture read setup early to hide their latency better. */
if (v3d_qpu_writes_tmu(devinfo, inst))
return next_score;
next_score++;
#endif
/* We should increase the maximum if we assert here */
assert(next_score < MAX_SCHEDULE_PRIORITY);
return baseline_score;
}
enum {
V3D_PERIPHERAL_VPM_READ = (1 << 0),
V3D_PERIPHERAL_VPM_WRITE = (1 << 1),
V3D_PERIPHERAL_VPM_WAIT = (1 << 2),
V3D_PERIPHERAL_SFU = (1 << 3),
V3D_PERIPHERAL_TMU_WRITE = (1 << 4),
V3D_PERIPHERAL_TMU_READ = (1 << 5),
V3D_PERIPHERAL_TMU_WAIT = (1 << 6),
V3D_PERIPHERAL_TMU_WRTMUC_SIG = (1 << 7),
V3D_PERIPHERAL_TSY = (1 << 8),
V3D_PERIPHERAL_TLB_READ = (1 << 9),
V3D_PERIPHERAL_TLB_WRITE = (1 << 10),
};
static uint32_t
qpu_peripherals(const struct v3d_device_info *devinfo,
const struct v3d_qpu_instr *inst)
{
uint32_t result = 0;
if (v3d_qpu_reads_vpm(inst))
result |= V3D_PERIPHERAL_VPM_READ;
if (v3d_qpu_writes_vpm(inst))
result |= V3D_PERIPHERAL_VPM_WRITE;
if (v3d_qpu_waits_vpm(inst))
result |= V3D_PERIPHERAL_VPM_WAIT;
if (v3d_qpu_writes_tmu(devinfo, inst))
result |= V3D_PERIPHERAL_TMU_WRITE;
if (inst->sig.ldtmu)
result |= V3D_PERIPHERAL_TMU_READ;
if (inst->sig.wrtmuc)
result |= V3D_PERIPHERAL_TMU_WRTMUC_SIG;
if (v3d_qpu_uses_sfu(inst))
result |= V3D_PERIPHERAL_SFU;
if (v3d_qpu_reads_tlb(inst))
result |= V3D_PERIPHERAL_TLB_READ;
if (v3d_qpu_writes_tlb(inst))
result |= V3D_PERIPHERAL_TLB_WRITE;
if (inst->type == V3D_QPU_INSTR_TYPE_ALU) {
if (inst->alu.add.op != V3D_QPU_A_NOP &&
inst->alu.add.magic_write &&
v3d_qpu_magic_waddr_is_tsy(inst->alu.add.waddr)) {
result |= V3D_PERIPHERAL_TSY;
}
if (inst->alu.add.op == V3D_QPU_A_TMUWT)
result |= V3D_PERIPHERAL_TMU_WAIT;
}
return result;
}
static bool
qpu_compatible_peripheral_access(const struct v3d_device_info *devinfo,
const struct v3d_qpu_instr *a,
const struct v3d_qpu_instr *b)
{
const uint32_t a_peripherals = qpu_peripherals(devinfo, a);
const uint32_t b_peripherals = qpu_peripherals(devinfo, b);
/* We can always do one peripheral access per instruction. */
if (util_bitcount(a_peripherals) + util_bitcount(b_peripherals) <= 1)
return true;
if (devinfo->ver < 41)
return false;
/* V3D 4.x can't do more than one peripheral access except in a
* few cases:
*/
if (devinfo->ver <= 42) {
/* WRTMUC signal with TMU register write (other than tmuc). */
if (a_peripherals == V3D_PERIPHERAL_TMU_WRTMUC_SIG &&
b_peripherals == V3D_PERIPHERAL_TMU_WRITE) {
return v3d_qpu_writes_tmu_not_tmuc(devinfo, b);
}
if (b_peripherals == V3D_PERIPHERAL_TMU_WRTMUC_SIG &&
a_peripherals == V3D_PERIPHERAL_TMU_WRITE) {
return v3d_qpu_writes_tmu_not_tmuc(devinfo, a);
}
/* TMU read with VPM read/write. */
if (a_peripherals == V3D_PERIPHERAL_TMU_READ &&
(b_peripherals == V3D_PERIPHERAL_VPM_READ ||
b_peripherals == V3D_PERIPHERAL_VPM_WRITE)) {
return true;
}
if (b_peripherals == V3D_PERIPHERAL_TMU_READ &&
(a_peripherals == V3D_PERIPHERAL_VPM_READ ||
a_peripherals == V3D_PERIPHERAL_VPM_WRITE)) {
return true;
}
return false;
}
/* V3D 7.x can't have more than one of these restricted peripherals */
const uint32_t restricted = V3D_PERIPHERAL_TMU_WRITE |
V3D_PERIPHERAL_TMU_WRTMUC_SIG |
V3D_PERIPHERAL_TSY |
V3D_PERIPHERAL_TLB_READ |
V3D_PERIPHERAL_SFU |
V3D_PERIPHERAL_VPM_READ |
V3D_PERIPHERAL_VPM_WRITE;
const uint32_t a_restricted = a_peripherals & restricted;
const uint32_t b_restricted = b_peripherals & restricted;
if (a_restricted && b_restricted) {
/* WRTMUC signal with TMU register write (other than tmuc) is
* allowed though.
*/
if (!((a_restricted == V3D_PERIPHERAL_TMU_WRTMUC_SIG &&
b_restricted == V3D_PERIPHERAL_TMU_WRITE &&
v3d_qpu_writes_tmu_not_tmuc(devinfo, b)) ||
(b_restricted == V3D_PERIPHERAL_TMU_WRTMUC_SIG &&
a_restricted == V3D_PERIPHERAL_TMU_WRITE &&
v3d_qpu_writes_tmu_not_tmuc(devinfo, a)))) {
return false;
}
}
/* Only one TMU read per instruction */
if ((a_peripherals & V3D_PERIPHERAL_TMU_READ) &&
(b_peripherals & V3D_PERIPHERAL_TMU_READ)) {
return false;
}
/* Only one TLB access per instruction */
if ((a_peripherals & (V3D_PERIPHERAL_TLB_WRITE |
V3D_PERIPHERAL_TLB_READ)) &&
(b_peripherals & (V3D_PERIPHERAL_TLB_WRITE |
V3D_PERIPHERAL_TLB_READ))) {
return false;
}
return true;
}
/* Compute a bitmask of which rf registers are used between
* the two instructions.
*/
static uint64_t
qpu_raddrs_used(const struct v3d_qpu_instr *a,
const struct v3d_qpu_instr *b)
{
assert(a->type == V3D_QPU_INSTR_TYPE_ALU);
assert(b->type == V3D_QPU_INSTR_TYPE_ALU);
uint64_t raddrs_used = 0;
if (v3d_qpu_uses_mux(a, V3D_QPU_MUX_A))
raddrs_used |= (1ll << a->raddr_a);
if (!a->sig.small_imm_b && v3d_qpu_uses_mux(a, V3D_QPU_MUX_B))
raddrs_used |= (1ll << a->raddr_b);
if (v3d_qpu_uses_mux(b, V3D_QPU_MUX_A))
raddrs_used |= (1ll << b->raddr_a);
if (!b->sig.small_imm_b && v3d_qpu_uses_mux(b, V3D_QPU_MUX_B))
raddrs_used |= (1ll << b->raddr_b);
return raddrs_used;
}
/* Takes two instructions and attempts to merge their raddr fields (including
* small immediates) into one merged instruction. For V3D 4.x, returns false
* if the two instructions access more than two different rf registers between
* them, or more than one rf register and one small immediate. For 7.x returns
* false if both instructions use small immediates.
*/
static bool
qpu_merge_raddrs(struct v3d_qpu_instr *result,
const struct v3d_qpu_instr *add_instr,
const struct v3d_qpu_instr *mul_instr,
const struct v3d_device_info *devinfo)
{
if (devinfo->ver >= 71) {
assert(add_instr->sig.small_imm_a +
add_instr->sig.small_imm_b <= 1);
assert(add_instr->sig.small_imm_c +
add_instr->sig.small_imm_d == 0);
assert(mul_instr->sig.small_imm_a +
mul_instr->sig.small_imm_b == 0);
assert(mul_instr->sig.small_imm_c +
mul_instr->sig.small_imm_d <= 1);
result->sig.small_imm_a = add_instr->sig.small_imm_a;
result->sig.small_imm_b = add_instr->sig.small_imm_b;
result->sig.small_imm_c = mul_instr->sig.small_imm_c;
result->sig.small_imm_d = mul_instr->sig.small_imm_d;
return (result->sig.small_imm_a +
result->sig.small_imm_b +
result->sig.small_imm_c +
result->sig.small_imm_d) <= 1;
}
assert(devinfo->ver <= 42);
uint64_t raddrs_used = qpu_raddrs_used(add_instr, mul_instr);
int naddrs = util_bitcount64(raddrs_used);
if (naddrs > 2)
return false;
if ((add_instr->sig.small_imm_b || mul_instr->sig.small_imm_b)) {
if (naddrs > 1)
return false;
if (add_instr->sig.small_imm_b && mul_instr->sig.small_imm_b)
if (add_instr->raddr_b != mul_instr->raddr_b)
return false;
result->sig.small_imm_b = true;
result->raddr_b = add_instr->sig.small_imm_b ?
add_instr->raddr_b : mul_instr->raddr_b;
}
if (naddrs == 0)
return true;
int raddr_a = ffsll(raddrs_used) - 1;
raddrs_used &= ~(1ll << raddr_a);
result->raddr_a = raddr_a;
if (!result->sig.small_imm_b) {
if (v3d_qpu_uses_mux(add_instr, V3D_QPU_MUX_B) &&
raddr_a == add_instr->raddr_b) {
if (add_instr->alu.add.a.mux == V3D_QPU_MUX_B)
result->alu.add.a.mux = V3D_QPU_MUX_A;
if (add_instr->alu.add.b.mux == V3D_QPU_MUX_B &&
v3d_qpu_add_op_num_src(add_instr->alu.add.op) > 1) {
result->alu.add.b.mux = V3D_QPU_MUX_A;
}
}
if (v3d_qpu_uses_mux(mul_instr, V3D_QPU_MUX_B) &&
raddr_a == mul_instr->raddr_b) {
if (mul_instr->alu.mul.a.mux == V3D_QPU_MUX_B)
result->alu.mul.a.mux = V3D_QPU_MUX_A;
if (mul_instr->alu.mul.b.mux == V3D_QPU_MUX_B &&
v3d_qpu_mul_op_num_src(mul_instr->alu.mul.op) > 1) {
result->alu.mul.b.mux = V3D_QPU_MUX_A;
}
}
}
if (!raddrs_used)
return true;
int raddr_b = ffsll(raddrs_used) - 1;
result->raddr_b = raddr_b;
if (v3d_qpu_uses_mux(add_instr, V3D_QPU_MUX_A) &&
raddr_b == add_instr->raddr_a) {
if (add_instr->alu.add.a.mux == V3D_QPU_MUX_A)
result->alu.add.a.mux = V3D_QPU_MUX_B;
if (add_instr->alu.add.b.mux == V3D_QPU_MUX_A &&
v3d_qpu_add_op_num_src(add_instr->alu.add.op) > 1) {
result->alu.add.b.mux = V3D_QPU_MUX_B;
}
}
if (v3d_qpu_uses_mux(mul_instr, V3D_QPU_MUX_A) &&
raddr_b == mul_instr->raddr_a) {
if (mul_instr->alu.mul.a.mux == V3D_QPU_MUX_A)
result->alu.mul.a.mux = V3D_QPU_MUX_B;
if (mul_instr->alu.mul.b.mux == V3D_QPU_MUX_A &&
v3d_qpu_mul_op_num_src(mul_instr->alu.mul.op) > 1) {
result->alu.mul.b.mux = V3D_QPU_MUX_B;
}
}
return true;
}
static bool
can_do_add_as_mul(enum v3d_qpu_add_op op)
{
switch (op) {
case V3D_QPU_A_ADD:
case V3D_QPU_A_SUB:
return true;
default:
return false;
}
}
static enum v3d_qpu_mul_op
add_op_as_mul_op(enum v3d_qpu_add_op op)
{
switch (op) {
case V3D_QPU_A_ADD:
return V3D_QPU_M_ADD;
case V3D_QPU_A_SUB:
return V3D_QPU_M_SUB;
default:
unreachable("unexpected add opcode");
}
}
static void
qpu_convert_add_to_mul(const struct v3d_device_info *devinfo,
struct v3d_qpu_instr *inst)
{
STATIC_ASSERT(sizeof(inst->alu.mul) == sizeof(inst->alu.add));
assert(inst->alu.add.op != V3D_QPU_A_NOP);
assert(inst->alu.mul.op == V3D_QPU_M_NOP);
memcpy(&inst->alu.mul, &inst->alu.add, sizeof(inst->alu.mul));
inst->alu.mul.op = add_op_as_mul_op(inst->alu.add.op);
inst->alu.add.op = V3D_QPU_A_NOP;
inst->flags.mc = inst->flags.ac;
inst->flags.mpf = inst->flags.apf;
inst->flags.muf = inst->flags.auf;
inst->flags.ac = V3D_QPU_COND_NONE;
inst->flags.apf = V3D_QPU_PF_NONE;
inst->flags.auf = V3D_QPU_UF_NONE;
inst->alu.mul.output_pack = inst->alu.add.output_pack;
inst->alu.mul.a.unpack = inst->alu.add.a.unpack;
inst->alu.mul.b.unpack = inst->alu.add.b.unpack;
inst->alu.add.output_pack = V3D_QPU_PACK_NONE;
inst->alu.add.a.unpack = V3D_QPU_UNPACK_NONE;
inst->alu.add.b.unpack = V3D_QPU_UNPACK_NONE;
if (devinfo->ver >= 71) {
assert(!inst->sig.small_imm_c && !inst->sig.small_imm_d);
assert(inst->sig.small_imm_a + inst->sig.small_imm_b <= 1);
if (inst->sig.small_imm_a) {
inst->sig.small_imm_c = true;
inst->sig.small_imm_a = false;
} else if (inst->sig.small_imm_b) {
inst->sig.small_imm_d = true;
inst->sig.small_imm_b = false;
}
}
}
static bool
can_do_mul_as_add(const struct v3d_device_info *devinfo, enum v3d_qpu_mul_op op)
{
switch (op) {
case V3D_QPU_M_MOV:
case V3D_QPU_M_FMOV:
return devinfo->ver >= 71;
default:
return false;
}
}
static enum v3d_qpu_mul_op
mul_op_as_add_op(enum v3d_qpu_mul_op op)
{
switch (op) {
case V3D_QPU_M_MOV:
return V3D_QPU_A_MOV;
case V3D_QPU_M_FMOV:
return V3D_QPU_A_FMOV;
default:
unreachable("unexpected mov opcode");
}
}
static void
qpu_convert_mul_to_add(struct v3d_qpu_instr *inst)
{
STATIC_ASSERT(sizeof(inst->alu.add) == sizeof(inst->alu.mul));
assert(inst->alu.mul.op != V3D_QPU_M_NOP);
assert(inst->alu.add.op == V3D_QPU_A_NOP);
memcpy(&inst->alu.add, &inst->alu.mul, sizeof(inst->alu.add));
inst->alu.add.op = mul_op_as_add_op(inst->alu.mul.op);
inst->alu.mul.op = V3D_QPU_M_NOP;
inst->flags.ac = inst->flags.mc;
inst->flags.apf = inst->flags.mpf;
inst->flags.auf = inst->flags.muf;
inst->flags.mc = V3D_QPU_COND_NONE;
inst->flags.mpf = V3D_QPU_PF_NONE;
inst->flags.muf = V3D_QPU_UF_NONE;
inst->alu.add.output_pack = inst->alu.mul.output_pack;
inst->alu.add.a.unpack = inst->alu.mul.a.unpack;
inst->alu.add.b.unpack = inst->alu.mul.b.unpack;
inst->alu.mul.output_pack = V3D_QPU_PACK_NONE;
inst->alu.mul.a.unpack = V3D_QPU_UNPACK_NONE;
inst->alu.mul.b.unpack = V3D_QPU_UNPACK_NONE;
assert(!inst->sig.small_imm_a && !inst->sig.small_imm_b);
assert(inst->sig.small_imm_c + inst->sig.small_imm_d <= 1);
if (inst->sig.small_imm_c) {
inst->sig.small_imm_a = true;
inst->sig.small_imm_c = false;
} else if (inst->sig.small_imm_d) {
inst->sig.small_imm_b = true;
inst->sig.small_imm_d = false;
}
}
static bool
qpu_merge_inst(const struct v3d_device_info *devinfo,
struct v3d_qpu_instr *result,
const struct v3d_qpu_instr *a,
const struct v3d_qpu_instr *b)
{
if (a->type != V3D_QPU_INSTR_TYPE_ALU ||
b->type != V3D_QPU_INSTR_TYPE_ALU) {
return false;
}
if (!qpu_compatible_peripheral_access(devinfo, a, b))
return false;
struct v3d_qpu_instr merge = *a;
const struct v3d_qpu_instr *add_instr = NULL, *mul_instr = NULL;
struct v3d_qpu_instr mul_inst;
if (b->alu.add.op != V3D_QPU_A_NOP) {
if (a->alu.add.op == V3D_QPU_A_NOP) {
merge.alu.add = b->alu.add;
merge.flags.ac = b->flags.ac;
merge.flags.apf = b->flags.apf;
merge.flags.auf = b->flags.auf;
add_instr = b;
mul_instr = a;
}
/* If a's add op is used but its mul op is not, then see if we
* can convert either a's add op or b's add op to a mul op
* so we can merge.
*/
else if (a->alu.mul.op == V3D_QPU_M_NOP &&
can_do_add_as_mul(b->alu.add.op)) {
mul_inst = *b;
qpu_convert_add_to_mul(devinfo, &mul_inst);
merge.alu.mul = mul_inst.alu.mul;
merge.flags.mc = mul_inst.flags.mc;
merge.flags.mpf = mul_inst.flags.mpf;
merge.flags.muf = mul_inst.flags.muf;
add_instr = a;
mul_instr = &mul_inst;
} else if (a->alu.mul.op == V3D_QPU_M_NOP &&
can_do_add_as_mul(a->alu.add.op)) {
mul_inst = *a;
qpu_convert_add_to_mul(devinfo, &mul_inst);
merge = mul_inst;
merge.alu.add = b->alu.add;
merge.flags.ac = b->flags.ac;
merge.flags.apf = b->flags.apf;
merge.flags.auf = b->flags.auf;
add_instr = b;
mul_instr = &mul_inst;
} else {
return false;
}
}
struct v3d_qpu_instr add_inst;
if (b->alu.mul.op != V3D_QPU_M_NOP) {
if (a->alu.mul.op == V3D_QPU_M_NOP) {
merge.alu.mul = b->alu.mul;
merge.flags.mc = b->flags.mc;
merge.flags.mpf = b->flags.mpf;
merge.flags.muf = b->flags.muf;
mul_instr = b;
add_instr = a;
}
/* If a's mul op is used but its add op is not, then see if we
* can convert either a's mul op or b's mul op to an add op
* so we can merge.
*/
else if (a->alu.add.op == V3D_QPU_A_NOP &&
can_do_mul_as_add(devinfo, b->alu.mul.op)) {
add_inst = *b;
qpu_convert_mul_to_add(&add_inst);
merge.alu.add = add_inst.alu.add;
merge.flags.ac = add_inst.flags.ac;
merge.flags.apf = add_inst.flags.apf;
merge.flags.auf = add_inst.flags.auf;
mul_instr = a;
add_instr = &add_inst;
} else if (a->alu.add.op == V3D_QPU_A_NOP &&
can_do_mul_as_add(devinfo, a->alu.mul.op)) {
add_inst = *a;
qpu_convert_mul_to_add(&add_inst);
merge = add_inst;
merge.alu.mul = b->alu.mul;
merge.flags.mc = b->flags.mc;
merge.flags.mpf = b->flags.mpf;
merge.flags.muf = b->flags.muf;
mul_instr = b;
add_instr = &add_inst;
} else {
return false;
}
}
/* V3D 4.x and earlier use muxes to select the inputs for the ALUs and
* they have restrictions on the number of raddrs that can be adressed
* in a single instruction. In V3D 7.x, we don't have that restriction,
* but we are still limited to a single small immediate per instruction.
*/
if (add_instr && mul_instr &&
!qpu_merge_raddrs(&merge, add_instr, mul_instr, devinfo)) {
return false;
}
merge.sig.thrsw |= b->sig.thrsw;
merge.sig.ldunif |= b->sig.ldunif;
merge.sig.ldunifrf |= b->sig.ldunifrf;
merge.sig.ldunifa |= b->sig.ldunifa;
merge.sig.ldunifarf |= b->sig.ldunifarf;
merge.sig.ldtmu |= b->sig.ldtmu;
merge.sig.ldvary |= b->sig.ldvary;
merge.sig.ldvpm |= b->sig.ldvpm;
merge.sig.ldtlb |= b->sig.ldtlb;
merge.sig.ldtlbu |= b->sig.ldtlbu;
merge.sig.ucb |= b->sig.ucb;
merge.sig.rotate |= b->sig.rotate;
merge.sig.wrtmuc |= b->sig.wrtmuc;
if (v3d_qpu_sig_writes_address(devinfo, &a->sig) &&
v3d_qpu_sig_writes_address(devinfo, &b->sig))
return false;
merge.sig_addr |= b->sig_addr;
merge.sig_magic |= b->sig_magic;
uint64_t packed;
bool ok = v3d_qpu_instr_pack(devinfo, &merge, &packed);
*result = merge;
/* No modifying the real instructions on failure. */
assert(ok || (a != result && b != result));
return ok;
}
static inline bool
try_skip_for_ldvary_pipelining(const struct v3d_qpu_instr *inst)
{
return inst->sig.ldunif || inst->sig.ldunifrf;
}
static bool
qpu_inst_after_thrsw_valid_in_delay_slot(struct v3d_compile *c,
struct choose_scoreboard *scoreboard,
const struct qinst *qinst);
static struct schedule_node *
choose_instruction_to_schedule(struct v3d_compile *c,
struct choose_scoreboard *scoreboard,
struct schedule_node *prev_inst)
{
struct schedule_node *chosen = NULL;
int chosen_prio = 0;
/* Don't pair up anything with a thread switch signal -- emit_thrsw()
* will handle pairing it along with filling the delay slots.
*/
if (prev_inst) {
if (prev_inst->inst->qpu.sig.thrsw)
return NULL;
}
bool ldvary_pipelining = c->s->info.stage == MESA_SHADER_FRAGMENT &&
scoreboard->ldvary_count < c->num_inputs;
bool skipped_insts_for_ldvary_pipelining = false;
retry:
list_for_each_entry(struct schedule_node, n, &scoreboard->dag->heads,
dag.link) {
const struct v3d_qpu_instr *inst = &n->inst->qpu;
if (ldvary_pipelining && try_skip_for_ldvary_pipelining(inst)) {
skipped_insts_for_ldvary_pipelining = true;
continue;
}
/* Don't choose the branch instruction until it's the last one
* left. We'll move it up to fit its delay slots after we
* choose it.
*/
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH &&
!list_is_singular(&scoreboard->dag->heads)) {
continue;
}
/* We need to have 3 delay slots between a write to unifa and
* a follow-up ldunifa.
*/
if ((inst->sig.ldunifa || inst->sig.ldunifarf) &&
scoreboard->tick - scoreboard->last_unifa_write_tick <= 3)
continue;
/* "An instruction must not read from a location in physical
* regfile A or B that was written to by the previous
* instruction."
*/
if (reads_too_soon_after_write(c->devinfo, scoreboard, n->inst))
continue;
if (writes_too_soon_after_write(c->devinfo, scoreboard, n->inst))
continue;
/* "Before doing a TLB access a scoreboard wait must have been
* done. This happens either on the first or last thread
* switch, depending on a setting (scb_wait_on_first_thrsw) in
* the shader state."
*/
if (pixel_scoreboard_too_soon(c, scoreboard, inst))
continue;
/* ldunif and ldvary both write the same register (r5 for v42
* and below, rf0 for v71), but ldunif does so a tick sooner.
* If the ldvary's register wasn't used, then ldunif might
* otherwise get scheduled so ldunif and ldvary try to update
* the register in the same tick.
*/
if ((inst->sig.ldunif || inst->sig.ldunifa) &&
scoreboard->tick == scoreboard->last_ldvary_tick + 1) {
continue;
}
/* If we are in a thrsw delay slot check that this instruction
* is valid for that.
*/
if (scoreboard->last_thrsw_tick + 2 >= scoreboard->tick &&
!qpu_inst_after_thrsw_valid_in_delay_slot(c, scoreboard,
n->inst)) {
continue;
}
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH) {
/* Don't try to put a branch in the delay slots of another
* branch or a unifa write.
*/
if (scoreboard->last_branch_tick + 3 >= scoreboard->tick)
continue;
if (scoreboard->last_unifa_write_tick + 3 >= scoreboard->tick)
continue;
/* No branch with cond != 0,2,3 and msfign != 0 after
* setmsf.
*/
if (scoreboard->last_setmsf_tick == scoreboard->tick - 1 &&
inst->branch.msfign != V3D_QPU_MSFIGN_NONE &&
inst->branch.cond != V3D_QPU_BRANCH_COND_ALWAYS &&
inst->branch.cond != V3D_QPU_BRANCH_COND_A0 &&
inst->branch.cond != V3D_QPU_BRANCH_COND_NA0) {
continue;
}
}
/* If we're trying to pair with another instruction, check
* that they're compatible.
*/
if (prev_inst) {
/* Don't pair up a thread switch signal -- we'll
* handle pairing it when we pick it on its own.
*/
if (inst->sig.thrsw)
continue;
if (prev_inst->inst->uniform != -1 &&
n->inst->uniform != -1)
continue;
/* Simulator complains if we have two uniforms loaded in
* the the same instruction, which could happen if we
* have a ldunif or sideband uniform and we pair that
* with ldunifa.
*/
if (vir_has_uniform(prev_inst->inst) &&
(inst->sig.ldunifa || inst->sig.ldunifarf)) {
continue;
}
if ((prev_inst->inst->qpu.sig.ldunifa ||
prev_inst->inst->qpu.sig.ldunifarf) &&
vir_has_uniform(n->inst)) {
continue;
}
/* Don't merge TLB instructions before we have acquired
* the scoreboard lock.
*/
if (pixel_scoreboard_too_soon(c, scoreboard, inst))
continue;
/* When we successfully pair up an ldvary we then try
* to merge it into the previous instruction if
* possible to improve pipelining. Don't pick up the
* ldvary now if the follow-up fixup would place
* it in the delay slots of a thrsw, which is not
* allowed and would prevent the fixup from being
* successful. In V3D 7.x we can allow this to happen
* as long as it is not the last delay slot.
*/
if (inst->sig.ldvary) {
if (c->devinfo->ver <= 42 &&
scoreboard->last_thrsw_tick + 2 >=
scoreboard->tick - 1) {
continue;
}
if (c->devinfo->ver >= 71 &&
scoreboard->last_thrsw_tick + 2 ==
scoreboard->tick - 1) {
continue;
}
}
/* We can emit a new tmu lookup with a previous ldtmu
* if doing this would free just enough space in the
* TMU output fifo so we don't overflow, however, this
* is only safe if the ldtmu cannot stall.
*
* A ldtmu can stall if it is not the first following a
* thread switch and corresponds to the first word of a
* read request.
*
* FIXME: For now we forbid pairing up a new lookup
* with a previous ldtmu that is not the first after a
* thrsw if that could overflow the TMU output fifo
* regardless of whether the ldtmu is reading the first
* word of a TMU result or not, since we don't track
* this aspect in the compiler yet.
*/
if (prev_inst->inst->qpu.sig.ldtmu &&
!scoreboard->first_ldtmu_after_thrsw &&
(scoreboard->pending_ldtmu_count +
n->inst->ldtmu_count > 16 / c->threads)) {
continue;
}
struct v3d_qpu_instr merged_inst;
if (!qpu_merge_inst(c->devinfo, &merged_inst,
&prev_inst->inst->qpu, inst)) {
continue;
}
}
int prio = get_instruction_priority(c->devinfo, inst);
if (read_stalls(c->devinfo, scoreboard, inst)) {
/* Don't merge an instruction that stalls */
if (prev_inst)
continue;
else {
/* Any instruction that don't stall will have
* higher scheduling priority */
prio -= MAX_SCHEDULE_PRIORITY;
assert(prio < 0);
}
}
/* Found a valid instruction. If nothing better comes along,
* this one works.
*/
if (!chosen) {
chosen = n;
chosen_prio = prio;
continue;
}
if (prio > chosen_prio) {
chosen = n;
chosen_prio = prio;
} else if (prio < chosen_prio) {
continue;
}
if (n->delay > chosen->delay) {
chosen = n;
chosen_prio = prio;
} else if (n->delay < chosen->delay) {
continue;
}
}
/* If we did not find any instruction to schedule but we discarded
* some of them to prioritize ldvary pipelining, try again.
*/
if (!chosen && !prev_inst && skipped_insts_for_ldvary_pipelining) {
skipped_insts_for_ldvary_pipelining = false;
ldvary_pipelining = false;
goto retry;
}
if (chosen && chosen->inst->qpu.sig.ldvary) {
scoreboard->ldvary_count++;
/* If we are pairing an ldvary, flag it so we can fix it up for
* optimal pipelining of ldvary sequences.
*/
if (prev_inst)
scoreboard->fixup_ldvary = true;
}
return chosen;
}
static void
update_scoreboard_for_magic_waddr(struct choose_scoreboard *scoreboard,
enum v3d_qpu_waddr waddr,
const struct v3d_device_info *devinfo)
{
if (v3d_qpu_magic_waddr_is_sfu(waddr))
scoreboard->last_magic_sfu_write_tick = scoreboard->tick;
else if (devinfo->ver >= 40 && waddr == V3D_QPU_WADDR_UNIFA)
scoreboard->last_unifa_write_tick = scoreboard->tick;
}
static void
update_scoreboard_for_sfu_stall_waddr(struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst)
{
if (v3d_qpu_instr_is_sfu(inst)) {
scoreboard->last_stallable_sfu_reg = inst->alu.add.waddr;
scoreboard->last_stallable_sfu_tick = scoreboard->tick;
}
}
static void
update_scoreboard_tmu_tracking(struct choose_scoreboard *scoreboard,
const struct qinst *inst)
{
/* Track if the have seen any ldtmu after the last thread switch */
if (scoreboard->tick == scoreboard->last_thrsw_tick + 2)
scoreboard->first_ldtmu_after_thrsw = true;
/* Track the number of pending ldtmu instructions for outstanding
* TMU lookups.
*/
scoreboard->pending_ldtmu_count += inst->ldtmu_count;
if (inst->qpu.sig.ldtmu) {
assert(scoreboard->pending_ldtmu_count > 0);
scoreboard->pending_ldtmu_count--;
scoreboard->first_ldtmu_after_thrsw = false;
}
}
static void
set_has_rf0_flops_conflict(struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst,
const struct v3d_device_info *devinfo)
{
if (scoreboard->last_implicit_rf0_write_tick == scoreboard->tick &&
v3d_qpu_sig_writes_address(devinfo, &inst->sig) &&
!inst->sig_magic) {
scoreboard->has_rf0_flops_conflict = true;
}
}
static void
update_scoreboard_for_rf0_flops(struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst,
const struct v3d_device_info *devinfo)
{
if (devinfo->ver < 71)
return;
/* Thread switch restrictions:
*
* At the point of a thread switch or thread end (when the actual
* thread switch or thread end happens, not when the signalling
* instruction is processed):
*
* - If the most recent write to rf0 was from a ldunif, ldunifa, or
* ldvary instruction in which another signal also wrote to the
* register file, and the final instruction of the thread section
* contained a signal which wrote to the register file, then the
* value of rf0 is undefined at the start of the new section
*
* Here we use the scoreboard to track if our last rf0 implicit write
* happens at the same time that another signal writes the register
* file (has_rf0_flops_conflict). We will use that information when
* scheduling thrsw instructions to avoid putting anything in their
* last delay slot which has a signal that writes to the register file.
*/
/* Reset tracking if we have an explicit rf0 write or we are starting
* a new thread section.
*/
if (v3d71_qpu_writes_waddr_explicitly(devinfo, inst, 0) ||
scoreboard->tick - scoreboard->last_thrsw_tick == 3) {
scoreboard->last_implicit_rf0_write_tick = -10;
scoreboard->has_rf0_flops_conflict = false;
}
if (v3d_qpu_writes_rf0_implicitly(devinfo, inst)) {
scoreboard->last_implicit_rf0_write_tick = inst->sig.ldvary ?
scoreboard->tick + 1 : scoreboard->tick;
}
set_has_rf0_flops_conflict(scoreboard, inst, devinfo);
}
static void
update_scoreboard_for_chosen(struct choose_scoreboard *scoreboard,
const struct qinst *qinst,
const struct v3d_device_info *devinfo)
{
const struct v3d_qpu_instr *inst = &qinst->qpu;
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
return;
assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
if (inst->alu.add.op != V3D_QPU_A_NOP) {
if (inst->alu.add.magic_write) {
update_scoreboard_for_magic_waddr(scoreboard,
inst->alu.add.waddr,
devinfo);
} else {
update_scoreboard_for_sfu_stall_waddr(scoreboard,
inst);
}
if (inst->alu.add.op == V3D_QPU_A_SETMSF)
scoreboard->last_setmsf_tick = scoreboard->tick;
}
if (inst->alu.mul.op != V3D_QPU_M_NOP) {
if (inst->alu.mul.magic_write) {
update_scoreboard_for_magic_waddr(scoreboard,
inst->alu.mul.waddr,
devinfo);
}
}
if (v3d_qpu_sig_writes_address(devinfo, &inst->sig) && inst->sig_magic) {
update_scoreboard_for_magic_waddr(scoreboard,
inst->sig_addr,
devinfo);
}
if (inst->sig.ldvary)
scoreboard->last_ldvary_tick = scoreboard->tick;
update_scoreboard_for_rf0_flops(scoreboard, inst, devinfo);
update_scoreboard_tmu_tracking(scoreboard, qinst);
}
static void
dump_state(const struct v3d_device_info *devinfo, struct dag *dag)
{
list_for_each_entry(struct schedule_node, n, &dag->heads, dag.link) {
fprintf(stderr, " t=%4d: ", n->unblocked_time);
v3d_qpu_dump(devinfo, &n->inst->qpu);
fprintf(stderr, "\n");
util_dynarray_foreach(&n->dag.edges, struct dag_edge, edge) {
struct schedule_node *child =
(struct schedule_node *)edge->child;
if (!child)
continue;
fprintf(stderr, " - ");
v3d_qpu_dump(devinfo, &child->inst->qpu);
fprintf(stderr, " (%d parents, %c)\n",
child->dag.parent_count,
edge->data ? 'w' : 'r');
}
}
}
static uint32_t magic_waddr_latency(const struct v3d_device_info *devinfo,
enum v3d_qpu_waddr waddr,
const struct v3d_qpu_instr *after)
{
/* Apply some huge latency between texture fetch requests and getting
* their results back.
*
* FIXME: This is actually pretty bogus. If we do:
*
* mov tmu0_s, a
* <a bit of math>
* mov tmu0_s, b
* load_tmu0
* <more math>
* load_tmu0
*
* we count that as worse than
*
* mov tmu0_s, a
* mov tmu0_s, b
* <lots of math>
* load_tmu0
* <more math>
* load_tmu0
*
* because we associate the first load_tmu0 with the *second* tmu0_s.
*/
if (v3d_qpu_magic_waddr_is_tmu(devinfo, waddr) &&
v3d_qpu_waits_on_tmu(after)) {
return 100;
}
/* Assume that anything depending on us is consuming the SFU result. */
if (v3d_qpu_magic_waddr_is_sfu(waddr))
return 3;
return 1;
}
static uint32_t
instruction_latency(const struct v3d_device_info *devinfo,
struct schedule_node *before, struct schedule_node *after)
{
const struct v3d_qpu_instr *before_inst = &before->inst->qpu;
const struct v3d_qpu_instr *after_inst = &after->inst->qpu;
uint32_t latency = 1;
if (before_inst->type != V3D_QPU_INSTR_TYPE_ALU ||
after_inst->type != V3D_QPU_INSTR_TYPE_ALU)
return latency;
if (v3d_qpu_instr_is_sfu(before_inst))
return 2;
if (before_inst->alu.add.op != V3D_QPU_A_NOP &&
before_inst->alu.add.magic_write) {
latency = MAX2(latency,
magic_waddr_latency(devinfo,
before_inst->alu.add.waddr,
after_inst));
}
if (before_inst->alu.mul.op != V3D_QPU_M_NOP &&
before_inst->alu.mul.magic_write) {
latency = MAX2(latency,
magic_waddr_latency(devinfo,
before_inst->alu.mul.waddr,
after_inst));
}
return latency;
}
/** Recursive computation of the delay member of a node. */
static void
compute_delay(struct dag_node *node, void *state)
{
struct schedule_node *n = (struct schedule_node *)node;
struct v3d_compile *c = (struct v3d_compile *) state;
n->delay = 1;
util_dynarray_foreach(&n->dag.edges, struct dag_edge, edge) {
struct schedule_node *child =
(struct schedule_node *)edge->child;
n->delay = MAX2(n->delay, (child->delay +
instruction_latency(c->devinfo, n,
child)));
}
}
/* Removes a DAG head, but removing only the WAR edges. (dag_prune_head()
* should be called on it later to finish pruning the other edges).
*/
static void
pre_remove_head(struct dag *dag, struct schedule_node *n)
{
list_delinit(&n->dag.link);
util_dynarray_foreach(&n->dag.edges, struct dag_edge, edge) {
if (edge->data)
dag_remove_edge(dag, edge);
}
}
static void
mark_instruction_scheduled(const struct v3d_device_info *devinfo,
struct dag *dag,
uint32_t time,
struct schedule_node *node)
{
if (!node)
return;
util_dynarray_foreach(&node->dag.edges, struct dag_edge, edge) {
struct schedule_node *child =
(struct schedule_node *)edge->child;
if (!child)
continue;
uint32_t latency = instruction_latency(devinfo, node, child);
child->unblocked_time = MAX2(child->unblocked_time,
time + latency);
}
dag_prune_head(dag, &node->dag);
}
static void
insert_scheduled_instruction(struct v3d_compile *c,
struct qblock *block,
struct choose_scoreboard *scoreboard,
struct qinst *inst)
{
list_addtail(&inst->link, &block->instructions);
update_scoreboard_for_chosen(scoreboard, inst, c->devinfo);
c->qpu_inst_count++;
scoreboard->tick++;
}
static struct qinst *
vir_nop()
{
struct qreg undef = vir_nop_reg();
struct qinst *qinst = vir_add_inst(V3D_QPU_A_NOP, undef, undef, undef);
return qinst;
}
static void
emit_nop(struct v3d_compile *c, struct qblock *block,
struct choose_scoreboard *scoreboard)
{
insert_scheduled_instruction(c, block, scoreboard, vir_nop());
}
static bool
qpu_inst_valid_in_thrend_slot(struct v3d_compile *c,
const struct qinst *qinst, int slot)
{
const struct v3d_qpu_instr *inst = &qinst->qpu;
if (slot == 2 && qinst->is_tlb_z_write)
return false;
if (slot > 0 && qinst->uniform != ~0)
return false;
if (c->devinfo->ver <= 42 && v3d_qpu_waits_vpm(inst))
return false;
if (inst->sig.ldvary)
return false;
if (inst->type == V3D_QPU_INSTR_TYPE_ALU) {
/* GFXH-1625: TMUWT not allowed in the final instruction. */
if (c->devinfo->ver <= 42 && slot == 2 &&
inst->alu.add.op == V3D_QPU_A_TMUWT) {
return false;
}
if (c->devinfo->ver <= 42) {
/* No writing physical registers at the end. */
bool add_is_nop = inst->alu.add.op == V3D_QPU_A_NOP;
bool mul_is_nop = inst->alu.mul.op == V3D_QPU_M_NOP;
if ((!add_is_nop && !inst->alu.add.magic_write) ||
(!mul_is_nop && !inst->alu.mul.magic_write)) {
return false;
}
if (v3d_qpu_sig_writes_address(c->devinfo, &inst->sig) &&
!inst->sig_magic) {
return false;
}
}
if (c->devinfo->ver >= 71) {
/* The thread end instruction must not write to the
* register file via the add/mul ALUs.
*/
if (slot == 0 &&
(!inst->alu.add.magic_write ||
!inst->alu.mul.magic_write)) {
return false;
}
}
if (c->devinfo->ver < 40 && inst->alu.add.op == V3D_QPU_A_SETMSF)
return false;
if (c->devinfo->ver <= 42) {
/* RF0-2 might be overwritten during the delay slots by
* fragment shader setup.
*/
if (inst->raddr_a < 3 && v3d_qpu_uses_mux(inst, V3D_QPU_MUX_A))
return false;
if (inst->raddr_b < 3 &&
!inst->sig.small_imm_b &&
v3d_qpu_uses_mux(inst, V3D_QPU_MUX_B)) {
return false;
}
}
if (c->devinfo->ver >= 71) {
/* RF2-3 might be overwritten during the delay slots by
* fragment shader setup.
*/
if (v3d71_qpu_reads_raddr(inst, 2) ||
v3d71_qpu_reads_raddr(inst, 3)) {
return false;
}
if (v3d71_qpu_writes_waddr_explicitly(c->devinfo, inst, 2) ||
v3d71_qpu_writes_waddr_explicitly(c->devinfo, inst, 3)) {
return false;
}
}
}
return true;
}
/**
* This is called when trying to merge a thrsw back into the instruction stream
* of instructions that were scheduled *before* the thrsw signal to fill its
* delay slots. Because the actual execution of the thrsw happens after the
* delay slots, it is usually safe to do this, but there are some cases that
* need special care.
*/
static bool
qpu_inst_before_thrsw_valid_in_delay_slot(struct v3d_compile *c,
struct choose_scoreboard *scoreboard,
const struct qinst *qinst,
uint32_t slot)
{
/* No scheduling SFU when the result would land in the other
* thread. The simulator complains for safety, though it
* would only occur for dead code in our case.
*/
if (slot > 0 && v3d_qpu_instr_is_legacy_sfu(&qinst->qpu))
return false;
if (qinst->qpu.sig.ldvary) {
if (c->devinfo->ver <= 42 && slot > 0)
return false;
if (c->devinfo->ver >= 71 && slot == 2)
return false;
}
/* unifa and the following 3 instructions can't overlap a
* thread switch/end. The docs further clarify that this means
* the cycle at which the actual thread switch/end happens
* and not when the thrsw instruction is processed, which would
* be after the 2 delay slots following the thrsw instruction.
* This means that we can move up a thrsw up to the instruction
* right after unifa:
*
* unifa, r5
* thrsw
* delay slot 1
* delay slot 2
* Thread switch happens here, 4 instructions away from unifa
*/
if (v3d_qpu_writes_unifa(c->devinfo, &qinst->qpu))
return false;
/* See comment when we set has_rf0_flops_conflict for details */
if (c->devinfo->ver >= 71 &&
slot == 2 &&
v3d_qpu_sig_writes_address(c->devinfo, &qinst->qpu.sig) &&
!qinst->qpu.sig_magic) {
if (scoreboard->has_rf0_flops_conflict)
return false;
if (scoreboard->last_implicit_rf0_write_tick == scoreboard->tick)
return false;
}
return true;
}
/**
* This is called for instructions scheduled *after* a thrsw signal that may
* land in the delay slots of the thrsw. Because these instructions were
* scheduled after the thrsw, we need to be careful when placing them into
* the delay slots, since that means that we are moving them ahead of the
* thread switch and we need to ensure that is not a problem.
*/
static bool
qpu_inst_after_thrsw_valid_in_delay_slot(struct v3d_compile *c,
struct choose_scoreboard *scoreboard,
const struct qinst *qinst)
{
const uint32_t slot = scoreboard->tick - scoreboard->last_thrsw_tick;
assert(slot <= 2);
/* We merge thrsw instructions back into the instruction stream
* manually, so any instructions scheduled after a thrsw should be
* in the actual delay slots and not in the same slot as the thrsw.
*/
assert(slot >= 1);
/* No emitting a thrsw while the previous thrsw hasn't happened yet. */
if (qinst->qpu.sig.thrsw)
return false;
/* The restrictions for instructions scheduled before the the thrsw
* also apply to instructions scheduled after the thrsw that we want
* to place in its delay slots.
*/
if (!qpu_inst_before_thrsw_valid_in_delay_slot(c, scoreboard, qinst, slot))
return false;
/* TLB access is disallowed until scoreboard wait is executed, which
* we do on the last thread switch.
*/
if (qpu_inst_is_tlb(&qinst->qpu))
return false;
/* Instruction sequence restrictions: Branch is not allowed in delay
* slots of a thrsw.
*/
if (qinst->qpu.type == V3D_QPU_INSTR_TYPE_BRANCH)
return false;
/* Miscellaneous restrictions: At the point of a thrsw we need to have
* at least one outstanding lookup or TSY wait.
*
* So avoid placing TMU instructions scheduled after the thrsw into
* its delay slots or we may be compromising the integrity of our TMU
* sequences. Also, notice that if we moved these instructions into
* the delay slots of a previous thrsw we could overflow our TMU output
* fifo, since we could be effectively pipelining a lookup scheduled
* after the thrsw into the sequence before the thrsw.
*/
if (v3d_qpu_writes_tmu(c->devinfo, &qinst->qpu) ||
qinst->qpu.sig.wrtmuc) {
return false;
}
/* Don't move instructions that wait on the TMU before the thread switch
* happens since that would make the current thread stall before the
* switch, which is exactly what we want to avoid with the thrsw
* instruction.
*/
if (v3d_qpu_waits_on_tmu(&qinst->qpu))
return false;
/* A thread switch invalidates all accumulators, so don't place any
* instructions that write accumulators into the delay slots.
*/
if (v3d_qpu_writes_accum(c->devinfo, &qinst->qpu))
return false;
/* Multop has an implicit write to the rtop register which is an
* specialized accumulator that is only used with this instruction.
*/
if (qinst->qpu.alu.mul.op == V3D_QPU_M_MULTOP)
return false;
/* Flags are invalidated across a thread switch, so dont' place
* instructions that write flags into delay slots.
*/
if (v3d_qpu_writes_flags(&qinst->qpu))
return false;
/* TSY sync ops materialize at the point of the next thread switch,
* therefore, if we have a TSY sync right after a thread switch, we
* cannot place it in its delay slots, or we would be moving the sync
* to the thrsw before it instead.
*/
if (qinst->qpu.alu.add.op == V3D_QPU_A_BARRIERID)
return false;
return true;
}
static bool
valid_thrsw_sequence(struct v3d_compile *c, struct choose_scoreboard *scoreboard,
struct qinst *qinst, int instructions_in_sequence,
bool is_thrend)
{
for (int slot = 0; slot < instructions_in_sequence; slot++) {
if (!qpu_inst_before_thrsw_valid_in_delay_slot(c, scoreboard,
qinst, slot)) {
return false;
}
if (is_thrend &&
!qpu_inst_valid_in_thrend_slot(c, qinst, slot)) {
return false;
}
/* Note that the list is circular, so we can only do this up
* to instructions_in_sequence.
*/
qinst = (struct qinst *)qinst->link.next;
}
return true;
}
/**
* Emits a THRSW signal in the stream, trying to move it up to pair with
* another instruction.
*/
static int
emit_thrsw(struct v3d_compile *c,
struct qblock *block,
struct choose_scoreboard *scoreboard,
struct qinst *inst,
bool is_thrend)
{
int time = 0;
/* There should be nothing in a thrsw inst being scheduled other than
* the signal bits.
*/
assert(inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU);
assert(inst->qpu.alu.add.op == V3D_QPU_A_NOP);
assert(inst->qpu.alu.mul.op == V3D_QPU_M_NOP);
/* Don't try to emit a thrsw in the delay slots of a previous thrsw
* or branch.
*/
while (scoreboard->last_thrsw_tick + 2 >= scoreboard->tick) {
emit_nop(c, block, scoreboard);
time++;
}
while (scoreboard->last_branch_tick + 3 >= scoreboard->tick) {
emit_nop(c, block, scoreboard);
time++;
}
/* Find how far back into previous instructions we can put the THRSW. */
int slots_filled = 0;
int invalid_sig_count = 0;
int invalid_seq_count = 0;
bool last_thrsw_after_invalid_ok = false;
struct qinst *merge_inst = NULL;
vir_for_each_inst_rev(prev_inst, block) {
/* No emitting our thrsw while the previous thrsw hasn't
* happened yet.
*/
if (scoreboard->last_thrsw_tick + 3 >
scoreboard->tick - (slots_filled + 1)) {
break;
}
if (!valid_thrsw_sequence(c, scoreboard,
prev_inst, slots_filled + 1,
is_thrend)) {
/* Even if the current sequence isn't valid, we may
* be able to get a valid sequence by trying to move the
* thrsw earlier, so keep going.
*/
invalid_seq_count++;
goto cont_block;
}
struct v3d_qpu_sig sig = prev_inst->qpu.sig;
sig.thrsw = true;
uint32_t packed_sig;
if (!v3d_qpu_sig_pack(c->devinfo, &sig, &packed_sig)) {
/* If we can't merge the thrsw here because of signal
* incompatibility, keep going, we might be able to
* merge it in an earlier instruction.
*/
invalid_sig_count++;
goto cont_block;
}
/* For last thrsw we need 2 consecutive slots that are
* thrsw compatible, so if we have previously jumped over
* an incompatible signal, flag that we have found the first
* valid slot here and keep going.
*/
if (inst->is_last_thrsw && invalid_sig_count > 0 &&
!last_thrsw_after_invalid_ok) {
last_thrsw_after_invalid_ok = true;
invalid_sig_count++;
goto cont_block;
}
/* We can merge the thrsw in this instruction */
last_thrsw_after_invalid_ok = false;
invalid_sig_count = 0;
invalid_seq_count = 0;
merge_inst = prev_inst;
cont_block:
if (++slots_filled == 3)
break;
}
/* If we jumped over a signal incompatibility and did not manage to
* merge the thrsw in the end, we need to adjust slots filled to match
* the last valid merge point.
*/
assert((invalid_sig_count == 0 && invalid_seq_count == 0) ||
slots_filled >= invalid_sig_count + invalid_seq_count);
if (invalid_sig_count > 0)
slots_filled -= invalid_sig_count;
if (invalid_seq_count > 0)
slots_filled -= invalid_seq_count;
bool needs_free = false;
if (merge_inst) {
merge_inst->qpu.sig.thrsw = true;
needs_free = true;
scoreboard->last_thrsw_tick = scoreboard->tick - slots_filled;
} else {
scoreboard->last_thrsw_tick = scoreboard->tick;
insert_scheduled_instruction(c, block, scoreboard, inst);
time++;
slots_filled++;
merge_inst = inst;
}
scoreboard->first_thrsw_emitted = true;
/* If we're emitting the last THRSW (other than program end), then
* signal that to the HW by emitting two THRSWs in a row.
*/
if (inst->is_last_thrsw) {
if (slots_filled <= 1) {
emit_nop(c, block, scoreboard);
time++;
}
struct qinst *second_inst =
(struct qinst *)merge_inst->link.next;
second_inst->qpu.sig.thrsw = true;
scoreboard->last_thrsw_emitted = true;
}
/* Make sure the thread end executes within the program lifespan */
if (is_thrend) {
for (int i = 0; i < 3 - slots_filled; i++) {
emit_nop(c, block, scoreboard);
time++;
}
}
/* If we put our THRSW into another instruction, free up the
* instruction that didn't end up scheduled into the list.
*/
if (needs_free)
free(inst);
return time;
}
static bool
qpu_inst_valid_in_branch_delay_slot(struct v3d_compile *c, struct qinst *inst)
{
if (inst->qpu.type == V3D_QPU_INSTR_TYPE_BRANCH)
return false;
if (inst->qpu.sig.thrsw)
return false;
if (v3d_qpu_writes_unifa(c->devinfo, &inst->qpu))
return false;
if (vir_has_uniform(inst))
return false;
return true;
}
static void
emit_branch(struct v3d_compile *c,
struct qblock *block,
struct choose_scoreboard *scoreboard,
struct qinst *inst)
{
assert(inst->qpu.type == V3D_QPU_INSTR_TYPE_BRANCH);
/* We should've not picked up a branch for the delay slots of a previous
* thrsw, branch or unifa write instruction.
*/
int branch_tick = scoreboard->tick;
assert(scoreboard->last_thrsw_tick + 2 < branch_tick);
assert(scoreboard->last_branch_tick + 3 < branch_tick);
assert(scoreboard->last_unifa_write_tick + 3 < branch_tick);
/* V3D 4.x can't place a branch with msfign != 0 and cond != 0,2,3 after
* setmsf.
*/
bool is_safe_msf_branch =
c->devinfo->ver >= 71 ||
inst->qpu.branch.msfign == V3D_QPU_MSFIGN_NONE ||
inst->qpu.branch.cond == V3D_QPU_BRANCH_COND_ALWAYS ||
inst->qpu.branch.cond == V3D_QPU_BRANCH_COND_A0 ||
inst->qpu.branch.cond == V3D_QPU_BRANCH_COND_NA0;
assert(scoreboard->last_setmsf_tick != branch_tick - 1 ||
is_safe_msf_branch);
/* Insert the branch instruction */
insert_scheduled_instruction(c, block, scoreboard, inst);
/* Now see if we can move the branch instruction back into the
* instruction stream to fill its delay slots
*/
int slots_filled = 0;
while (slots_filled < 3 && block->instructions.next != &inst->link) {
struct qinst *prev_inst = (struct qinst *) inst->link.prev;
assert(prev_inst->qpu.type != V3D_QPU_INSTR_TYPE_BRANCH);
/* Can't move the branch instruction if that would place it
* in the delay slots of other instructions.
*/
if (scoreboard->last_branch_tick + 3 >=
branch_tick - slots_filled - 1) {
break;
}
if (scoreboard->last_thrsw_tick + 2 >=
branch_tick - slots_filled - 1) {
break;
}
if (scoreboard->last_unifa_write_tick + 3 >=
branch_tick - slots_filled - 1) {
break;
}
/* Do not move up a branch if it can disrupt an ldvary sequence
* as that can cause stomping of the r5 register.
*/
if (scoreboard->last_ldvary_tick + 2 >=
branch_tick - slots_filled) {
break;
}
/* Can't move a conditional branch before the instruction
* that writes the flags for its condition.
*/
if (v3d_qpu_writes_flags(&prev_inst->qpu) &&
inst->qpu.branch.cond != V3D_QPU_BRANCH_COND_ALWAYS) {
break;
}
if (!qpu_inst_valid_in_branch_delay_slot(c, prev_inst))
break;
if (!is_safe_msf_branch) {
struct qinst *prev_prev_inst =
(struct qinst *) prev_inst->link.prev;
if (prev_prev_inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU &&
prev_prev_inst->qpu.alu.add.op == V3D_QPU_A_SETMSF) {
break;
}
}
list_del(&prev_inst->link);
list_add(&prev_inst->link, &inst->link);
slots_filled++;
}
block->branch_qpu_ip = c->qpu_inst_count - 1 - slots_filled;
scoreboard->last_branch_tick = branch_tick - slots_filled;
/* Fill any remaining delay slots.
*
* For unconditional branches we'll try to fill these with the
* first instructions in the successor block after scheduling
* all blocks when setting up branch targets.
*/
for (int i = 0; i < 3 - slots_filled; i++)
emit_nop(c, block, scoreboard);
}
static bool
alu_reads_register(const struct v3d_device_info *devinfo,
struct v3d_qpu_instr *inst,
bool add, bool magic, uint32_t index)
{
uint32_t num_src;
if (add)
num_src = v3d_qpu_add_op_num_src(inst->alu.add.op);
else
num_src = v3d_qpu_mul_op_num_src(inst->alu.mul.op);
if (devinfo->ver <= 42) {
enum v3d_qpu_mux mux_a, mux_b;
if (add) {
mux_a = inst->alu.add.a.mux;
mux_b = inst->alu.add.b.mux;
} else {
mux_a = inst->alu.mul.a.mux;
mux_b = inst->alu.mul.b.mux;
}
for (int i = 0; i < num_src; i++) {
if (magic) {
if (i == 0 && mux_a == index)
return true;
if (i == 1 && mux_b == index)
return true;
} else {
if (i == 0 && mux_a == V3D_QPU_MUX_A &&
inst->raddr_a == index) {
return true;
}
if (i == 0 && mux_a == V3D_QPU_MUX_B &&
inst->raddr_b == index) {
return true;
}
if (i == 1 && mux_b == V3D_QPU_MUX_A &&
inst->raddr_a == index) {
return true;
}
if (i == 1 && mux_b == V3D_QPU_MUX_B &&
inst->raddr_b == index) {
return true;
}
}
}
return false;
}
assert(devinfo->ver >= 71);
assert(!magic);
uint32_t raddr_a, raddr_b;
if (add) {
raddr_a = inst->alu.add.a.raddr;
raddr_b = inst->alu.add.b.raddr;
} else {
raddr_a = inst->alu.mul.a.raddr;
raddr_b = inst->alu.mul.b.raddr;
}
for (int i = 0; i < num_src; i++) {
if (i == 0 && raddr_a == index)
return true;
if (i == 1 && raddr_b == index)
return true;
}
return false;
}
/**
* This takes and ldvary signal merged into 'inst' and tries to move it up to
* the previous instruction to get good pipelining of ldvary sequences,
* transforming this:
*
* nop ; nop ; ldvary.r4
* nop ; fmul r0, r4, rf0 ;
* fadd rf13, r0, r5 ; nop; ; ldvary.r1 <-- inst
*
* into:
*
* nop ; nop ; ldvary.r4
* nop ; fmul r0, r4, rf0 ; ldvary.r1
* fadd rf13, r0, r5 ; nop; ; <-- inst
*
* If we manage to do this successfully (we return true here), then flagging
* the ldvary as "scheduled" may promote the follow-up fmul to a DAG head that
* we will be able to pick up to merge into 'inst', leading to code like this:
*
* nop ; nop ; ldvary.r4
* nop ; fmul r0, r4, rf0 ; ldvary.r1
* fadd rf13, r0, r5 ; fmul r2, r1, rf0 ; <-- inst
*/
static bool
fixup_pipelined_ldvary(struct v3d_compile *c,
struct choose_scoreboard *scoreboard,
struct qblock *block,
struct v3d_qpu_instr *inst)
{
const struct v3d_device_info *devinfo = c->devinfo;
/* We only call this if we have successfully merged an ldvary into a
* previous instruction.
*/
assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
assert(inst->sig.ldvary);
uint32_t ldvary_magic = inst->sig_magic;
uint32_t ldvary_index = inst->sig_addr;
/* The instruction in which we merged the ldvary cannot read
* the ldvary destination, if it does, then moving the ldvary before
* it would overwrite it.
*/
if (alu_reads_register(devinfo, inst, true, ldvary_magic, ldvary_index))
return false;
if (alu_reads_register(devinfo, inst, false, ldvary_magic, ldvary_index))
return false;
/* The implicit ldvary destination may not be written to by a signal
* in the instruction following ldvary. Since we are planning to move
* ldvary to the previous instruction, this means we need to check if
* the current instruction has any other signal that could create this
* conflict. The only other signal that can write to the implicit
* ldvary destination that is compatible with ldvary in the same
* instruction is ldunif.
*/
if (inst->sig.ldunif)
return false;
/* The previous instruction can't write to the same destination as the
* ldvary.
*/
struct qinst *prev = (struct qinst *) block->instructions.prev;
if (!prev || prev->qpu.type != V3D_QPU_INSTR_TYPE_ALU)
return false;
if (prev->qpu.alu.add.op != V3D_QPU_A_NOP) {
if (prev->qpu.alu.add.magic_write == ldvary_magic &&
prev->qpu.alu.add.waddr == ldvary_index) {
return false;
}
}
if (prev->qpu.alu.mul.op != V3D_QPU_M_NOP) {
if (prev->qpu.alu.mul.magic_write == ldvary_magic &&
prev->qpu.alu.mul.waddr == ldvary_index) {
return false;
}
}
/* The previous instruction cannot have a conflicting signal */
if (v3d_qpu_sig_writes_address(devinfo, &prev->qpu.sig))
return false;
uint32_t sig;
struct v3d_qpu_sig new_sig = prev->qpu.sig;
new_sig.ldvary = true;
if (!v3d_qpu_sig_pack(devinfo, &new_sig, &sig))
return false;
/* The previous instruction cannot use flags since ldvary uses the
* 'cond' instruction field to store the destination.
*/
if (v3d_qpu_writes_flags(&prev->qpu))
return false;
if (v3d_qpu_reads_flags(&prev->qpu))
return false;
/* We can't put an ldvary in the delay slots of a thrsw. We should've
* prevented this when pairing up the ldvary with another instruction
* and flagging it for a fixup. In V3D 7.x this is limited only to the
* second delay slot.
*/
assert((devinfo->ver <= 42 &&
scoreboard->last_thrsw_tick + 2 < scoreboard->tick - 1) ||
(devinfo->ver >= 71 &&
scoreboard->last_thrsw_tick + 2 != scoreboard->tick - 1));
/* Move the ldvary to the previous instruction and remove it from the
* current one.
*/
prev->qpu.sig.ldvary = true;
prev->qpu.sig_magic = ldvary_magic;
prev->qpu.sig_addr = ldvary_index;
scoreboard->last_ldvary_tick = scoreboard->tick - 1;
inst->sig.ldvary = false;
inst->sig_magic = false;
inst->sig_addr = 0;
/* Update rf0 flops tracking for new ldvary delayed rf0 write tick */
if (devinfo->ver >= 71) {
scoreboard->last_implicit_rf0_write_tick = scoreboard->tick;
set_has_rf0_flops_conflict(scoreboard, inst, devinfo);
}
/* By moving ldvary to the previous instruction we make it update r5
* (rf0 for ver >= 71) in the current one, so nothing else in it
* should write this register.
*
* This should've been prevented by our depedency tracking, which
* would not allow ldvary to be paired up with an instruction that
* writes r5/rf0 (since our dependency tracking doesn't know that the
* ldvary write to r5/rf0 happens in the next instruction).
*/
assert(!v3d_qpu_writes_r5(devinfo, inst));
assert(devinfo->ver <= 42 ||
(!v3d_qpu_writes_rf0_implicitly(devinfo, inst) &&
!v3d71_qpu_writes_waddr_explicitly(devinfo, inst, 0)));
return true;
}
static uint32_t
schedule_instructions(struct v3d_compile *c,
struct choose_scoreboard *scoreboard,
struct qblock *block,
enum quniform_contents *orig_uniform_contents,
uint32_t *orig_uniform_data,
uint32_t *next_uniform)
{
const struct v3d_device_info *devinfo = c->devinfo;
uint32_t time = 0;
while (!list_is_empty(&scoreboard->dag->heads)) {
struct schedule_node *chosen =
choose_instruction_to_schedule(c, scoreboard, NULL);
struct schedule_node *merge = NULL;
/* If there are no valid instructions to schedule, drop a NOP
* in.
*/
struct qinst *qinst = chosen ? chosen->inst : vir_nop();
struct v3d_qpu_instr *inst = &qinst->qpu;
if (debug) {
fprintf(stderr, "t=%4d: current list:\n",
time);
dump_state(devinfo, scoreboard->dag);
fprintf(stderr, "t=%4d: chose: ", time);
v3d_qpu_dump(devinfo, inst);
fprintf(stderr, "\n");
}
/* We can't mark_instruction_scheduled() the chosen inst until
* we're done identifying instructions to merge, so put the
* merged instructions on a list for a moment.
*/
struct list_head merged_list;
list_inithead(&merged_list);
/* Schedule this instruction onto the QPU list. Also try to
* find an instruction to pair with it.
*/
if (chosen) {
time = MAX2(chosen->unblocked_time, time);
pre_remove_head(scoreboard->dag, chosen);
while ((merge =
choose_instruction_to_schedule(c, scoreboard,
chosen))) {
time = MAX2(merge->unblocked_time, time);
pre_remove_head(scoreboard->dag, merge);
list_addtail(&merge->link, &merged_list);
(void)qpu_merge_inst(devinfo, inst,
inst, &merge->inst->qpu);
if (merge->inst->uniform != -1) {
chosen->inst->uniform =
merge->inst->uniform;
}
chosen->inst->ldtmu_count +=
merge->inst->ldtmu_count;
if (debug) {
fprintf(stderr, "t=%4d: merging: ",
time);
v3d_qpu_dump(devinfo, &merge->inst->qpu);
fprintf(stderr, "\n");
fprintf(stderr, " result: ");
v3d_qpu_dump(devinfo, inst);
fprintf(stderr, "\n");
}
if (scoreboard->fixup_ldvary) {
scoreboard->fixup_ldvary = false;
if (fixup_pipelined_ldvary(c, scoreboard, block, inst)) {
/* Flag the ldvary as scheduled
* now so we can try to merge the
* follow-up instruction in the
* the ldvary sequence into the
* current instruction.
*/
mark_instruction_scheduled(
devinfo, scoreboard->dag,
time, merge);
}
}
}
if (read_stalls(c->devinfo, scoreboard, inst))
c->qpu_inst_stalled_count++;
}
/* Update the uniform index for the rewritten location --
* branch target updating will still need to change
* c->uniform_data[] using this index.
*/
if (qinst->uniform != -1) {
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
block->branch_uniform = *next_uniform;
c->uniform_data[*next_uniform] =
orig_uniform_data[qinst->uniform];
c->uniform_contents[*next_uniform] =
orig_uniform_contents[qinst->uniform];
qinst->uniform = *next_uniform;
(*next_uniform)++;
}
if (debug) {
fprintf(stderr, "\n");
}
/* Now that we've scheduled a new instruction, some of its
* children can be promoted to the list of instructions ready to
* be scheduled. Update the children's unblocked time for this
* DAG edge as we do so.
*/
mark_instruction_scheduled(devinfo, scoreboard->dag, time, chosen);
list_for_each_entry(struct schedule_node, merge, &merged_list,
link) {
mark_instruction_scheduled(devinfo, scoreboard->dag, time, merge);
/* The merged VIR instruction doesn't get re-added to the
* block, so free it now.
*/
free(merge->inst);
}
if (inst->sig.thrsw) {
time += emit_thrsw(c, block, scoreboard, qinst, false);
} else if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH) {
emit_branch(c, block, scoreboard, qinst);
} else {
insert_scheduled_instruction(c, block,
scoreboard, qinst);
}
}
return time;
}
static uint32_t
qpu_schedule_instructions_block(struct v3d_compile *c,
struct choose_scoreboard *scoreboard,
struct qblock *block,
enum quniform_contents *orig_uniform_contents,
uint32_t *orig_uniform_data,
uint32_t *next_uniform)
{
void *mem_ctx = ralloc_context(NULL);
scoreboard->dag = dag_create(mem_ctx);
struct list_head setup_list;
list_inithead(&setup_list);
/* Wrap each instruction in a scheduler structure. */
while (!list_is_empty(&block->instructions)) {
struct qinst *qinst = (struct qinst *)block->instructions.next;
struct schedule_node *n =
rzalloc(mem_ctx, struct schedule_node);
dag_init_node(scoreboard->dag, &n->dag);
n->inst = qinst;
list_del(&qinst->link);
list_addtail(&n->link, &setup_list);
}
calculate_forward_deps(c, scoreboard->dag, &setup_list);
calculate_reverse_deps(c, scoreboard->dag, &setup_list);
dag_traverse_bottom_up(scoreboard->dag, compute_delay, c);
uint32_t cycles = schedule_instructions(c, scoreboard, block,
orig_uniform_contents,
orig_uniform_data,
next_uniform);
ralloc_free(mem_ctx);
scoreboard->dag = NULL;
return cycles;
}
static void
qpu_set_branch_targets(struct v3d_compile *c)
{
vir_for_each_block(block, c) {
/* The end block of the program has no branch. */
if (!block->successors[0])
continue;
/* If there was no branch instruction, then the successor
* block must follow immediately after this one.
*/
if (block->branch_qpu_ip == ~0) {
assert(block->end_qpu_ip + 1 ==
block->successors[0]->start_qpu_ip);
continue;
}
/* Walk back through the delay slots to find the branch
* instr.
*/
struct qinst *branch = NULL;
struct list_head *entry = block->instructions.prev;
int32_t delay_slot_count = -1;
struct qinst *delay_slots_start = NULL;
for (int i = 0; i < 3; i++) {
entry = entry->prev;
struct qinst *inst =
container_of(entry, struct qinst, link);
if (delay_slot_count == -1) {
if (!v3d_qpu_is_nop(&inst->qpu))
delay_slot_count = i;
else
delay_slots_start = inst;
}
if (inst->qpu.type == V3D_QPU_INSTR_TYPE_BRANCH) {
branch = inst;
break;
}
}
assert(branch && branch->qpu.type == V3D_QPU_INSTR_TYPE_BRANCH);
assert(delay_slot_count >= 0 && delay_slot_count <= 3);
assert(delay_slot_count == 0 || delay_slots_start != NULL);
/* Make sure that the if-we-don't-jump
* successor was scheduled just after the
* delay slots.
*/
assert(!block->successors[1] ||
block->successors[1]->start_qpu_ip ==
block->branch_qpu_ip + 4);
branch->qpu.branch.offset =
((block->successors[0]->start_qpu_ip -
(block->branch_qpu_ip + 4)) *
sizeof(uint64_t));
/* Set up the relative offset to jump in the
* uniform stream.
*
* Use a temporary here, because
* uniform_data[inst->uniform] may be shared
* between multiple instructions.
*/
assert(c->uniform_contents[branch->uniform] == QUNIFORM_CONSTANT);
c->uniform_data[branch->uniform] =
(block->successors[0]->start_uniform -
(block->branch_uniform + 1)) * 4;
/* If this is an unconditional branch, try to fill any remaining
* delay slots with the initial instructions of the successor
* block.
*
* FIXME: we can do the same for conditional branches if we
* predicate the instructions to match the branch condition.
*/
if (branch->qpu.branch.cond == V3D_QPU_BRANCH_COND_ALWAYS) {
struct list_head *successor_insts =
&block->successors[0]->instructions;
delay_slot_count = MIN2(delay_slot_count,
list_length(successor_insts));
struct qinst *s_inst =
(struct qinst *) successor_insts->next;
struct qinst *slot = delay_slots_start;
int slots_filled = 0;
while (slots_filled < delay_slot_count &&
qpu_inst_valid_in_branch_delay_slot(c, s_inst)) {
memcpy(&slot->qpu, &s_inst->qpu,
sizeof(slot->qpu));
s_inst = (struct qinst *) s_inst->link.next;
slot = (struct qinst *) slot->link.next;
slots_filled++;
}
branch->qpu.branch.offset +=
slots_filled * sizeof(uint64_t);
}
}
}
uint32_t
v3d_qpu_schedule_instructions(struct v3d_compile *c)
{
const struct v3d_device_info *devinfo = c->devinfo;
struct qblock *end_block = list_last_entry(&c->blocks,
struct qblock, link);
/* We reorder the uniforms as we schedule instructions, so save the
* old data off and replace it.
*/
uint32_t *uniform_data = c->uniform_data;
enum quniform_contents *uniform_contents = c->uniform_contents;
c->uniform_contents = ralloc_array(c, enum quniform_contents,
c->num_uniforms);
c->uniform_data = ralloc_array(c, uint32_t, c->num_uniforms);
c->uniform_array_size = c->num_uniforms;
uint32_t next_uniform = 0;
struct choose_scoreboard scoreboard;
memset(&scoreboard, 0, sizeof(scoreboard));
scoreboard.last_ldvary_tick = -10;
scoreboard.last_unifa_write_tick = -10;
scoreboard.last_magic_sfu_write_tick = -10;
scoreboard.last_uniforms_reset_tick = -10;
scoreboard.last_thrsw_tick = -10;
scoreboard.last_branch_tick = -10;
scoreboard.last_setmsf_tick = -10;
scoreboard.last_stallable_sfu_tick = -10;
scoreboard.first_ldtmu_after_thrsw = true;
scoreboard.last_implicit_rf0_write_tick = - 10;
if (debug) {
fprintf(stderr, "Pre-schedule instructions\n");
vir_for_each_block(block, c) {
fprintf(stderr, "BLOCK %d\n", block->index);
list_for_each_entry(struct qinst, qinst,
&block->instructions, link) {
v3d_qpu_dump(devinfo, &qinst->qpu);
fprintf(stderr, "\n");
}
}
fprintf(stderr, "\n");
}
uint32_t cycles = 0;
vir_for_each_block(block, c) {
block->start_qpu_ip = c->qpu_inst_count;
block->branch_qpu_ip = ~0;
block->start_uniform = next_uniform;
cycles += qpu_schedule_instructions_block(c,
&scoreboard,
block,
uniform_contents,
uniform_data,
&next_uniform);
block->end_qpu_ip = c->qpu_inst_count - 1;
}
/* Emit the program-end THRSW instruction. */;
struct qinst *thrsw = vir_nop();
thrsw->qpu.sig.thrsw = true;
emit_thrsw(c, end_block, &scoreboard, thrsw, true);
qpu_set_branch_targets(c);
assert(next_uniform == c->num_uniforms);
return cycles;
}
|