1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
|
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file lower_varyings_to_packed.cpp
*
* This lowering pass generates GLSL code that manually packs varyings into
* vec4 slots, for the benefit of back-ends that don't support packed varyings
* natively.
*
* For example, the following shader:
*
* out mat3x2 foo; // location=4, location_frac=0
* out vec3 bar[2]; // location=5, location_frac=2
*
* main()
* {
* ...
* }
*
* Is rewritten to:
*
* mat3x2 foo;
* vec3 bar[2];
* out vec4 packed4; // location=4, location_frac=0
* out vec4 packed5; // location=5, location_frac=0
* out vec4 packed6; // location=6, location_frac=0
*
* main()
* {
* ...
* packed4.xy = foo[0];
* packed4.zw = foo[1];
* packed5.xy = foo[2];
* packed5.zw = bar[0].xy;
* packed6.x = bar[0].z;
* packed6.yzw = bar[1];
* }
*
* This lowering pass properly handles "double parking" of a varying vector
* across two varying slots. For example, in the code above, two of the
* components of bar[0] are stored in packed5, and the remaining component is
* stored in packed6.
*
* Note that in theory, the extra instructions may cause some loss of
* performance. However, hopefully in most cases the performance loss will
* either be absorbed by a later optimization pass, or it will be offset by
* memory bandwidth savings (because fewer varyings are used).
*
* This lowering pass also packs flat floats, ints, and uints together, by
* using ivec4 as the base type of flat "varyings", and using appropriate
* casts to convert floats and uints into ints.
*
* This lowering pass also handles varyings whose type is a struct or an array
* of struct. Structs are packed in order and with no gaps, so there may be a
* performance penalty due to structure elements being double-parked.
*
* Lowering of geometry shader inputs is slightly more complex, since geometry
* inputs are always arrays, so we need to lower arrays to arrays. For
* example, the following input:
*
* in struct Foo {
* float f;
* vec3 v;
* vec2 a[2];
* } arr[3]; // location=4, location_frac=0
*
* Would get lowered like this if it occurred in a fragment shader:
*
* struct Foo {
* float f;
* vec3 v;
* vec2 a[2];
* } arr[3];
* in vec4 packed4; // location=4, location_frac=0
* in vec4 packed5; // location=5, location_frac=0
* in vec4 packed6; // location=6, location_frac=0
* in vec4 packed7; // location=7, location_frac=0
* in vec4 packed8; // location=8, location_frac=0
* in vec4 packed9; // location=9, location_frac=0
*
* main()
* {
* arr[0].f = packed4.x;
* arr[0].v = packed4.yzw;
* arr[0].a[0] = packed5.xy;
* arr[0].a[1] = packed5.zw;
* arr[1].f = packed6.x;
* arr[1].v = packed6.yzw;
* arr[1].a[0] = packed7.xy;
* arr[1].a[1] = packed7.zw;
* arr[2].f = packed8.x;
* arr[2].v = packed8.yzw;
* arr[2].a[0] = packed9.xy;
* arr[2].a[1] = packed9.zw;
* ...
* }
*
* But it would get lowered like this if it occurred in a geometry shader:
*
* struct Foo {
* float f;
* vec3 v;
* vec2 a[2];
* } arr[3];
* in vec4 packed4[3]; // location=4, location_frac=0
* in vec4 packed5[3]; // location=5, location_frac=0
*
* main()
* {
* arr[0].f = packed4[0].x;
* arr[0].v = packed4[0].yzw;
* arr[0].a[0] = packed5[0].xy;
* arr[0].a[1] = packed5[0].zw;
* arr[1].f = packed4[1].x;
* arr[1].v = packed4[1].yzw;
* arr[1].a[0] = packed5[1].xy;
* arr[1].a[1] = packed5[1].zw;
* arr[2].f = packed4[2].x;
* arr[2].v = packed4[2].yzw;
* arr[2].a[0] = packed5[2].xy;
* arr[2].a[1] = packed5[2].zw;
* ...
* }
*/
#include "glsl_symbol_table.h"
#include "ir.h"
#include "ir_builder.h"
#include "ir_optimization.h"
#include "program/prog_instruction.h"
#include "main/shader_types.h"
static const glsl_type *
get_varying_type(const ir_variable *var, gl_shader_stage stage)
{
const glsl_type *type = var->type;
if (!var->data.patch &&
((var->data.mode == ir_var_shader_out &&
stage == MESA_SHADER_TESS_CTRL) ||
(var->data.mode == ir_var_shader_in &&
(stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
stage == MESA_SHADER_GEOMETRY)))) {
assert(type->is_array());
type = type->fields.array;
}
return type;
}
using namespace ir_builder;
namespace {
/**
* Visitor that performs varying packing. For each varying declared in the
* shader, this visitor determines whether it needs to be packed. If so, it
* demotes it to an ordinary global, creates new packed varyings, and
* generates assignments to convert between the original varying and the
* packed varying.
*/
class lower_packed_varyings_visitor
{
public:
lower_packed_varyings_visitor(void *mem_ctx,
unsigned locations_used,
const uint8_t *components,
ir_variable_mode mode,
unsigned gs_input_vertices,
exec_list *out_instructions,
exec_list *out_variables,
bool disable_varying_packing,
bool disable_xfb_packing,
bool xfb_enabled);
void run(struct gl_linked_shader *shader);
private:
void bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs);
void bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs);
unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location,
ir_variable *unpacked_var, const char *name,
bool gs_input_toplevel, unsigned vertex_index);
unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size,
unsigned fine_location,
ir_variable *unpacked_var, const char *name,
bool gs_input_toplevel, unsigned vertex_index);
ir_dereference *get_packed_varying_deref(unsigned location,
ir_variable *unpacked_var,
const char *name,
unsigned vertex_index);
bool needs_lowering(ir_variable *var, gl_shader_stage stage);
/**
* Memory context used to allocate new instructions for the shader.
*/
void * const mem_ctx;
/**
* Number of generic varying slots which are used by this shader. This is
* used to allocate temporary intermediate data structures. If any varying
* used by this shader has a location greater than or equal to
* VARYING_SLOT_VAR0 + locations_used, an assertion will fire.
*/
const unsigned locations_used;
const uint8_t* components;
/**
* Array of pointers to the packed varyings that have been created for each
* generic varying slot. NULL entries in this array indicate varying slots
* for which a packed varying has not been created yet.
*/
ir_variable **packed_varyings;
/**
* Type of varying which is being lowered in this pass (either
* ir_var_shader_in or ir_var_shader_out).
*/
const ir_variable_mode mode;
/**
* If we are currently lowering geometry shader inputs, the number of input
* vertices the geometry shader accepts. Otherwise zero.
*/
const unsigned gs_input_vertices;
/**
* Exec list into which the visitor should insert the packing instructions.
* Caller provides this list; it should insert the instructions into the
* appropriate place in the shader once the visitor has finished running.
*/
exec_list *out_instructions;
/**
* Exec list into which the visitor should insert any new variables.
*/
exec_list *out_variables;
bool disable_varying_packing;
bool disable_xfb_packing;
bool xfb_enabled;
};
} /* anonymous namespace */
lower_packed_varyings_visitor::lower_packed_varyings_visitor(
void *mem_ctx, unsigned locations_used, const uint8_t *components,
ir_variable_mode mode,
unsigned gs_input_vertices, exec_list *out_instructions,
exec_list *out_variables, bool disable_varying_packing,
bool disable_xfb_packing, bool xfb_enabled)
: mem_ctx(mem_ctx),
locations_used(locations_used),
components(components),
packed_varyings((ir_variable **)
rzalloc_array_size(mem_ctx, sizeof(*packed_varyings),
locations_used)),
mode(mode),
gs_input_vertices(gs_input_vertices),
out_instructions(out_instructions),
out_variables(out_variables),
disable_varying_packing(disable_varying_packing),
disable_xfb_packing(disable_xfb_packing),
xfb_enabled(xfb_enabled)
{
}
void
lower_packed_varyings_visitor::run(struct gl_linked_shader *shader)
{
foreach_in_list(ir_instruction, node, shader->ir) {
ir_variable *var = node->as_variable();
if (var == NULL)
continue;
if (var->data.mode != this->mode ||
var->data.location < VARYING_SLOT_VAR0 ||
!this->needs_lowering(var, shader->Stage))
continue;
/* This lowering pass is only capable of packing floats and ints
* together when their interpolation mode is "flat". Treat integers as
* being flat when the interpolation mode is none.
*/
assert(var->data.interpolation == INTERP_MODE_FLAT ||
var->data.interpolation == INTERP_MODE_NONE ||
!var->type->contains_integer());
/* Clone the variable for program resource list before
* it gets modified and lost.
*/
if (!shader->packed_varyings)
shader->packed_varyings = new (shader) exec_list;
shader->packed_varyings->push_tail(var->clone(shader, NULL));
/* Change the old varying into an ordinary global. */
assert(var->data.mode != ir_var_temporary);
var->data.mode = ir_var_auto;
/* Create a reference to the old varying. */
ir_dereference_variable *deref
= new(this->mem_ctx) ir_dereference_variable(var);
/* Recursively pack or unpack it. */
this->lower_rvalue(deref, var->data.location * 4 + var->data.location_frac, var,
var->name, this->gs_input_vertices != 0, 0);
}
}
#define SWIZZLE_ZWZW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W)
/**
* Make an ir_assignment from \c rhs to \c lhs, performing appropriate
* bitcasts if necessary to match up types.
*
* This function is called when packing varyings.
*/
void
lower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs,
ir_rvalue *rhs)
{
if (lhs->type->base_type != rhs->type->base_type) {
/* Since we only mix types in flat varyings, and we always store flat
* varyings as type ivec4, we need only produce conversions from (uint
* or float) to int.
*/
assert(lhs->type->base_type == GLSL_TYPE_INT);
switch (rhs->type->base_type) {
case GLSL_TYPE_UINT:
rhs = new(this->mem_ctx)
ir_expression(ir_unop_u2i, lhs->type, rhs);
break;
case GLSL_TYPE_FLOAT:
rhs = new(this->mem_ctx)
ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs);
break;
case GLSL_TYPE_DOUBLE:
assert(rhs->type->vector_elements <= 2);
if (rhs->type->vector_elements == 2) {
ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
assert(lhs->type->vector_elements == 4);
this->out_variables->push_tail(t);
this->out_instructions->push_tail(
assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
this->out_instructions->push_tail(
assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_y(rhs))), 0xc));
rhs = deref(t).val;
} else {
rhs = u2i(expr(ir_unop_unpack_double_2x32, rhs));
}
break;
case GLSL_TYPE_INT64:
assert(rhs->type->vector_elements <= 2);
if (rhs->type->vector_elements == 2) {
ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
assert(lhs->type->vector_elements == 4);
this->out_variables->push_tail(t);
this->out_instructions->push_tail(
assign(t, expr(ir_unop_unpack_int_2x32, swizzle_x(rhs->clone(mem_ctx, NULL))), 0x3));
this->out_instructions->push_tail(
assign(t, expr(ir_unop_unpack_int_2x32, swizzle_y(rhs)), 0xc));
rhs = deref(t).val;
} else {
rhs = expr(ir_unop_unpack_int_2x32, rhs);
}
break;
case GLSL_TYPE_UINT64:
assert(rhs->type->vector_elements <= 2);
if (rhs->type->vector_elements == 2) {
ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
assert(lhs->type->vector_elements == 4);
this->out_variables->push_tail(t);
this->out_instructions->push_tail(
assign(t, u2i(expr(ir_unop_unpack_uint_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
this->out_instructions->push_tail(
assign(t, u2i(expr(ir_unop_unpack_uint_2x32, swizzle_y(rhs))), 0xc));
rhs = deref(t).val;
} else {
rhs = u2i(expr(ir_unop_unpack_uint_2x32, rhs));
}
break;
case GLSL_TYPE_SAMPLER:
rhs = u2i(expr(ir_unop_unpack_sampler_2x32, rhs));
break;
case GLSL_TYPE_IMAGE:
rhs = u2i(expr(ir_unop_unpack_image_2x32, rhs));
break;
default:
assert(!"Unexpected type conversion while lowering varyings");
break;
}
}
this->out_instructions->push_tail(new (this->mem_ctx) ir_assignment(lhs, rhs));
}
/**
* Make an ir_assignment from \c rhs to \c lhs, performing appropriate
* bitcasts if necessary to match up types.
*
* This function is called when unpacking varyings.
*/
void
lower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs,
ir_rvalue *rhs)
{
if (lhs->type->base_type != rhs->type->base_type) {
/* Since we only mix types in flat varyings, and we always store flat
* varyings as type ivec4, we need only produce conversions from int to
* (uint or float).
*/
assert(rhs->type->base_type == GLSL_TYPE_INT);
switch (lhs->type->base_type) {
case GLSL_TYPE_UINT:
rhs = new(this->mem_ctx)
ir_expression(ir_unop_i2u, lhs->type, rhs);
break;
case GLSL_TYPE_FLOAT:
rhs = new(this->mem_ctx)
ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs);
break;
case GLSL_TYPE_DOUBLE:
assert(lhs->type->vector_elements <= 2);
if (lhs->type->vector_elements == 2) {
ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
assert(rhs->type->vector_elements == 4);
this->out_variables->push_tail(t);
this->out_instructions->push_tail(
assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
this->out_instructions->push_tail(
assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
rhs = deref(t).val;
} else {
rhs = expr(ir_unop_pack_double_2x32, i2u(rhs));
}
break;
case GLSL_TYPE_INT64:
assert(lhs->type->vector_elements <= 2);
if (lhs->type->vector_elements == 2) {
ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
assert(rhs->type->vector_elements == 4);
this->out_variables->push_tail(t);
this->out_instructions->push_tail(
assign(t, expr(ir_unop_pack_int_2x32, swizzle_xy(rhs->clone(mem_ctx, NULL))), 0x1));
this->out_instructions->push_tail(
assign(t, expr(ir_unop_pack_int_2x32, swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2)), 0x2));
rhs = deref(t).val;
} else {
rhs = expr(ir_unop_pack_int_2x32, rhs);
}
break;
case GLSL_TYPE_UINT64:
assert(lhs->type->vector_elements <= 2);
if (lhs->type->vector_elements == 2) {
ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
assert(rhs->type->vector_elements == 4);
this->out_variables->push_tail(t);
this->out_instructions->push_tail(
assign(t, expr(ir_unop_pack_uint_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
this->out_instructions->push_tail(
assign(t, expr(ir_unop_pack_uint_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
rhs = deref(t).val;
} else {
rhs = expr(ir_unop_pack_uint_2x32, i2u(rhs));
}
break;
case GLSL_TYPE_SAMPLER:
rhs = new(mem_ctx)
ir_expression(ir_unop_pack_sampler_2x32, lhs->type, i2u(rhs));
break;
case GLSL_TYPE_IMAGE:
rhs = new(mem_ctx)
ir_expression(ir_unop_pack_image_2x32, lhs->type, i2u(rhs));
break;
default:
assert(!"Unexpected type conversion while lowering varyings");
break;
}
}
this->out_instructions->push_tail(new(this->mem_ctx) ir_assignment(lhs, rhs));
}
/**
* Recursively pack or unpack the given varying (or portion of a varying) by
* traversing all of its constituent vectors.
*
* \param fine_location is the location where the first constituent vector
* should be packed--the word "fine" indicates that this location is expressed
* in multiples of a float, rather than multiples of a vec4 as is used
* elsewhere in Mesa.
*
* \param gs_input_toplevel should be set to true if we are lowering geometry
* shader inputs, and we are currently lowering the whole input variable
* (i.e. we are lowering the array whose index selects the vertex).
*
* \param vertex_index: if we are lowering geometry shader inputs, and the
* level of the array that we are currently lowering is *not* the top level,
* then this indicates which vertex we are currently lowering. Otherwise it
* is ignored.
*
* \return the location where the next constituent vector (after this one)
* should be packed.
*/
unsigned
lower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue,
unsigned fine_location,
ir_variable *unpacked_var,
const char *name,
bool gs_input_toplevel,
unsigned vertex_index)
{
unsigned dmul = rvalue->type->is_64bit() ? 2 : 1;
/* When gs_input_toplevel is set, we should be looking at a geometry shader
* input array.
*/
assert(!gs_input_toplevel || rvalue->type->is_array());
if (rvalue->type->is_struct()) {
for (unsigned i = 0; i < rvalue->type->length; i++) {
if (i != 0)
rvalue = rvalue->clone(this->mem_ctx, NULL);
const char *field_name = rvalue->type->fields.structure[i].name;
ir_dereference_record *dereference_record = new(this->mem_ctx)
ir_dereference_record(rvalue, field_name);
char *deref_name
= ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name);
fine_location = this->lower_rvalue(dereference_record, fine_location,
unpacked_var, deref_name, false,
vertex_index);
}
return fine_location;
} else if (rvalue->type->is_array()) {
/* Arrays are packed/unpacked by considering each array element in
* sequence.
*/
return this->lower_arraylike(rvalue, rvalue->type->array_size(),
fine_location, unpacked_var, name,
gs_input_toplevel, vertex_index);
} else if (rvalue->type->is_matrix()) {
/* Matrices are packed/unpacked by considering each column vector in
* sequence.
*/
return this->lower_arraylike(rvalue, rvalue->type->matrix_columns,
fine_location, unpacked_var, name,
false, vertex_index);
} else if (rvalue->type->vector_elements * dmul +
fine_location % 4 > 4) {
/* We don't have code to split up 64bit variable between two
* varying slots, instead we add padding if necessary.
*/
unsigned aligned_fine_location = ALIGN_POT(fine_location, dmul);
if (aligned_fine_location != fine_location) {
return this->lower_rvalue(rvalue, aligned_fine_location,
unpacked_var, name, false,
vertex_index);
}
/* This vector is going to be "double parked" across two varying slots,
* so handle it as two separate assignments. For doubles, a dvec3/dvec4
* can end up being spread over 3 slots. However the second splitting
* will happen later, here we just always want to split into 2.
*/
unsigned left_components, right_components;
unsigned left_swizzle_values[4] = { 0, 0, 0, 0 };
unsigned right_swizzle_values[4] = { 0, 0, 0, 0 };
char left_swizzle_name[4] = { 0, 0, 0, 0 };
char right_swizzle_name[4] = { 0, 0, 0, 0 };
left_components = 4 - fine_location % 4;
if (rvalue->type->is_64bit()) {
left_components /= 2;
assert(left_components > 0);
}
right_components = rvalue->type->vector_elements - left_components;
for (unsigned i = 0; i < left_components; i++) {
left_swizzle_values[i] = i;
left_swizzle_name[i] = "xyzw"[i];
}
for (unsigned i = 0; i < right_components; i++) {
right_swizzle_values[i] = i + left_components;
right_swizzle_name[i] = "xyzw"[i + left_components];
}
ir_swizzle *right_swizzle = new(this->mem_ctx)
ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values,
right_components);
char *right_name
= ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name);
if (left_components) {
char *left_name
= ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name);
ir_swizzle *left_swizzle = new(this->mem_ctx)
ir_swizzle(rvalue, left_swizzle_values, left_components);
fine_location = this->lower_rvalue(left_swizzle, fine_location,
unpacked_var, left_name, false,
vertex_index);
} else
/* Top up the fine location to the next slot */
fine_location++;
return this->lower_rvalue(right_swizzle, fine_location, unpacked_var,
right_name, false, vertex_index);
} else {
/* No special handling is necessary; pack the rvalue into the
* varying.
*/
unsigned swizzle_values[4] = { 0, 0, 0, 0 };
unsigned components = rvalue->type->vector_elements * dmul;
unsigned location = fine_location / 4;
unsigned location_frac = fine_location % 4;
for (unsigned i = 0; i < components; ++i)
swizzle_values[i] = i + location_frac;
assert(this->components[location - VARYING_SLOT_VAR0] >= components);
ir_dereference *packed_deref =
this->get_packed_varying_deref(location, unpacked_var, name,
vertex_index);
if (unpacked_var->data.stream != 0) {
assert(unpacked_var->data.stream < 4);
ir_variable *packed_var = packed_deref->variable_referenced();
for (unsigned i = 0; i < components; ++i) {
packed_var->data.stream |=
unpacked_var->data.stream << (2 * (location_frac + i));
}
}
ir_swizzle *swizzle = new(this->mem_ctx)
ir_swizzle(packed_deref, swizzle_values, components);
if (this->mode == ir_var_shader_out) {
this->bitwise_assign_pack(swizzle, rvalue);
} else {
this->bitwise_assign_unpack(rvalue, swizzle);
}
return fine_location + components;
}
}
/**
* Recursively pack or unpack a varying for which we need to iterate over its
* constituent elements, accessing each one using an ir_dereference_array.
* This takes care of both arrays and matrices, since ir_dereference_array
* treats a matrix like an array of its column vectors.
*
* \param gs_input_toplevel should be set to true if we are lowering geometry
* shader inputs, and we are currently lowering the whole input variable
* (i.e. we are lowering the array whose index selects the vertex).
*
* \param vertex_index: if we are lowering geometry shader inputs, and the
* level of the array that we are currently lowering is *not* the top level,
* then this indicates which vertex we are currently lowering. Otherwise it
* is ignored.
*/
unsigned
lower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue,
unsigned array_size,
unsigned fine_location,
ir_variable *unpacked_var,
const char *name,
bool gs_input_toplevel,
unsigned vertex_index)
{
unsigned dmul = rvalue->type->without_array()->is_64bit() ? 2 : 1;
if (array_size * dmul + fine_location % 4 > 4) {
fine_location = ALIGN_POT(fine_location, dmul);
}
for (unsigned i = 0; i < array_size; i++) {
if (i != 0)
rvalue = rvalue->clone(this->mem_ctx, NULL);
ir_constant *constant = new(this->mem_ctx) ir_constant(i);
ir_dereference_array *dereference_array = new(this->mem_ctx)
ir_dereference_array(rvalue, constant);
if (gs_input_toplevel) {
/* Geometry shader inputs are a special case. Instead of storing
* each element of the array at a different location, all elements
* are at the same location, but with a different vertex index.
*/
(void) this->lower_rvalue(dereference_array, fine_location,
unpacked_var, name, false, i);
} else {
char *subscripted_name
= ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i);
fine_location =
this->lower_rvalue(dereference_array, fine_location,
unpacked_var, subscripted_name,
false, vertex_index);
}
}
return fine_location;
}
/**
* Retrieve the packed varying corresponding to the given varying location.
* If no packed varying has been created for the given varying location yet,
* create it and add it to the shader before returning it.
*
* The newly created varying inherits its interpolation parameters from \c
* unpacked_var. Its base type is ivec4 if we are lowering a flat varying,
* vec4 otherwise.
*
* \param vertex_index: if we are lowering geometry shader inputs, then this
* indicates which vertex we are currently lowering. Otherwise it is ignored.
*/
ir_dereference *
lower_packed_varyings_visitor::get_packed_varying_deref(
unsigned location, ir_variable *unpacked_var, const char *name,
unsigned vertex_index)
{
unsigned slot = location - VARYING_SLOT_VAR0;
assert(slot < locations_used);
if (this->packed_varyings[slot] == NULL) {
char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name);
const glsl_type *packed_type;
assert(components[slot] != 0);
if (unpacked_var->is_interpolation_flat())
packed_type = glsl_type::get_instance(GLSL_TYPE_INT, components[slot], 1);
else
packed_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, components[slot], 1);
if (this->gs_input_vertices != 0) {
packed_type =
glsl_type::get_array_instance(packed_type,
this->gs_input_vertices);
}
ir_variable *packed_var = new(this->mem_ctx)
ir_variable(packed_type, packed_name, this->mode);
if (this->gs_input_vertices != 0) {
/* Prevent update_array_sizes() from messing with the size of the
* array.
*/
packed_var->data.max_array_access = this->gs_input_vertices - 1;
}
packed_var->data.centroid = unpacked_var->data.centroid;
packed_var->data.sample = unpacked_var->data.sample;
packed_var->data.patch = unpacked_var->data.patch;
packed_var->data.interpolation =
packed_type->without_array() == glsl_type::ivec4_type
? unsigned(INTERP_MODE_FLAT) : unpacked_var->data.interpolation;
packed_var->data.location = location;
packed_var->data.precision = unpacked_var->data.precision;
packed_var->data.always_active_io = unpacked_var->data.always_active_io;
packed_var->data.stream = 1u << 31;
unpacked_var->insert_before(packed_var);
this->packed_varyings[slot] = packed_var;
} else {
ir_variable *var = this->packed_varyings[slot];
/* The slot needs to be marked as always active if any variable that got
* packed there was.
*/
var->data.always_active_io |= unpacked_var->data.always_active_io;
/* For geometry shader inputs, only update the packed variable name the
* first time we visit each component.
*/
if (this->gs_input_vertices == 0 || vertex_index == 0) {
if (var->is_name_ralloced())
ralloc_asprintf_append((char **) &var->name, ",%s", name);
else
var->name = ralloc_asprintf(var, "%s,%s", var->name, name);
}
}
ir_dereference *deref = new(this->mem_ctx)
ir_dereference_variable(this->packed_varyings[slot]);
if (this->gs_input_vertices != 0) {
/* When lowering GS inputs, the packed variable is an array, so we need
* to dereference it using vertex_index.
*/
ir_constant *constant = new(this->mem_ctx) ir_constant(vertex_index);
deref = new(this->mem_ctx) ir_dereference_array(deref, constant);
}
return deref;
}
bool
lower_packed_varyings_visitor::needs_lowering(ir_variable *var,
gl_shader_stage stage)
{
/* Things composed of vec4's, varyings with explicitly assigned
* locations or varyings marked as must_be_shader_input (which might be used
* by interpolateAt* functions) shouldn't be lowered. Everything else can be.
*/
if (var->data.explicit_location || var->data.must_be_shader_input)
return false;
const glsl_type *type = var->type;
type = get_varying_type(var, stage);
/* Some drivers (e.g. panfrost) don't support packing of transform
* feedback varyings.
*/
if (disable_xfb_packing && var->data.is_xfb &&
!(type->is_array() || type->is_struct() || type->is_matrix()) &&
xfb_enabled)
return false;
/* Override disable_varying_packing if the var is only used by transform
* feedback. Also override it if transform feedback is enabled and the
* variable is an array, struct or matrix as the elements of these types
* will always have the same interpolation and therefore are safe to pack.
*/
if (disable_varying_packing && !var->data.is_xfb_only &&
!((type->is_array() || type->is_struct() || type->is_matrix()) &&
xfb_enabled))
return false;
type = type->without_array();
if (type->vector_elements == 4 && !type->is_64bit())
return false;
return true;
}
/**
* Visitor that splices varying packing code before every use of EmitVertex()
* in a geometry shader.
*/
class lower_packed_varyings_gs_splicer : public ir_hierarchical_visitor
{
public:
explicit lower_packed_varyings_gs_splicer(void *mem_ctx,
const exec_list *instructions);
virtual ir_visitor_status visit_leave(ir_emit_vertex *ev);
private:
/**
* Memory context used to allocate new instructions for the shader.
*/
void * const mem_ctx;
/**
* Instructions that should be spliced into place before each EmitVertex()
* call.
*/
const exec_list *instructions;
};
lower_packed_varyings_gs_splicer::lower_packed_varyings_gs_splicer(
void *mem_ctx, const exec_list *instructions)
: mem_ctx(mem_ctx), instructions(instructions)
{
}
ir_visitor_status
lower_packed_varyings_gs_splicer::visit_leave(ir_emit_vertex *ev)
{
foreach_in_list(ir_instruction, ir, this->instructions) {
ev->insert_before(ir->clone(this->mem_ctx, NULL));
}
return visit_continue;
}
/**
* Visitor that splices varying packing code before every return.
*/
class lower_packed_varyings_return_splicer : public ir_hierarchical_visitor
{
public:
explicit lower_packed_varyings_return_splicer(void *mem_ctx,
const exec_list *instructions);
virtual ir_visitor_status visit_leave(ir_return *ret);
private:
/**
* Memory context used to allocate new instructions for the shader.
*/
void * const mem_ctx;
/**
* Instructions that should be spliced into place before each return.
*/
const exec_list *instructions;
};
lower_packed_varyings_return_splicer::lower_packed_varyings_return_splicer(
void *mem_ctx, const exec_list *instructions)
: mem_ctx(mem_ctx), instructions(instructions)
{
}
ir_visitor_status
lower_packed_varyings_return_splicer::visit_leave(ir_return *ret)
{
foreach_in_list(ir_instruction, ir, this->instructions) {
ret->insert_before(ir->clone(this->mem_ctx, NULL));
}
return visit_continue;
}
void
lower_packed_varyings(void *mem_ctx, unsigned locations_used,
const uint8_t *components,
ir_variable_mode mode, unsigned gs_input_vertices,
gl_linked_shader *shader, bool disable_varying_packing,
bool disable_xfb_packing, bool xfb_enabled)
{
exec_list *instructions = shader->ir;
ir_function *main_func = shader->symbols->get_function("main");
exec_list void_parameters;
ir_function_signature *main_func_sig
= main_func->matching_signature(NULL, &void_parameters, false);
exec_list new_instructions, new_variables;
lower_packed_varyings_visitor visitor(mem_ctx,
locations_used,
components,
mode,
gs_input_vertices,
&new_instructions,
&new_variables,
disable_varying_packing,
disable_xfb_packing,
xfb_enabled);
visitor.run(shader);
if (mode == ir_var_shader_out) {
if (shader->Stage == MESA_SHADER_GEOMETRY) {
/* For geometry shaders, outputs need to be lowered before each call
* to EmitVertex()
*/
lower_packed_varyings_gs_splicer splicer(mem_ctx, &new_instructions);
/* Add all the variables in first. */
main_func_sig->body.get_head_raw()->insert_before(&new_variables);
/* Now update all the EmitVertex instances */
splicer.run(instructions);
} else {
/* For other shader types, outputs need to be lowered before each
* return statement and at the end of main()
*/
lower_packed_varyings_return_splicer splicer(mem_ctx, &new_instructions);
main_func_sig->body.get_head_raw()->insert_before(&new_variables);
splicer.run(instructions);
/* Lower outputs at the end of main() if the last instruction is not
* a return statement
*/
if (((ir_instruction*)instructions->get_tail())->ir_type != ir_type_return) {
main_func_sig->body.append_list(&new_instructions);
}
}
} else {
/* Shader inputs need to be lowered at the beginning of main() */
main_func_sig->body.get_head_raw()->insert_before(&new_instructions);
main_func_sig->body.get_head_raw()->insert_before(&new_variables);
}
}
|