1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
|
/**************************************************************************
*
* Copyright 2007 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* \brief Clipping stage
*
* \author Keith Whitwell <keithw@vmware.com>
*/
#include "util/u_bitcast.h"
#include "util/u_memory.h"
#include "util/u_math.h"
#include "pipe/p_shader_tokens.h"
#include "draw_vs.h"
#include "draw_pipe.h"
#include "draw_fs.h"
#include "draw_gs.h"
/** Set to 1 to enable printing of coords before/after clipping */
#define DEBUG_CLIP 0
#define MAX_CLIPPED_VERTICES ((2 * (6 + PIPE_MAX_CLIP_PLANES))+1)
struct clip_stage {
struct draw_stage stage; /**< base class */
unsigned pos_attr;
boolean have_clipdist;
int cv_attr;
/* List of the attributes to be constant interpolated. */
uint num_const_attribs;
uint8_t const_attribs[PIPE_MAX_SHADER_OUTPUTS];
/* List of the attributes to be linear interpolated. */
uint num_linear_attribs;
uint8_t linear_attribs[PIPE_MAX_SHADER_OUTPUTS];
/* List of the attributes to be perspective interpolated. */
uint num_perspect_attribs;
uint8_t perspect_attribs[PIPE_MAX_SHADER_OUTPUTS];
float (*plane)[4];
};
/** Cast wrapper */
static inline struct clip_stage *clip_stage(struct draw_stage *stage)
{
return (struct clip_stage *)stage;
}
static inline unsigned
draw_viewport_index(struct draw_context *draw,
const struct vertex_header *leading_vertex)
{
if (draw_current_shader_uses_viewport_index(draw)) {
unsigned viewport_index_output =
draw_current_shader_viewport_index_output(draw);
unsigned viewport_index =
u_bitcast_f2u(leading_vertex->data[viewport_index_output][0]);
return draw_clamp_viewport_idx(viewport_index);
} else {
return 0;
}
}
#define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT)))
/* All attributes are float[4], so this is easy:
*/
static void interp_attr(float dst[4],
float t,
const float in[4],
const float out[4])
{
dst[0] = LINTERP( t, out[0], in[0] );
dst[1] = LINTERP( t, out[1], in[1] );
dst[2] = LINTERP( t, out[2], in[2] );
dst[3] = LINTERP( t, out[3], in[3] );
}
/**
* Copy flat shaded attributes src vertex to dst vertex.
*/
static void copy_flat(struct draw_stage *stage,
struct vertex_header *dst,
const struct vertex_header *src)
{
const struct clip_stage *clipper = clip_stage(stage);
uint i;
for (i = 0; i < clipper->num_const_attribs; i++) {
const uint attr = clipper->const_attribs[i];
COPY_4FV(dst->data[attr], src->data[attr]);
}
}
/* Interpolate between two vertices to produce a third.
*/
static void interp(const struct clip_stage *clip,
struct vertex_header *dst,
float t,
const struct vertex_header *out,
const struct vertex_header *in,
unsigned viewport_index)
{
const unsigned pos_attr = clip->pos_attr;
unsigned j;
float t_nopersp;
/* Vertex header.
*/
dst->clipmask = 0;
dst->edgeflag = 0; /* will get overwritten later */
dst->pad = 0;
dst->vertex_id = UNDEFINED_VERTEX_ID;
/* Interpolate the clip-space coords.
*/
if (clip->cv_attr >= 0) {
interp_attr(dst->data[clip->cv_attr], t,
in->data[clip->cv_attr], out->data[clip->cv_attr]);
}
/* interpolate the clip-space position */
interp_attr(dst->clip_pos, t, in->clip_pos, out->clip_pos);
/* Do the projective divide and viewport transformation to get
* new window coordinates:
*/
{
const float *pos = dst->clip_pos;
const float *scale =
clip->stage.draw->viewports[viewport_index].scale;
const float *trans =
clip->stage.draw->viewports[viewport_index].translate;
const float oow = 1.0f / pos[3];
dst->data[pos_attr][0] = pos[0] * oow * scale[0] + trans[0];
dst->data[pos_attr][1] = pos[1] * oow * scale[1] + trans[1];
dst->data[pos_attr][2] = pos[2] * oow * scale[2] + trans[2];
dst->data[pos_attr][3] = oow;
}
/* interp perspective attribs */
for (j = 0; j < clip->num_perspect_attribs; j++) {
const unsigned attr = clip->perspect_attribs[j];
interp_attr(dst->data[attr], t, in->data[attr], out->data[attr]);
}
/**
* Compute the t in screen-space instead of 3d space to use
* for noperspective interpolation.
*
* The points can be aligned with the X axis, so in that case try
* the Y. When both points are at the same screen position, we can
* pick whatever value (the interpolated point won't be in front
* anyway), so just use the 3d t.
*/
if (clip->num_linear_attribs) {
int k;
t_nopersp = t;
/* find either in.x != out.x or in.y != out.y */
for (k = 0; k < 2; k++) {
if (in->clip_pos[k] != out->clip_pos[k]) {
/* do divide by W, then compute linear interpolation factor */
float in_coord = in->clip_pos[k] / in->clip_pos[3];
float out_coord = out->clip_pos[k] / out->clip_pos[3];
float dst_coord = dst->clip_pos[k] / dst->clip_pos[3];
t_nopersp = (dst_coord - out_coord) / (in_coord - out_coord);
break;
}
}
for (j = 0; j < clip->num_linear_attribs; j++) {
const unsigned attr = clip->linear_attribs[j];
interp_attr(dst->data[attr], t_nopersp, in->data[attr], out->data[attr]);
}
}
}
/**
* Emit a post-clip polygon to the next pipeline stage. The polygon
* will be convex and the provoking vertex will always be vertex[0].
*/
static void emit_poly(struct draw_stage *stage,
struct vertex_header **inlist,
const boolean *edgeflags,
unsigned n,
const struct prim_header *origPrim)
{
const struct clip_stage *clipper = clip_stage(stage);
struct prim_header header;
unsigned i;
ushort edge_first, edge_middle, edge_last;
if (stage->draw->rasterizer->flatshade_first) {
edge_first = DRAW_PIPE_EDGE_FLAG_0;
edge_middle = DRAW_PIPE_EDGE_FLAG_1;
edge_last = DRAW_PIPE_EDGE_FLAG_2;
}
else {
edge_first = DRAW_PIPE_EDGE_FLAG_2;
edge_middle = DRAW_PIPE_EDGE_FLAG_0;
edge_last = DRAW_PIPE_EDGE_FLAG_1;
}
if (!edgeflags[0])
edge_first = 0;
/* later stages may need the determinant, but only the sign matters */
header.det = origPrim->det;
header.flags = DRAW_PIPE_RESET_STIPPLE | edge_first | edge_middle;
header.pad = 0;
for (i = 2; i < n; i++, header.flags = edge_middle) {
/* order the triangle verts to respect the provoking vertex mode */
if (stage->draw->rasterizer->flatshade_first) {
header.v[0] = inlist[0]; /* the provoking vertex */
header.v[1] = inlist[i-1];
header.v[2] = inlist[i];
}
else {
header.v[0] = inlist[i-1];
header.v[1] = inlist[i];
header.v[2] = inlist[0]; /* the provoking vertex */
}
if (!edgeflags[i-1]) {
header.flags &= ~edge_middle;
}
if (i == n - 1 && edgeflags[i])
header.flags |= edge_last;
if (DEBUG_CLIP) {
uint j, k;
debug_printf("Clipped tri: (flat-shade-first = %d)\n",
stage->draw->rasterizer->flatshade_first);
for (j = 0; j < 3; j++) {
debug_printf(" Vert %d: clip pos: %f %f %f %f\n", j,
header.v[j]->clip_pos[0],
header.v[j]->clip_pos[1],
header.v[j]->clip_pos[2],
header.v[j]->clip_pos[3]);
if (clipper->cv_attr >= 0) {
debug_printf(" Vert %d: cv: %f %f %f %f\n", j,
header.v[j]->data[clipper->cv_attr][0],
header.v[j]->data[clipper->cv_attr][1],
header.v[j]->data[clipper->cv_attr][2],
header.v[j]->data[clipper->cv_attr][3]);
}
for (k = 0; k < draw_num_shader_outputs(stage->draw); k++) {
debug_printf(" Vert %d: Attr %d: %f %f %f %f\n", j, k,
header.v[j]->data[k][0],
header.v[j]->data[k][1],
header.v[j]->data[k][2],
header.v[j]->data[k][3]);
}
}
}
stage->next->tri(stage->next, &header);
}
}
static inline float
dot4(const float *a, const float *b)
{
return (a[0] * b[0] +
a[1] * b[1] +
a[2] * b[2] +
a[3] * b[3]);
}
/*
* this function extracts the clip distance for the current plane,
* it first checks if the shader provided a clip distance, otherwise
* it works out the value using the clipvertex
*/
static inline float getclipdist(const struct clip_stage *clipper,
struct vertex_header *vert,
int plane_idx)
{
const float *plane;
float dp;
if (plane_idx < 6) {
/* ordinary xyz view volume clipping uses pos output */
plane = clipper->plane[plane_idx];
dp = dot4(vert->clip_pos, plane);
}
else if (clipper->have_clipdist) {
/* pick the correct clipdistance element from the output vectors */
int _idx = plane_idx - 6;
int cdi = _idx >= 4;
int vidx = cdi ? _idx - 4 : _idx;
dp = vert->data[draw_current_shader_ccdistance_output(clipper->stage.draw, cdi)][vidx];
} else {
/*
* legacy user clip planes or gl_ClipVertex
*/
plane = clipper->plane[plane_idx];
if (clipper->cv_attr >= 0) {
dp = dot4(vert->data[clipper->cv_attr], plane);
}
else {
dp = dot4(vert->clip_pos, plane);
}
}
return dp;
}
/* Clip a triangle against the viewport and user clip planes.
*/
static void
do_clip_tri(struct draw_stage *stage,
struct prim_header *header,
unsigned clipmask)
{
struct clip_stage *clipper = clip_stage( stage );
struct vertex_header *a[MAX_CLIPPED_VERTICES];
struct vertex_header *b[MAX_CLIPPED_VERTICES];
struct vertex_header **inlist = a;
struct vertex_header **outlist = b;
struct vertex_header *prov_vertex;
unsigned tmpnr = 0;
unsigned n = 3;
unsigned i;
boolean aEdges[MAX_CLIPPED_VERTICES];
boolean bEdges[MAX_CLIPPED_VERTICES];
boolean *inEdges = aEdges;
boolean *outEdges = bEdges;
int viewport_index = 0;
inlist[0] = header->v[0];
inlist[1] = header->v[1];
inlist[2] = header->v[2];
/*
* For d3d10, we need to take this from the leading (first) vertex.
* For GL, we could do anything (as long as we advertize
* GL_UNDEFINED_VERTEX for the VIEWPORT_INDEX_PROVOKING_VERTEX query),
* but it needs to be consistent with what other parts (i.e. driver)
* will do, and that seems easier with GL_PROVOKING_VERTEX logic.
*/
if (stage->draw->rasterizer->flatshade_first) {
prov_vertex = inlist[0];
}
else {
prov_vertex = inlist[2];
}
viewport_index = draw_viewport_index(clipper->stage.draw, prov_vertex);
if (DEBUG_CLIP) {
const float *v0 = header->v[0]->clip_pos;
const float *v1 = header->v[1]->clip_pos;
const float *v2 = header->v[2]->clip_pos;
debug_printf("Clip triangle pos:\n");
debug_printf(" %f, %f, %f, %f\n", v0[0], v0[1], v0[2], v0[3]);
debug_printf(" %f, %f, %f, %f\n", v1[0], v1[1], v1[2], v1[3]);
debug_printf(" %f, %f, %f, %f\n", v2[0], v2[1], v2[2], v2[3]);
if (clipper->cv_attr >= 0) {
const float *v0 = header->v[0]->data[clipper->cv_attr];
const float *v1 = header->v[1]->data[clipper->cv_attr];
const float *v2 = header->v[2]->data[clipper->cv_attr];
debug_printf("Clip triangle cv:\n");
debug_printf(" %f, %f, %f, %f\n", v0[0], v0[1], v0[2], v0[3]);
debug_printf(" %f, %f, %f, %f\n", v1[0], v1[1], v1[2], v1[3]);
debug_printf(" %f, %f, %f, %f\n", v2[0], v2[1], v2[2], v2[3]);
}
}
/*
* Note: at this point we can't just use the per-vertex edge flags.
* We have to observe the edge flag bits set in header->flags which
* were set during primitive decomposition. Put those flags into
* an edge flags array which parallels the vertex array.
* Later, in the 'unfilled' pipeline stage we'll draw the edge if both
* the header.flags bit is set AND the per-vertex edgeflag field is set.
*/
inEdges[0] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_0);
inEdges[1] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_1);
inEdges[2] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_2);
while (clipmask && n >= 3) {
const unsigned plane_idx = ffs(clipmask)-1;
const boolean is_user_clip_plane = plane_idx >= 6;
struct vertex_header *vert_prev = inlist[0];
boolean *edge_prev = &inEdges[0];
float dp_prev;
unsigned outcount = 0;
dp_prev = getclipdist(clipper, vert_prev, plane_idx);
clipmask &= ~(1<<plane_idx);
if (util_is_inf_or_nan(dp_prev))
return; //discard nan
assert(n < MAX_CLIPPED_VERTICES);
if (n >= MAX_CLIPPED_VERTICES)
return;
inlist[n] = inlist[0]; /* prevent rotation of vertices */
inEdges[n] = inEdges[0];
for (i = 1; i <= n; i++) {
struct vertex_header *vert = inlist[i];
boolean *edge = &inEdges[i];
boolean different_sign;
float dp = getclipdist(clipper, vert, plane_idx);
if (util_is_inf_or_nan(dp))
return; //discard nan
if (dp_prev >= 0.0f) {
assert(outcount < MAX_CLIPPED_VERTICES);
if (outcount >= MAX_CLIPPED_VERTICES)
return;
outEdges[outcount] = *edge_prev;
outlist[outcount++] = vert_prev;
different_sign = dp < 0.0f;
} else {
different_sign = !(dp < 0.0f);
}
if (different_sign) {
struct vertex_header *new_vert;
boolean *new_edge;
assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
return;
new_vert = clipper->stage.tmp[tmpnr++];
assert(outcount < MAX_CLIPPED_VERTICES);
if (outcount >= MAX_CLIPPED_VERTICES)
return;
new_edge = &outEdges[outcount];
outlist[outcount++] = new_vert;
if (dp < 0.0f) {
/* Going out of bounds. Avoid division by zero as we
* know dp != dp_prev from different_sign, above.
*/
float t = dp / (dp - dp_prev);
interp( clipper, new_vert, t, vert, vert_prev, viewport_index );
/* Whether or not to set edge flag for the new vert depends
* on whether it's a user-defined clipping plane. We're
* copying NVIDIA's behaviour here.
*/
if (is_user_clip_plane) {
/* we want to see an edge along the clip plane */
*new_edge = TRUE;
new_vert->edgeflag = TRUE;
}
else {
/* we don't want to see an edge along the frustum clip plane */
*new_edge = *edge_prev;
new_vert->edgeflag = FALSE;
}
}
else {
/* Coming back in.
*/
float t = dp_prev / (dp_prev - dp);
interp( clipper, new_vert, t, vert_prev, vert, viewport_index );
/* Copy starting vert's edgeflag:
*/
new_vert->edgeflag = vert_prev->edgeflag;
*new_edge = *edge_prev;
}
}
vert_prev = vert;
edge_prev = edge;
dp_prev = dp;
}
/* swap in/out lists */
{
struct vertex_header **tmp = inlist;
inlist = outlist;
outlist = tmp;
n = outcount;
}
{
boolean *tmp = inEdges;
inEdges = outEdges;
outEdges = tmp;
}
}
/* If constant interpolated, copy provoking vertex attrib to polygon vertex[0]
*/
if (n >= 3) {
if (clipper->num_const_attribs) {
if (stage->draw->rasterizer->flatshade_first) {
if (inlist[0] != header->v[0]) {
assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
return;
inlist[0] = dup_vert(stage, inlist[0], tmpnr++);
copy_flat(stage, inlist[0], header->v[0]);
}
}
else {
if (inlist[0] != header->v[2]) {
assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
return;
inlist[0] = dup_vert(stage, inlist[0], tmpnr++);
copy_flat(stage, inlist[0], header->v[2]);
}
}
}
/* Emit the polygon as triangles to the setup stage:
*/
emit_poly(stage, inlist, inEdges, n, header);
}
}
/* Clip a line against the viewport and user clip planes.
*/
static void
do_clip_line(struct draw_stage *stage,
struct prim_header *header,
unsigned clipmask)
{
const struct clip_stage *clipper = clip_stage(stage);
struct vertex_header *v0 = header->v[0];
struct vertex_header *v1 = header->v[1];
struct vertex_header *prov_vertex;
float t0 = 0.0F;
float t1 = 0.0F;
struct prim_header newprim;
int viewport_index;
newprim.flags = header->flags;
if (stage->draw->rasterizer->flatshade_first) {
prov_vertex = v0;
}
else {
prov_vertex = v1;
}
viewport_index = draw_viewport_index(clipper->stage.draw, prov_vertex);
while (clipmask) {
const unsigned plane_idx = ffs(clipmask)-1;
const float dp0 = getclipdist(clipper, v0, plane_idx);
const float dp1 = getclipdist(clipper, v1, plane_idx);
if (util_is_inf_or_nan(dp0) || util_is_inf_or_nan(dp1))
return; //discard nan
if (dp1 < 0.0F) {
float t = dp1 / (dp1 - dp0);
t1 = MAX2(t1, t);
}
if (dp0 < 0.0F) {
float t = dp0 / (dp0 - dp1);
t0 = MAX2(t0, t);
}
if (t0 + t1 >= 1.0F)
return; /* discard */
clipmask &= ~(1 << plane_idx); /* turn off this plane's bit */
}
if (v0->clipmask) {
interp( clipper, stage->tmp[0], t0, v0, v1, viewport_index );
if (stage->draw->rasterizer->flatshade_first) {
copy_flat(stage, stage->tmp[0], v0); /* copy v0 color to tmp[0] */
}
else {
copy_flat(stage, stage->tmp[0], v1); /* copy v1 color to tmp[0] */
}
newprim.v[0] = stage->tmp[0];
}
else {
newprim.v[0] = v0;
}
if (v1->clipmask) {
interp( clipper, stage->tmp[1], t1, v1, v0, viewport_index );
if (stage->draw->rasterizer->flatshade_first) {
copy_flat(stage, stage->tmp[1], v0); /* copy v0 color to tmp[1] */
}
else {
copy_flat(stage, stage->tmp[1], v1); /* copy v1 color to tmp[1] */
}
newprim.v[1] = stage->tmp[1];
}
else {
newprim.v[1] = v1;
}
stage->next->line( stage->next, &newprim );
}
static void
clip_point(struct draw_stage *stage, struct prim_header *header)
{
if (header->v[0]->clipmask == 0)
stage->next->point( stage->next, header );
}
/*
* Clip points but ignore the first 4 (xy) clip planes.
* (Because the generated clip mask is completely unaffacted by guard band,
* we still need to manually evaluate the x/y planes if they are outside
* the guard band and not just outside the vp.)
*/
static void
clip_point_guard_xy(struct draw_stage *stage, struct prim_header *header)
{
unsigned clipmask = header->v[0]->clipmask;
if ((clipmask & 0xffffffff) == 0)
stage->next->point(stage->next, header);
else if ((clipmask & 0xfffffff0) == 0) {
while (clipmask) {
const unsigned plane_idx = ffs(clipmask)-1;
clipmask &= ~(1 << plane_idx); /* turn off this plane's bit */
/* TODO: this should really do proper guardband clipping,
* currently just throw out infs/nans.
* Also note that vertices with negative w values MUST be tossed
* out (not sure if proper guardband clipping would do this
* automatically). These would usually be captured by depth clip
* too but this can be disabled.
*/
if (header->v[0]->clip_pos[3] <= 0.0f ||
util_is_inf_or_nan(header->v[0]->clip_pos[0]) ||
util_is_inf_or_nan(header->v[0]->clip_pos[1]))
return;
}
stage->next->point(stage->next, header);
}
}
static void
clip_first_point(struct draw_stage *stage, struct prim_header *header)
{
stage->point = stage->draw->guard_band_points_xy ? clip_point_guard_xy : clip_point;
stage->point(stage, header);
}
static void
clip_line(struct draw_stage *stage, struct prim_header *header)
{
unsigned clipmask = (header->v[0]->clipmask |
header->v[1]->clipmask);
if (clipmask == 0) {
/* no clipping needed */
stage->next->line( stage->next, header );
}
else if ((header->v[0]->clipmask &
header->v[1]->clipmask) == 0) {
do_clip_line(stage, header, clipmask);
}
/* else, totally clipped */
}
static void
clip_tri(struct draw_stage *stage, struct prim_header *header)
{
unsigned clipmask = (header->v[0]->clipmask |
header->v[1]->clipmask |
header->v[2]->clipmask);
if (clipmask == 0) {
/* no clipping needed */
stage->next->tri( stage->next, header );
}
else if ((header->v[0]->clipmask &
header->v[1]->clipmask &
header->v[2]->clipmask) == 0) {
do_clip_tri(stage, header, clipmask);
}
}
static int
find_interp(const struct draw_fragment_shader *fs, int *indexed_interp,
uint semantic_name, uint semantic_index)
{
int interp;
/* If it's gl_{Front,Back}{,Secondary}Color, pick up the mode
* from the array we've filled before. */
if ((semantic_name == TGSI_SEMANTIC_COLOR ||
semantic_name == TGSI_SEMANTIC_BCOLOR) &&
semantic_index < 2) {
interp = indexed_interp[semantic_index];
} else if (semantic_name == TGSI_SEMANTIC_POSITION ||
semantic_name == TGSI_SEMANTIC_CLIPVERTEX) {
/* these inputs are handled specially always */
return -1;
} else {
/* Otherwise, search in the FS inputs, with a decent default
* if we don't find it.
* This probably only matters for layer, vpindex, culldist, maybe
* front_face.
*/
uint j;
if (semantic_name == TGSI_SEMANTIC_LAYER ||
semantic_name == TGSI_SEMANTIC_VIEWPORT_INDEX) {
interp = TGSI_INTERPOLATE_CONSTANT;
}
else {
interp = TGSI_INTERPOLATE_PERSPECTIVE;
}
if (fs) {
for (j = 0; j < fs->info.num_inputs; j++) {
if (semantic_name == fs->info.input_semantic_name[j] &&
semantic_index == fs->info.input_semantic_index[j]) {
interp = fs->info.input_interpolate[j];
break;
}
}
}
}
return interp;
}
/* Update state. Could further delay this until we hit the first
* primitive that really requires clipping.
*/
static void
clip_init_state(struct draw_stage *stage)
{
struct clip_stage *clipper = clip_stage(stage);
const struct draw_context *draw = stage->draw;
const struct draw_fragment_shader *fs = draw->fs.fragment_shader;
const struct tgsi_shader_info *info = draw_get_shader_info(draw);
uint i, j;
int indexed_interp[2];
clipper->pos_attr = draw_current_shader_position_output(draw);
clipper->have_clipdist = draw_current_shader_num_written_clipdistances(draw) > 0;
if (draw_current_shader_clipvertex_output(draw) != clipper->pos_attr) {
clipper->cv_attr = (int)draw_current_shader_clipvertex_output(draw);
}
else {
clipper->cv_attr = -1;
}
/* We need to know for each attribute what kind of interpolation is
* done on it (flat, smooth or noperspective). But the information
* is not directly accessible for outputs, only for inputs. So we
* have to match semantic name and index between the VS (or GS/ES)
* outputs and the FS inputs to get to the interpolation mode.
*
* The only hitch is with gl_FrontColor/gl_BackColor which map to
* gl_Color, and their Secondary versions. First there are (up to)
* two outputs for one input, so we tuck the information in a
* specific array. Second if they don't have qualifiers, the
* default value has to be picked from the global shade mode.
*
* Of course, if we don't have a fragment shader in the first
* place, defaults should be used.
*/
/* First pick up the interpolation mode for
* gl_Color/gl_SecondaryColor, with the correct default.
*/
indexed_interp[0] = indexed_interp[1] = draw->rasterizer->flatshade ?
TGSI_INTERPOLATE_CONSTANT : TGSI_INTERPOLATE_PERSPECTIVE;
if (fs) {
for (i = 0; i < fs->info.num_inputs; i++) {
if (fs->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR &&
fs->info.input_semantic_index[i] < 2) {
if (fs->info.input_interpolate[i] != TGSI_INTERPOLATE_COLOR)
indexed_interp[fs->info.input_semantic_index[i]] = fs->info.input_interpolate[i];
}
}
}
/* Then resolve the interpolation mode for every output attribute. */
clipper->num_const_attribs = 0;
clipper->num_linear_attribs = 0;
clipper->num_perspect_attribs = 0;
for (i = 0; i < info->num_outputs; i++) {
/* Find the interpolation mode for a specific attribute */
int interp = find_interp(fs, indexed_interp,
info->output_semantic_name[i],
info->output_semantic_index[i]);
switch (interp) {
case TGSI_INTERPOLATE_CONSTANT:
clipper->const_attribs[clipper->num_const_attribs] = i;
clipper->num_const_attribs++;
break;
case TGSI_INTERPOLATE_LINEAR:
clipper->linear_attribs[clipper->num_linear_attribs] = i;
clipper->num_linear_attribs++;
break;
case TGSI_INTERPOLATE_PERSPECTIVE:
clipper->perspect_attribs[clipper->num_perspect_attribs] = i;
clipper->num_perspect_attribs++;
break;
case TGSI_INTERPOLATE_COLOR:
if (draw->rasterizer->flatshade) {
clipper->const_attribs[clipper->num_const_attribs] = i;
clipper->num_const_attribs++;
} else {
clipper->perspect_attribs[clipper->num_perspect_attribs] = i;
clipper->num_perspect_attribs++;
}
break;
default:
assert(interp == -1);
break;
}
}
/* Search the extra vertex attributes */
for (j = 0; j < draw->extra_shader_outputs.num; j++) {
/* Find the interpolation mode for a specific attribute */
int interp = find_interp(fs, indexed_interp,
draw->extra_shader_outputs.semantic_name[j],
draw->extra_shader_outputs.semantic_index[j]);
switch (interp) {
case TGSI_INTERPOLATE_CONSTANT:
clipper->const_attribs[clipper->num_const_attribs] = i + j;
clipper->num_const_attribs++;
break;
case TGSI_INTERPOLATE_LINEAR:
clipper->linear_attribs[clipper->num_linear_attribs] = i + j;
clipper->num_linear_attribs++;
break;
case TGSI_INTERPOLATE_PERSPECTIVE:
clipper->perspect_attribs[clipper->num_perspect_attribs] = i + j;
clipper->num_perspect_attribs++;
break;
default:
assert(interp == -1);
break;
}
}
stage->tri = clip_tri;
stage->line = clip_line;
}
static void clip_first_tri(struct draw_stage *stage,
struct prim_header *header)
{
clip_init_state( stage );
stage->tri( stage, header );
}
static void clip_first_line(struct draw_stage *stage,
struct prim_header *header)
{
clip_init_state( stage );
stage->line( stage, header );
}
static void clip_flush(struct draw_stage *stage, unsigned flags)
{
stage->tri = clip_first_tri;
stage->line = clip_first_line;
stage->next->flush( stage->next, flags );
}
static void clip_reset_stipple_counter(struct draw_stage *stage)
{
stage->next->reset_stipple_counter( stage->next );
}
static void clip_destroy(struct draw_stage *stage)
{
draw_free_temp_verts( stage );
FREE( stage );
}
/**
* Allocate a new clipper stage.
* \return pointer to new stage object
*/
struct draw_stage *draw_clip_stage(struct draw_context *draw)
{
struct clip_stage *clipper = CALLOC_STRUCT(clip_stage);
if (!clipper)
goto fail;
clipper->stage.draw = draw;
clipper->stage.name = "clipper";
clipper->stage.point = clip_first_point;
clipper->stage.line = clip_first_line;
clipper->stage.tri = clip_first_tri;
clipper->stage.flush = clip_flush;
clipper->stage.reset_stipple_counter = clip_reset_stipple_counter;
clipper->stage.destroy = clip_destroy;
clipper->plane = draw->plane;
if (!draw_alloc_temp_verts( &clipper->stage, MAX_CLIPPED_VERTICES+1 ))
goto fail;
return &clipper->stage;
fail:
if (clipper)
clipper->stage.destroy( &clipper->stage );
return NULL;
}
|