summaryrefslogtreecommitdiff
path: root/lib/mesa/src/compiler/glsl/loop_analysis.cpp
blob: 37cc2ae4e1a1d6e3007c59fe54fd2419e4d3c49a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
/*
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "compiler/glsl_types.h"
#include "loop_analysis.h"
#include "ir_hierarchical_visitor.h"

static void try_add_loop_terminator(loop_variable_state *ls, ir_if *ir);

static bool all_expression_operands_are_loop_constant(ir_rvalue *,
						      hash_table *);

static ir_rvalue *get_basic_induction_increment(ir_assignment *, hash_table *);

/**
 * Find an initializer of a variable outside a loop
 *
 * Works backwards from the loop to find the pre-loop value of the variable.
 * This is used, for example, to find the initial value of loop induction
 * variables.
 *
 * \param loop  Loop where \c var is an induction variable
 * \param var   Variable whose initializer is to be found
 *
 * \return
 * The \c ir_rvalue assigned to the variable outside the loop.  May return
 * \c NULL if no initializer can be found.
 */
static ir_rvalue *
find_initial_value(ir_loop *loop, ir_variable *var)
{
   for (exec_node *node = loop->prev; !node->is_head_sentinel();
        node = node->prev) {
      ir_instruction *ir = (ir_instruction *) node;

      switch (ir->ir_type) {
      case ir_type_call:
      case ir_type_loop:
      case ir_type_loop_jump:
      case ir_type_return:
      case ir_type_if:
         return NULL;

      case ir_type_function:
      case ir_type_function_signature:
         assert(!"Should not get here.");
         return NULL;

      case ir_type_assignment: {
         ir_assignment *assign = ir->as_assignment();
         ir_variable *assignee = assign->lhs->whole_variable_referenced();

         if (assignee == var)
            return (assign->condition != NULL) ? NULL : assign->rhs;

         break;
      }

      default:
         break;
      }
   }

   return NULL;
}


static int
calculate_iterations(ir_rvalue *from, ir_rvalue *to, ir_rvalue *increment,
                     enum ir_expression_operation op, bool continue_from_then,
                     bool swap_compare_operands, bool inc_before_terminator)
{
   if (from == NULL || to == NULL || increment == NULL)
      return -1;

   void *mem_ctx = ralloc_context(NULL);

   ir_expression *const sub =
      new(mem_ctx) ir_expression(ir_binop_sub, from->type, to, from);

   ir_expression *const div =
      new(mem_ctx) ir_expression(ir_binop_div, sub->type, sub, increment);

   ir_constant *iter = div->constant_expression_value(mem_ctx);
   if (iter == NULL) {
      ralloc_free(mem_ctx);
      return -1;
   }

   if (!iter->type->is_integer()) {
      const ir_expression_operation op = iter->type->is_double()
         ? ir_unop_d2i : ir_unop_f2i;
      ir_rvalue *cast =
         new(mem_ctx) ir_expression(op, glsl_type::int_type, iter, NULL);

      iter = cast->constant_expression_value(mem_ctx);
   }

   int64_t iter_value = iter->get_int64_component(0);

   /* Code after this block works under assumption that iterator will be
    * incremented or decremented until it hits the limit,
    * however the loop condition can be false on the first iteration.
    * Handle such loops first.
    */
   {
      ir_rvalue *first_value = from;
      if (inc_before_terminator) {
         first_value =
            new(mem_ctx) ir_expression(ir_binop_add, from->type, from, increment);
      }

      ir_expression *cmp = swap_compare_operands
            ? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, first_value)
            : new(mem_ctx) ir_expression(op, glsl_type::bool_type, first_value, to);
      if (continue_from_then)
         cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);

      ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
      assert(cmp_result != NULL);
      if (cmp_result->get_bool_component(0)) {
         ralloc_free(mem_ctx);
         return 0;
      }
   }

   /* Make sure that the calculated number of iterations satisfies the exit
    * condition.  This is needed to catch off-by-one errors and some types of
    * ill-formed loops.  For example, we need to detect that the following
    * loop does not have a maximum iteration count.
    *
    *    for (float x = 0.0; x != 0.9; x += 0.2)
    *        ;
    */
   const int bias[] = { -1, 0, 1 };
   bool valid_loop = false;

   for (unsigned i = 0; i < ARRAY_SIZE(bias); i++) {
      /* Increment may be of type int, uint or float. */
      switch (increment->type->base_type) {
      case GLSL_TYPE_INT:
         iter = new(mem_ctx) ir_constant(int32_t(iter_value + bias[i]));
         break;
      case GLSL_TYPE_INT16:
         iter = new(mem_ctx) ir_constant(int16_t(iter_value + bias[i]));
         break;
      case GLSL_TYPE_INT64:
         iter = new(mem_ctx) ir_constant(int64_t(iter_value + bias[i]));
         break;
      case GLSL_TYPE_UINT:
         iter = new(mem_ctx) ir_constant(unsigned(iter_value + bias[i]));
         break;
      case GLSL_TYPE_UINT16:
         iter = new(mem_ctx) ir_constant(uint16_t(iter_value + bias[i]));
         break;
      case GLSL_TYPE_UINT64:
         iter = new(mem_ctx) ir_constant(uint64_t(iter_value + bias[i]));
         break;
      case GLSL_TYPE_FLOAT:
         iter = new(mem_ctx) ir_constant(float(iter_value + bias[i]));
         break;
      case GLSL_TYPE_FLOAT16:
         iter = new(mem_ctx) ir_constant(float16_t(float(iter_value + bias[i])));
         break;
      case GLSL_TYPE_DOUBLE:
         iter = new(mem_ctx) ir_constant(double(iter_value + bias[i]));
         break;
      default:
          unreachable("Unsupported type for loop iterator.");
      }

      ir_expression *const mul =
         new(mem_ctx) ir_expression(ir_binop_mul, increment->type, iter,
                                    increment);

      ir_expression *const add =
         new(mem_ctx) ir_expression(ir_binop_add, mul->type, mul, from);

      ir_expression *cmp = swap_compare_operands
         ? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, add)
         : new(mem_ctx) ir_expression(op, glsl_type::bool_type, add, to);
      if (continue_from_then)
         cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);

      ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);

      assert(cmp_result != NULL);
      if (cmp_result->get_bool_component(0)) {
         iter_value += bias[i];
         valid_loop = true;
         break;
      }
   }

   ralloc_free(mem_ctx);

   if (inc_before_terminator) {
      iter_value--;
   }

   return (valid_loop) ? iter_value : -1;
}

static bool
incremented_before_terminator(ir_loop *loop, ir_variable *var,
                              ir_if *terminator)
{
   for (exec_node *node = loop->body_instructions.get_head();
        !node->is_tail_sentinel();
        node = node->get_next()) {
      ir_instruction *ir = (ir_instruction *) node;

      switch (ir->ir_type) {
      case ir_type_if:
         if (ir->as_if() == terminator)
            return false;
         break;

      case ir_type_assignment: {
         ir_assignment *assign = ir->as_assignment();
         ir_variable *assignee = assign->lhs->whole_variable_referenced();

         if (assignee == var) {
            assert(assign->condition == NULL);
            return true;
         }

         break;
      }

      default:
         break;
      }
   }

   unreachable("Unable to find induction variable");
}

/**
 * Record the fact that the given loop variable was referenced inside the loop.
 *
 * \arg in_assignee is true if the reference was on the LHS of an assignment.
 *
 * \arg in_conditional_code_or_nested_loop is true if the reference occurred
 * inside an if statement or a nested loop.
 *
 * \arg current_assignment is the ir_assignment node that the loop variable is
 * on the LHS of, if any (ignored if \c in_assignee is false).
 */
void
loop_variable::record_reference(bool in_assignee,
                                bool in_conditional_code_or_nested_loop,
                                ir_assignment *current_assignment)
{
   if (in_assignee) {
      assert(current_assignment != NULL);

      if (in_conditional_code_or_nested_loop ||
          current_assignment->condition != NULL) {
         this->conditional_or_nested_assignment = true;
      }

      if (this->first_assignment == NULL) {
         assert(this->num_assignments == 0);

         this->first_assignment = current_assignment;
      }

      this->num_assignments++;
   } else if (this->first_assignment == current_assignment) {
      /* This catches the case where the variable is used in the RHS of an
       * assignment where it is also in the LHS.
       */
      this->read_before_write = true;
   }
}


loop_state::loop_state()
{
   this->ht = _mesa_pointer_hash_table_create(NULL);
   this->mem_ctx = ralloc_context(NULL);
   this->loop_found = false;
}


loop_state::~loop_state()
{
   _mesa_hash_table_destroy(this->ht, NULL);
   ralloc_free(this->mem_ctx);
}


loop_variable_state *
loop_state::insert(ir_loop *ir)
{
   loop_variable_state *ls = new(this->mem_ctx) loop_variable_state;

   _mesa_hash_table_insert(this->ht, ir, ls);
   this->loop_found = true;

   return ls;
}


loop_variable_state *
loop_state::get(const ir_loop *ir)
{
   hash_entry *entry = _mesa_hash_table_search(this->ht, ir);
   return entry ? (loop_variable_state *) entry->data : NULL;
}


loop_variable *
loop_variable_state::get(const ir_variable *ir)
{
   if (ir == NULL)
      return NULL;

   hash_entry *entry = _mesa_hash_table_search(this->var_hash, ir);
   return entry ? (loop_variable *) entry->data : NULL;
}


loop_variable *
loop_variable_state::insert(ir_variable *var)
{
   void *mem_ctx = ralloc_parent(this);
   loop_variable *lv = rzalloc(mem_ctx, loop_variable);

   lv->var = var;

   _mesa_hash_table_insert(this->var_hash, lv->var, lv);
   this->variables.push_tail(lv);

   return lv;
}


loop_terminator *
loop_variable_state::insert(ir_if *if_stmt, bool continue_from_then)
{
   void *mem_ctx = ralloc_parent(this);
   loop_terminator *t = new(mem_ctx) loop_terminator(if_stmt,
                                                     continue_from_then);

   this->terminators.push_tail(t);

   return t;
}


/**
 * If the given variable already is recorded in the state for this loop,
 * return the corresponding loop_variable object that records information
 * about it.
 *
 * Otherwise, create a new loop_variable object to record information about
 * the variable, and set its \c read_before_write field appropriately based on
 * \c in_assignee.
 *
 * \arg in_assignee is true if this variable was encountered on the LHS of an
 * assignment.
 */
loop_variable *
loop_variable_state::get_or_insert(ir_variable *var, bool in_assignee)
{
   loop_variable *lv = this->get(var);

   if (lv == NULL) {
      lv = this->insert(var);
      lv->read_before_write = !in_assignee;
   }

   return lv;
}


namespace {

class loop_analysis : public ir_hierarchical_visitor {
public:
   loop_analysis(loop_state *loops);

   virtual ir_visitor_status visit(ir_loop_jump *);
   virtual ir_visitor_status visit(ir_dereference_variable *);

   virtual ir_visitor_status visit_enter(ir_call *);

   virtual ir_visitor_status visit_enter(ir_loop *);
   virtual ir_visitor_status visit_leave(ir_loop *);
   virtual ir_visitor_status visit_enter(ir_assignment *);
   virtual ir_visitor_status visit_leave(ir_assignment *);
   virtual ir_visitor_status visit_enter(ir_if *);
   virtual ir_visitor_status visit_leave(ir_if *);

   loop_state *loops;

   int if_statement_depth;

   ir_assignment *current_assignment;

   exec_list state;
};

} /* anonymous namespace */

loop_analysis::loop_analysis(loop_state *loops)
   : loops(loops), if_statement_depth(0), current_assignment(NULL)
{
   /* empty */
}


ir_visitor_status
loop_analysis::visit(ir_loop_jump *ir)
{
   (void) ir;

   assert(!this->state.is_empty());

   loop_variable_state *const ls =
      (loop_variable_state *) this->state.get_head();

   ls->num_loop_jumps++;

   return visit_continue;
}


ir_visitor_status
loop_analysis::visit_enter(ir_call *)
{
   /* Mark every loop that we're currently analyzing as containing an ir_call
    * (even those at outer nesting levels).
    */
   foreach_in_list(loop_variable_state, ls, &this->state) {
      ls->contains_calls = true;
   }

   return visit_continue_with_parent;
}


ir_visitor_status
loop_analysis::visit(ir_dereference_variable *ir)
{
   /* If we're not somewhere inside a loop, there's nothing to do.
    */
   if (this->state.is_empty())
      return visit_continue;

   bool nested = false;

   foreach_in_list(loop_variable_state, ls, &this->state) {
      ir_variable *var = ir->variable_referenced();
      loop_variable *lv = ls->get_or_insert(var, this->in_assignee);

      lv->record_reference(this->in_assignee,
                           nested || this->if_statement_depth > 0,
                           this->current_assignment);
      nested = true;
   }

   return visit_continue;
}

ir_visitor_status
loop_analysis::visit_enter(ir_loop *ir)
{
   loop_variable_state *ls = this->loops->insert(ir);
   this->state.push_head(ls);

   return visit_continue;
}

ir_visitor_status
loop_analysis::visit_leave(ir_loop *ir)
{
   loop_variable_state *const ls =
      (loop_variable_state *) this->state.pop_head();

   /* Function calls may contain side effects.  These could alter any of our
    * variables in ways that cannot be known, and may even terminate shader
    * execution (say, calling discard in the fragment shader).  So we can't
    * rely on any of our analysis about assignments to variables.
    *
    * We could perform some conservative analysis (prove there's no statically
    * possible assignment, etc.) but it isn't worth it for now; function
    * inlining will allow us to unroll loops anyway.
    */
   if (ls->contains_calls)
      return visit_continue;

   foreach_in_list(ir_instruction, node, &ir->body_instructions) {
      /* Skip over declarations at the start of a loop.
       */
      if (node->as_variable())
	 continue;

      ir_if *if_stmt = ((ir_instruction *) node)->as_if();

      if (if_stmt != NULL)
         try_add_loop_terminator(ls, if_stmt);
   }


   foreach_in_list_safe(loop_variable, lv, &ls->variables) {
      /* Move variables that are already marked as being loop constant to
       * a separate list.  These trivially don't need to be tested.
       */
      if (lv->is_loop_constant()) {
	 lv->remove();
	 ls->constants.push_tail(lv);
      }
   }

   /* Each variable assigned in the loop that isn't already marked as being loop
    * constant might still be loop constant.  The requirements at this point
    * are:
    *
    *    - Variable is written before it is read.
    *
    *    - Only one assignment to the variable.
    *
    *    - All operands on the RHS of the assignment are also loop constants.
    *
    * The last requirement is the reason for the progress loop.  A variable
    * marked as a loop constant on one pass may allow other variables to be
    * marked as loop constant on following passes.
    */
   bool progress;
   do {
      progress = false;

      foreach_in_list_safe(loop_variable, lv, &ls->variables) {
	 if (lv->conditional_or_nested_assignment || (lv->num_assignments > 1))
	    continue;

	 /* Process the RHS of the assignment.  If all of the variables
	  * accessed there are loop constants, then add this
	  */
	 ir_rvalue *const rhs = lv->first_assignment->rhs;
	 if (all_expression_operands_are_loop_constant(rhs, ls->var_hash)) {
	    lv->rhs_clean = true;

	    if (lv->is_loop_constant()) {
	       progress = true;

	       lv->remove();
	       ls->constants.push_tail(lv);
	    }
	 }
      }
   } while (progress);

   /* The remaining variables that are not loop invariant might be loop
    * induction variables.
    */
   foreach_in_list_safe(loop_variable, lv, &ls->variables) {
      /* If there is more than one assignment to a variable, it cannot be a
       * loop induction variable.  This isn't strictly true, but this is a
       * very simple induction variable detector, and it can't handle more
       * complex cases.
       */
      if (lv->num_assignments > 1)
	 continue;

      /* All of the variables with zero assignments in the loop are loop
       * invariant, and they should have already been filtered out.
       */
      assert(lv->num_assignments == 1);
      assert(lv->first_assignment != NULL);

      /* The assignment to the variable in the loop must be unconditional and
       * not inside a nested loop.
       */
      if (lv->conditional_or_nested_assignment)
	 continue;

      /* Basic loop induction variables have a single assignment in the loop
       * that has the form 'VAR = VAR + i' or 'VAR = VAR - i' where i is a
       * loop invariant.
       */
      ir_rvalue *const inc =
	 get_basic_induction_increment(lv->first_assignment, ls->var_hash);
      if (inc != NULL) {
	 lv->increment = inc;

	 lv->remove();
	 ls->induction_variables.push_tail(lv);
      }
   }

   /* Search the loop terminating conditions for those of the form 'i < c'
    * where i is a loop induction variable, c is a constant, and < is any
    * relative operator.  From each of these we can infer an iteration count.
    * Also figure out which terminator (if any) produces the smallest
    * iteration count--this is the limiting terminator.
    */
   foreach_in_list(loop_terminator, t, &ls->terminators) {
      ir_if *if_stmt = t->ir;

      /* If-statements can be either 'if (expr)' or 'if (deref)'.  We only care
       * about the former here.
       */
      ir_expression *cond = if_stmt->condition->as_expression();
      if (cond == NULL)
	 continue;

      switch (cond->operation) {
      case ir_binop_less:
      case ir_binop_gequal: {
	 /* The expressions that we care about will either be of the form
	  * 'counter < limit' or 'limit < counter'.  Figure out which is
	  * which.
	  */
	 ir_rvalue *counter = cond->operands[0]->as_dereference_variable();
	 ir_constant *limit = cond->operands[1]->as_constant();
	 enum ir_expression_operation cmp = cond->operation;
         bool swap_compare_operands = false;

	 if (limit == NULL) {
	    counter = cond->operands[1]->as_dereference_variable();
	    limit = cond->operands[0]->as_constant();
            swap_compare_operands = true;
	 }

	 if ((counter == NULL) || (limit == NULL))
	    break;

	 ir_variable *var = counter->variable_referenced();

	 ir_rvalue *init = find_initial_value(ir, var);

         loop_variable *lv = ls->get(var);
         if (lv != NULL && lv->is_induction_var()) {
            bool inc_before_terminator =
               incremented_before_terminator(ir, var, t->ir);

            t->iterations = calculate_iterations(init, limit, lv->increment,
                                                 cmp, t->continue_from_then,
                                                 swap_compare_operands,
                                                 inc_before_terminator);

            if (t->iterations >= 0 &&
                (ls->limiting_terminator == NULL ||
                 t->iterations < ls->limiting_terminator->iterations)) {
               ls->limiting_terminator = t;
            }
         }
         break;
      }

      default:
         break;
      }
   }

   return visit_continue;
}

ir_visitor_status
loop_analysis::visit_enter(ir_if *ir)
{
   (void) ir;

   if (!this->state.is_empty())
      this->if_statement_depth++;

   return visit_continue;
}

ir_visitor_status
loop_analysis::visit_leave(ir_if *ir)
{
   (void) ir;

   if (!this->state.is_empty())
      this->if_statement_depth--;

   return visit_continue;
}

ir_visitor_status
loop_analysis::visit_enter(ir_assignment *ir)
{
   /* If we're not somewhere inside a loop, there's nothing to do.
    */
   if (this->state.is_empty())
      return visit_continue_with_parent;

   this->current_assignment = ir;

   return visit_continue;
}

ir_visitor_status
loop_analysis::visit_leave(ir_assignment *ir)
{
   /* Since the visit_enter exits with visit_continue_with_parent for this
    * case, the loop state stack should never be empty here.
    */
   assert(!this->state.is_empty());

   assert(this->current_assignment == ir);
   this->current_assignment = NULL;

   return visit_continue;
}


class examine_rhs : public ir_hierarchical_visitor {
public:
   examine_rhs(hash_table *loop_variables)
   {
      this->only_uses_loop_constants = true;
      this->loop_variables = loop_variables;
   }

   virtual ir_visitor_status visit(ir_dereference_variable *ir)
   {
      hash_entry *entry = _mesa_hash_table_search(this->loop_variables,
                                                  ir->var);
      loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;

      assert(lv != NULL);

      if (lv->is_loop_constant()) {
	 return visit_continue;
      } else {
	 this->only_uses_loop_constants = false;
	 return visit_stop;
      }
   }

   hash_table *loop_variables;
   bool only_uses_loop_constants;
};


bool
all_expression_operands_are_loop_constant(ir_rvalue *ir, hash_table *variables)
{
   examine_rhs v(variables);

   ir->accept(&v);

   return v.only_uses_loop_constants;
}


ir_rvalue *
get_basic_induction_increment(ir_assignment *ir, hash_table *var_hash)
{
   /* The RHS must be a binary expression.
    */
   ir_expression *const rhs = ir->rhs->as_expression();
   if ((rhs == NULL)
       || ((rhs->operation != ir_binop_add)
	   && (rhs->operation != ir_binop_sub)))
      return NULL;

   /* One of the of operands of the expression must be the variable assigned.
    * If the operation is subtraction, the variable in question must be the
    * "left" operand.
    */
   ir_variable *const var = ir->lhs->variable_referenced();

   ir_variable *const op0 = rhs->operands[0]->variable_referenced();
   ir_variable *const op1 = rhs->operands[1]->variable_referenced();

   if (((op0 != var) && (op1 != var))
       || ((op1 == var) && (rhs->operation == ir_binop_sub)))
      return NULL;

   ir_rvalue *inc = (op0 == var) ? rhs->operands[1] : rhs->operands[0];

   if (inc->as_constant() == NULL) {
      ir_variable *const inc_var = inc->variable_referenced();
      if (inc_var != NULL) {
         hash_entry *entry = _mesa_hash_table_search(var_hash, inc_var);
         loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;

         if (lv == NULL || !lv->is_loop_constant()) {
            assert(lv != NULL);
            inc = NULL;
         }
      } else
	 inc = NULL;
   }

   if ((inc != NULL) && (rhs->operation == ir_binop_sub)) {
      void *mem_ctx = ralloc_parent(ir);

      inc = new(mem_ctx) ir_expression(ir_unop_neg,
				       inc->type,
				       inc->clone(mem_ctx, NULL),
				       NULL);
   }

   return inc;
}


/**
 * Detect whether an if-statement is a loop terminating condition, if so
 * add it to the list of loop terminators.
 *
 * Detects if-statements of the form
 *
 *  (if (expression bool ...) (...then_instrs...break))
 *
 *     or
 *
 *  (if (expression bool ...) ... (...else_instrs...break))
 */
void
try_add_loop_terminator(loop_variable_state *ls, ir_if *ir)
{
   ir_instruction *inst = (ir_instruction *) ir->then_instructions.get_tail();
   ir_instruction *else_inst =
      (ir_instruction *) ir->else_instructions.get_tail();

   if (is_break(inst) || is_break(else_inst))
      ls->insert(ir, is_break(else_inst));
}


loop_state *
analyze_loop_variables(exec_list *instructions)
{
   loop_state *loops = new loop_state;
   loop_analysis v(loops);

   v.run(instructions);
   return v.loops;
}