summaryrefslogtreecommitdiff
path: root/lib/mesa/src/gallium/auxiliary/util/u_sse.h
blob: cae4138ba01baf42e1a60e8ecc060d41fa14f07b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/**************************************************************************
 *
 * Copyright 2008 VMware, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 **************************************************************************/

/**
 * @file
 * SSE intrinsics portability header.
 * 
 * Although the SSE intrinsics are support by all modern x86 and x86-64 
 * compilers, there are some intrisincs missing in some implementations 
 * (especially older MSVC versions). This header abstracts that away.
 */

#ifndef U_SSE_H_
#define U_SSE_H_

#include "pipe/p_config.h"

#if defined(PIPE_ARCH_SSE)

#include <emmintrin.h>


union m128i {
   __m128i m;
   ubyte ub[16];
   ushort us[8];
   uint ui[4];
};

static inline void u_print_epi8(const char *name, __m128i r)
{
   union { __m128i m; ubyte ub[16]; } u;
   u.m = r;

   debug_printf("%s: "
                "%02x/"
                "%02x/"
                "%02x/"
                "%02x/"
                "%02x/"
                "%02x/"
                "%02x/"
                "%02x/"
                "%02x/"
                "%02x/"
                "%02x/"
                "%02x/"
                "%02x/"
                "%02x/"
                "%02x/"
                "%02x\n",
                name,
                u.ub[0],  u.ub[1],  u.ub[2],  u.ub[3],
                u.ub[4],  u.ub[5],  u.ub[6],  u.ub[7],
                u.ub[8],  u.ub[9],  u.ub[10], u.ub[11],
                u.ub[12], u.ub[13], u.ub[14], u.ub[15]);
}

static inline void u_print_epi16(const char *name, __m128i r)
{
   union { __m128i m; ushort us[8]; } u;
   u.m = r;

   debug_printf("%s: "
                "%04x/"
                "%04x/"
                "%04x/"
                "%04x/"
                "%04x/"
                "%04x/"
                "%04x/"
                "%04x\n",
                name,
                u.us[0],  u.us[1],  u.us[2],  u.us[3],
                u.us[4],  u.us[5],  u.us[6],  u.us[7]);
}

static inline void u_print_epi32(const char *name, __m128i r)
{
   union { __m128i m; uint ui[4]; } u;
   u.m = r;

   debug_printf("%s: "
                "%08x/"
                "%08x/"
                "%08x/"
                "%08x\n",
                name,
                u.ui[0],  u.ui[1],  u.ui[2],  u.ui[3]);
}

static inline void u_print_ps(const char *name, __m128 r)
{
   union { __m128 m; float f[4]; } u;
   u.m = r;

   debug_printf("%s: "
                "%f/"
                "%f/"
                "%f/"
                "%f\n",
                name,
                u.f[0],  u.f[1],  u.f[2],  u.f[3]);
}


#define U_DUMP_EPI32(a) u_print_epi32(#a, a)
#define U_DUMP_EPI16(a) u_print_epi16(#a, a)
#define U_DUMP_EPI8(a)  u_print_epi8(#a, a)
#define U_DUMP_PS(a)    u_print_ps(#a, a)



#if defined(PIPE_ARCH_SSSE3)

#include <tmmintrin.h>

#else /* !PIPE_ARCH_SSSE3 */

/**
 * Describe _mm_shuffle_epi8() with gcc extended inline assembly, for cases
 * where -mssse3 is not supported/enabled.
 *
 * MSVC will never get in here as its intrinsics support do not rely on
 * compiler command line options.
 */
static __inline __m128i
#ifdef __clang__
   __attribute__((__always_inline__, __nodebug__))
#else
   __attribute__((__gnu_inline__, __always_inline__, __artificial__))
#endif
_mm_shuffle_epi8(__m128i a, __m128i mask)
{
    __m128i result;
    __asm__("pshufb %1, %0"
            : "=x" (result)
            : "xm" (mask), "0" (a));
    return result;
}

#endif /* !PIPE_ARCH_SSSE3 */


/*
 * Provide an SSE implementation of _mm_mul_epi32() in terms of
 * _mm_mul_epu32().
 *
 * Basically, albeit surprising at first (and second, and third...) look
 * if a * b is done signed instead of unsigned, can just
 * subtract b from the high bits of the result if a is negative
 * (and the same for a if b is negative). Modular arithmetic at its best!
 *
 * So for int32 a,b in crude pseudo-code ("*" here denoting a widening mul)
 * fixupb = (signmask(b) & a) << 32ULL
 * fixupa = (signmask(a) & b) << 32ULL
 * a * b = (unsigned)a * (unsigned)b - fixupb - fixupa
 * = (unsigned)a * (unsigned)b -(fixupb + fixupa)
 *
 * This does both lo (dwords 0/2) and hi parts (1/3) at the same time due
 * to some optimization potential.
 */
static inline __m128i
mm_mullohi_epi32(const __m128i a, const __m128i b, __m128i *res13)
{
   __m128i a13, b13, mul02, mul13;
   __m128i anegmask, bnegmask, fixup, fixup02, fixup13;
   a13 = _mm_shuffle_epi32(a, _MM_SHUFFLE(2,3,0,1));
   b13 = _mm_shuffle_epi32(b, _MM_SHUFFLE(2,3,0,1));
   anegmask = _mm_srai_epi32(a, 31);
   bnegmask = _mm_srai_epi32(b, 31);
   fixup = _mm_add_epi32(_mm_and_si128(anegmask, b),
                         _mm_and_si128(bnegmask, a));
   mul02 = _mm_mul_epu32(a, b);
   mul13 = _mm_mul_epu32(a13, b13);
   fixup02 = _mm_slli_epi64(fixup, 32);
   fixup13 = _mm_and_si128(fixup, _mm_set_epi32(-1,0,-1,0));
   *res13 = _mm_sub_epi64(mul13, fixup13);
   return _mm_sub_epi64(mul02, fixup02);
}


/* Provide an SSE2 implementation of _mm_mullo_epi32() in terms of
 * _mm_mul_epu32().
 *
 * This always works regardless the signs of the operands, since
 * the high bits (which would be different) aren't used.
 *
 * This seems close enough to the speed of SSE4 and the real
 * _mm_mullo_epi32() intrinsic as to not justify adding an sse4
 * dependency at this point.
 */
static inline __m128i mm_mullo_epi32(const __m128i a, const __m128i b)
{
   __m128i a4   = _mm_srli_epi64(a, 32);  /* shift by one dword */
   __m128i b4   = _mm_srli_epi64(b, 32);  /* shift by one dword */
   __m128i ba   = _mm_mul_epu32(b, a);   /* multply dwords 0, 2 */
   __m128i b4a4 = _mm_mul_epu32(b4, a4); /* multiply dwords 1, 3 */

   /* Interleave the results, either with shuffles or (slightly
    * faster) direct bit operations:
    * XXX: might be only true for some cpus (in particular 65nm
    * Core 2). On most cpus (including that Core 2, but not Nehalem...)
    * using _mm_shuffle_ps/_mm_shuffle_epi32 might also be faster
    * than using the 3 instructions below. But logic should be fine
    * as well, we can't have optimal solution for all cpus (if anything,
    * should just use _mm_mullo_epi32() if sse41 is available...).
    */
#if 0
   __m128i ba8             = _mm_shuffle_epi32(ba, 8);
   __m128i b4a48           = _mm_shuffle_epi32(b4a4, 8);
   __m128i result          = _mm_unpacklo_epi32(ba8, b4a48);
#else
   __m128i mask            = _mm_setr_epi32(~0,0,~0,0);
   __m128i ba_mask         = _mm_and_si128(ba, mask);
   __m128i b4a4_mask_shift = _mm_slli_epi64(b4a4, 32);
   __m128i result          = _mm_or_si128(ba_mask, b4a4_mask_shift);
#endif

   return result;
}


static inline void
transpose4_epi32(const __m128i * restrict a,
                 const __m128i * restrict b,
                 const __m128i * restrict c,
                 const __m128i * restrict d,
                 __m128i * restrict o,
                 __m128i * restrict p,
                 __m128i * restrict q,
                 __m128i * restrict r)
{
   __m128i t0 = _mm_unpacklo_epi32(*a, *b);
   __m128i t1 = _mm_unpacklo_epi32(*c, *d);
   __m128i t2 = _mm_unpackhi_epi32(*a, *b);
   __m128i t3 = _mm_unpackhi_epi32(*c, *d);

   *o = _mm_unpacklo_epi64(t0, t1);
   *p = _mm_unpackhi_epi64(t0, t1);
   *q = _mm_unpacklo_epi64(t2, t3);
   *r = _mm_unpackhi_epi64(t2, t3);
}


/*
 * Same as above, except the first two values are already interleaved
 * (i.e. contain 64bit values).
 */
static inline void
transpose2_64_2_32(const __m128i * restrict a01,
                   const __m128i * restrict a23,
                   const __m128i * restrict c,
                   const __m128i * restrict d,
                   __m128i * restrict o,
                   __m128i * restrict p,
                   __m128i * restrict q,
                   __m128i * restrict r)
{
   __m128i t0 = *a01;
   __m128i t1 = _mm_unpacklo_epi32(*c, *d);
   __m128i t2 = *a23;
   __m128i t3 = _mm_unpackhi_epi32(*c, *d);

   *o = _mm_unpacklo_epi64(t0, t1);
   *p = _mm_unpackhi_epi64(t0, t1);
   *q = _mm_unpacklo_epi64(t2, t3);
   *r = _mm_unpackhi_epi64(t2, t3);
}


#define SCALAR_EPI32(m, i) _mm_shuffle_epi32((m), _MM_SHUFFLE(i,i,i,i))


#endif /* PIPE_ARCH_SSE */

#endif /* U_SSE_H_ */