1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
|
/**************************************************************************
*
* Copyright 2008-2021 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* SSE intrinsics portability header.
*
* Although the SSE intrinsics are support by all modern x86 and x86-64
* compilers, there are some intrisincs missing in some implementations
* (especially older MSVC versions). This header abstracts that away.
*/
#ifndef U_SSE_H_
#define U_SSE_H_
#include "pipe/p_config.h"
#include "pipe/p_compiler.h"
#include "util/u_debug.h"
#if defined(PIPE_ARCH_SSE)
#include <emmintrin.h>
union m128i {
__m128i m;
ubyte ub[16];
ushort us[8];
uint ui[4];
};
static inline void u_print_epi8(const char *name, __m128i r)
{
union { __m128i m; ubyte ub[16]; } u;
u.m = r;
debug_printf("%s: "
"%02x/"
"%02x/"
"%02x/"
"%02x/"
"%02x/"
"%02x/"
"%02x/"
"%02x/"
"%02x/"
"%02x/"
"%02x/"
"%02x/"
"%02x/"
"%02x/"
"%02x/"
"%02x\n",
name,
u.ub[0], u.ub[1], u.ub[2], u.ub[3],
u.ub[4], u.ub[5], u.ub[6], u.ub[7],
u.ub[8], u.ub[9], u.ub[10], u.ub[11],
u.ub[12], u.ub[13], u.ub[14], u.ub[15]);
}
static inline void u_print_epi16(const char *name, __m128i r)
{
union { __m128i m; ushort us[8]; } u;
u.m = r;
debug_printf("%s: "
"%04x/"
"%04x/"
"%04x/"
"%04x/"
"%04x/"
"%04x/"
"%04x/"
"%04x\n",
name,
u.us[0], u.us[1], u.us[2], u.us[3],
u.us[4], u.us[5], u.us[6], u.us[7]);
}
static inline void u_print_epi32(const char *name, __m128i r)
{
union { __m128i m; uint ui[4]; } u;
u.m = r;
debug_printf("%s: "
"%08x/"
"%08x/"
"%08x/"
"%08x\n",
name,
u.ui[0], u.ui[1], u.ui[2], u.ui[3]);
}
static inline void u_print_ps(const char *name, __m128 r)
{
union { __m128 m; float f[4]; } u;
u.m = r;
debug_printf("%s: "
"%f/"
"%f/"
"%f/"
"%f\n",
name,
u.f[0], u.f[1], u.f[2], u.f[3]);
}
#define U_DUMP_EPI32(a) u_print_epi32(#a, a)
#define U_DUMP_EPI16(a) u_print_epi16(#a, a)
#define U_DUMP_EPI8(a) u_print_epi8(#a, a)
#define U_DUMP_PS(a) u_print_ps(#a, a)
/*
* Provide an SSE implementation of _mm_mul_epi32() in terms of
* _mm_mul_epu32().
*
* Basically, albeit surprising at first (and second, and third...) look
* if a * b is done signed instead of unsigned, can just
* subtract b from the high bits of the result if a is negative
* (and the same for a if b is negative). Modular arithmetic at its best!
*
* So for int32 a,b in crude pseudo-code ("*" here denoting a widening mul)
* fixupb = (signmask(b) & a) << 32ULL
* fixupa = (signmask(a) & b) << 32ULL
* a * b = (unsigned)a * (unsigned)b - fixupb - fixupa
* = (unsigned)a * (unsigned)b -(fixupb + fixupa)
*
* This does both lo (dwords 0/2) and hi parts (1/3) at the same time due
* to some optimization potential.
*/
static inline __m128i
mm_mullohi_epi32(const __m128i a, const __m128i b, __m128i *res13)
{
__m128i a13, b13, mul02, mul13;
__m128i anegmask, bnegmask, fixup, fixup02, fixup13;
a13 = _mm_shuffle_epi32(a, _MM_SHUFFLE(2,3,0,1));
b13 = _mm_shuffle_epi32(b, _MM_SHUFFLE(2,3,0,1));
anegmask = _mm_srai_epi32(a, 31);
bnegmask = _mm_srai_epi32(b, 31);
fixup = _mm_add_epi32(_mm_and_si128(anegmask, b),
_mm_and_si128(bnegmask, a));
mul02 = _mm_mul_epu32(a, b);
mul13 = _mm_mul_epu32(a13, b13);
fixup02 = _mm_slli_epi64(fixup, 32);
fixup13 = _mm_and_si128(fixup, _mm_set_epi32(-1,0,-1,0));
*res13 = _mm_sub_epi64(mul13, fixup13);
return _mm_sub_epi64(mul02, fixup02);
}
/* Provide an SSE2 implementation of _mm_mullo_epi32() in terms of
* _mm_mul_epu32().
*
* This always works regardless the signs of the operands, since
* the high bits (which would be different) aren't used.
*
* This seems close enough to the speed of SSE4 and the real
* _mm_mullo_epi32() intrinsic as to not justify adding an sse4
* dependency at this point.
*/
static inline __m128i mm_mullo_epi32(const __m128i a, const __m128i b)
{
__m128i a4 = _mm_srli_epi64(a, 32); /* shift by one dword */
__m128i b4 = _mm_srli_epi64(b, 32); /* shift by one dword */
__m128i ba = _mm_mul_epu32(b, a); /* multply dwords 0, 2 */
__m128i b4a4 = _mm_mul_epu32(b4, a4); /* multiply dwords 1, 3 */
/* Interleave the results, either with shuffles or (slightly
* faster) direct bit operations:
* XXX: might be only true for some cpus (in particular 65nm
* Core 2). On most cpus (including that Core 2, but not Nehalem...)
* using _mm_shuffle_ps/_mm_shuffle_epi32 might also be faster
* than using the 3 instructions below. But logic should be fine
* as well, we can't have optimal solution for all cpus (if anything,
* should just use _mm_mullo_epi32() if sse41 is available...).
*/
#if 0
__m128i ba8 = _mm_shuffle_epi32(ba, 8);
__m128i b4a48 = _mm_shuffle_epi32(b4a4, 8);
__m128i result = _mm_unpacklo_epi32(ba8, b4a48);
#else
__m128i mask = _mm_setr_epi32(~0,0,~0,0);
__m128i ba_mask = _mm_and_si128(ba, mask);
__m128i b4a4_mask_shift = _mm_slli_epi64(b4a4, 32);
__m128i result = _mm_or_si128(ba_mask, b4a4_mask_shift);
#endif
return result;
}
static inline void
transpose4_epi32(const __m128i * restrict a,
const __m128i * restrict b,
const __m128i * restrict c,
const __m128i * restrict d,
__m128i * restrict o,
__m128i * restrict p,
__m128i * restrict q,
__m128i * restrict r)
{
__m128i t0 = _mm_unpacklo_epi32(*a, *b);
__m128i t1 = _mm_unpacklo_epi32(*c, *d);
__m128i t2 = _mm_unpackhi_epi32(*a, *b);
__m128i t3 = _mm_unpackhi_epi32(*c, *d);
*o = _mm_unpacklo_epi64(t0, t1);
*p = _mm_unpackhi_epi64(t0, t1);
*q = _mm_unpacklo_epi64(t2, t3);
*r = _mm_unpackhi_epi64(t2, t3);
}
/*
* Same as above, except the first two values are already interleaved
* (i.e. contain 64bit values).
*/
static inline void
transpose2_64_2_32(const __m128i * restrict a01,
const __m128i * restrict a23,
const __m128i * restrict c,
const __m128i * restrict d,
__m128i * restrict o,
__m128i * restrict p,
__m128i * restrict q,
__m128i * restrict r)
{
__m128i t0 = *a01;
__m128i t1 = _mm_unpacklo_epi32(*c, *d);
__m128i t2 = *a23;
__m128i t3 = _mm_unpackhi_epi32(*c, *d);
*o = _mm_unpacklo_epi64(t0, t1);
*p = _mm_unpackhi_epi64(t0, t1);
*q = _mm_unpacklo_epi64(t2, t3);
*r = _mm_unpackhi_epi64(t2, t3);
}
#define SCALAR_EPI32(m, i) _mm_shuffle_epi32((m), _MM_SHUFFLE(i,i,i,i))
/*
* Implements (1-w)*a + w*b = a - wa + wb = w(b-a) + a
* ((b-a)*w >> 8) + a
* The math behind negative sub results (logic shift/mask) is tricky.
*
* w -- weight values
* a -- src0 values
* b -- src1 values
*/
static ALWAYS_INLINE __m128i
util_sse2_lerp_epi16(__m128i w, __m128i a, __m128i b)
{
__m128i res;
res = _mm_sub_epi16(b, a);
res = _mm_mullo_epi16(res, w);
res = _mm_srli_epi16(res, 8);
/* use add_epi8 instead of add_epi16 so no need to mask off upper bits */
res = _mm_add_epi8(res, a);
return res;
}
/* Apply premultiplied-alpha blending on two pixels simultaneously.
* All parameters are packed as 8.8 fixed point values in __m128i SSE
* registers, with the upper 8 bits all zero.
*
* a -- src alpha values
* d -- dst color values
* s -- src color values
*/
static inline __m128i
util_sse2_premul_blend_epi16( __m128i a, __m128i d, __m128i s)
{
__m128i da, d_sub_da, tmp;
tmp = _mm_mullo_epi16(d, a);
da = _mm_srli_epi16(tmp, 8);
d_sub_da = _mm_sub_epi16(d, da);
return _mm_add_epi16(s, d_sub_da);
}
/* Apply premultiplied-alpha blending on four pixels in packed BGRA
* format (one/inv_src_alpha blend mode).
*
* src -- four pixels (bgra8 format)
* dst -- four destination pixels (bgra8)
* return -- blended pixels (bgra8)
*/
static ALWAYS_INLINE __m128i
util_sse2_blend_premul_4(const __m128i src,
const __m128i dst)
{
__m128i al, ah, dl, dh, sl, sh, rl, rh;
__m128i zero = _mm_setzero_si128();
/* Blend first two pixels:
*/
sl = _mm_unpacklo_epi8(src, zero);
dl = _mm_unpacklo_epi8(dst, zero);
al = _mm_shufflehi_epi16(sl, 0xff);
al = _mm_shufflelo_epi16(al, 0xff);
rl = util_sse2_premul_blend_epi16(al, dl, sl);
/* Blend second two pixels:
*/
sh = _mm_unpackhi_epi8(src, zero);
dh = _mm_unpackhi_epi8(dst, zero);
ah = _mm_shufflehi_epi16(sh, 0xff);
ah = _mm_shufflelo_epi16(ah, 0xff);
rh = util_sse2_premul_blend_epi16(ah, dh, sh);
/* Pack the results down to four bgra8 pixels:
*/
return _mm_packus_epi16(rl, rh);
}
/* Apply src-alpha blending on four pixels in packed BGRA
* format (srcalpha/inv_src_alpha blend mode).
*
* src -- four pixels (bgra8 format)
* dst -- four destination pixels (bgra8)
* return -- blended pixels (bgra8)
*/
static ALWAYS_INLINE __m128i
util_sse2_blend_srcalpha_4(const __m128i src,
const __m128i dst)
{
__m128i al, ah, dl, dh, sl, sh, rl, rh;
__m128i zero = _mm_setzero_si128();
/* Blend first two pixels:
*/
sl = _mm_unpacklo_epi8(src, zero);
dl = _mm_unpacklo_epi8(dst, zero);
al = _mm_shufflehi_epi16(sl, 0xff);
al = _mm_shufflelo_epi16(al, 0xff);
rl = util_sse2_lerp_epi16(al, dl, sl);
/* Blend second two pixels:
*/
sh = _mm_unpackhi_epi8(src, zero);
dh = _mm_unpackhi_epi8(dst, zero);
ah = _mm_shufflehi_epi16(sh, 0xff);
ah = _mm_shufflelo_epi16(ah, 0xff);
rh = util_sse2_lerp_epi16(ah, dh, sh);
/* Pack the results down to four bgra8 pixels:
*/
return _mm_packus_epi16(rl, rh);
}
/**
* premultiplies src with constant alpha then
* does one/inv_src_alpha blend.
*
* src 16xi8 (normalized)
* dst 16xi8 (normalized)
* cst_alpha (constant alpha (u8 value))
*/
static ALWAYS_INLINE __m128i
util_sse2_blend_premul_src_4(const __m128i src,
const __m128i dst,
const unsigned cst_alpha)
{
__m128i srca, d, s, rl, rh;
__m128i zero = _mm_setzero_si128();
__m128i cst_alpha_vec = _mm_set1_epi16(cst_alpha);
/* Blend first two pixels:
*/
s = _mm_unpacklo_epi8(src, zero);
s = _mm_mullo_epi16(s, cst_alpha_vec);
/* the shift will cause some precision loss */
s = _mm_srli_epi16(s, 8);
srca = _mm_shufflehi_epi16(s, 0xff);
srca = _mm_shufflelo_epi16(srca, 0xff);
d = _mm_unpacklo_epi8(dst, zero);
rl = util_sse2_premul_blend_epi16(srca, d, s);
/* Blend second two pixels:
*/
s = _mm_unpackhi_epi8(src, zero);
s = _mm_mullo_epi16(s, cst_alpha_vec);
/* the shift will cause some precision loss */
s = _mm_srli_epi16(s, 8);
srca = _mm_shufflehi_epi16(s, 0xff);
srca = _mm_shufflelo_epi16(srca, 0xff);
d = _mm_unpackhi_epi8(dst, zero);
rh = util_sse2_premul_blend_epi16(srca, d, s);
/* Pack the results down to four bgra8 pixels:
*/
return _mm_packus_epi16(rl, rh);
}
/**
* Linear interpolation with SSE2.
*
* dst, src0, src1 are 16 x i8 vectors, with [0..255] normalized values.
*
* weight_lo and weight_hi should be a 8 x i16 vectors, in 8.8 fixed point
* format, for the low and high components.
* We'd want to pass these as values but MSVC limitation forces us to pass these
* as pointers since it will complain if more than 3 __m128 are passed by value.
*/
static ALWAYS_INLINE __m128i
util_sse2_lerp_epi8_fixed88(__m128i src0, __m128i src1,
const __m128i * restrict weight_lo,
const __m128i * restrict weight_hi)
{
const __m128i zero = _mm_setzero_si128();
__m128i src0_lo = _mm_unpacklo_epi8(src0, zero);
__m128i src0_hi = _mm_unpackhi_epi8(src0, zero);
__m128i src1_lo = _mm_unpacklo_epi8(src1, zero);
__m128i src1_hi = _mm_unpackhi_epi8(src1, zero);
__m128i dst_lo;
__m128i dst_hi;
dst_lo = util_sse2_lerp_epi16(*weight_lo, src0_lo, src1_lo);
dst_hi = util_sse2_lerp_epi16(*weight_hi, src0_hi, src1_hi);
return _mm_packus_epi16(dst_lo, dst_hi);
}
/**
* Linear interpolation with SSE2.
*
* dst, src0, src1 are 16 x i8 vectors, with [0..255] normalized values.
*
* weight should be a 16 x i8 vector, in 0.8 fixed point values.
*/
static ALWAYS_INLINE __m128i
util_sse2_lerp_epi8_fixed08(__m128i src0, __m128i src1,
__m128i weight)
{
const __m128i zero = _mm_setzero_si128();
__m128i weight_lo = _mm_unpacklo_epi8(weight, zero);
__m128i weight_hi = _mm_unpackhi_epi8(weight, zero);
return util_sse2_lerp_epi8_fixed88(src0, src1,
&weight_lo, &weight_hi);
}
/**
* Linear interpolation with SSE2.
*
* dst, src0, src1, and weight are 16 x i8 vectors, with [0..255] normalized
* values.
*/
static ALWAYS_INLINE __m128i
util_sse2_lerp_unorm8(__m128i src0, __m128i src1,
__m128i weight)
{
const __m128i zero = _mm_setzero_si128();
__m128i weight_lo = _mm_unpacklo_epi8(weight, zero);
__m128i weight_hi = _mm_unpackhi_epi8(weight, zero);
#if 0
/*
* Rescale from [0..255] to [0..256].
*/
weight_lo = _mm_add_epi16(weight_lo, _mm_srli_epi16(weight_lo, 7));
weight_hi = _mm_add_epi16(weight_hi, _mm_srli_epi16(weight_hi, 7));
#endif
return util_sse2_lerp_epi8_fixed88(src0, src1,
&weight_lo, &weight_hi);
}
/**
* Linear interpolation with SSE2.
*
* dst, src0, src1, src2, src3 are 16 x i8 vectors, with [0..255] normalized
* values.
*
* ws_lo, ws_hi, wt_lo, wt_hi should be a 8 x i16 vectors, in 8.8 fixed point
* format, for the low and high components.
* We'd want to pass these as values but MSVC limitation forces us to pass these
* as pointers since it will complain if more than 3 __m128 are passed by value.
*
* This uses ws_lo, ws_hi to interpolate between src0 and src1, as well as to
* interpolate between src2 and src3, then uses wt_lo and wt_hi to interpolate
* between the resulting vectors.
*/
static ALWAYS_INLINE __m128i
util_sse2_lerp_2d_epi8_fixed88(__m128i src0, __m128i src1,
const __m128i * restrict src2,
const __m128i * restrict src3,
const __m128i * restrict ws_lo,
const __m128i * restrict ws_hi,
const __m128i * restrict wt_lo,
const __m128i * restrict wt_hi)
{
const __m128i zero = _mm_setzero_si128();
__m128i src0_lo = _mm_unpacklo_epi8(src0, zero);
__m128i src0_hi = _mm_unpackhi_epi8(src0, zero);
__m128i src1_lo = _mm_unpacklo_epi8(src1, zero);
__m128i src1_hi = _mm_unpackhi_epi8(src1, zero);
__m128i src2_lo = _mm_unpacklo_epi8(*src2, zero);
__m128i src2_hi = _mm_unpackhi_epi8(*src2, zero);
__m128i src3_lo = _mm_unpacklo_epi8(*src3, zero);
__m128i src3_hi = _mm_unpackhi_epi8(*src3, zero);
__m128i dst_lo, dst01_lo, dst23_lo;
__m128i dst_hi, dst01_hi, dst23_hi;
dst01_lo = util_sse2_lerp_epi16(*ws_lo, src0_lo, src1_lo);
dst01_hi = util_sse2_lerp_epi16(*ws_hi, src0_hi, src1_hi);
dst23_lo = util_sse2_lerp_epi16(*ws_lo, src2_lo, src3_lo);
dst23_hi = util_sse2_lerp_epi16(*ws_hi, src2_hi, src3_hi);
dst_lo = util_sse2_lerp_epi16(*wt_lo, dst01_lo, dst23_lo);
dst_hi = util_sse2_lerp_epi16(*wt_hi, dst01_hi, dst23_hi);
return _mm_packus_epi16(dst_lo, dst_hi);
}
/**
* Stretch a row of pixels using linear filter.
*
* Uses Bresenham's line algorithm using 16.16 fixed point representation for
* the error term.
*
* @param dst_width destination width in pixels
* @param src_x start x0 in 16.16 fixed point format
* @param src_xstep step in 16.16. fixed point format
*
* @return final src_x value (i.e., src_x + dst_width*src_xstep)
*/
static ALWAYS_INLINE int32_t
util_sse2_stretch_row_8unorm(__m128i * restrict dst,
int32_t dst_width,
const uint32_t * restrict src,
int32_t src_x,
int32_t src_xstep)
{
int16_t error0, error1, error2, error3;
__m128i error_lo, error_hi, error_step;
assert(dst_width >= 0);
assert(dst_width % 4 == 0);
error0 = src_x;
error1 = error0 + src_xstep;
error2 = error1 + src_xstep;
error3 = error2 + src_xstep;
error_lo = _mm_setr_epi16(error0, error0, error0, error0,
error1, error1, error1, error1);
error_hi = _mm_setr_epi16(error2, error2, error2, error2,
error3, error3, error3, error3);
error_step = _mm_set1_epi16(src_xstep << 2);
dst_width >>= 2;
while (dst_width) {
uint16_t src_x0;
uint16_t src_x1;
uint16_t src_x2;
uint16_t src_x3;
__m128i src0, src1;
__m128i weight_lo, weight_hi;
/*
* It is faster to re-compute the coordinates in the scalar integer unit here,
* than to fetch the values from the SIMD integer unit.
*/
src_x0 = src_x >> 16;
src_x += src_xstep;
src_x1 = src_x >> 16;
src_x += src_xstep;
src_x2 = src_x >> 16;
src_x += src_xstep;
src_x3 = src_x >> 16;
src_x += src_xstep;
/*
* Fetch pairs of pixels 64bit at a time, and then swizzle them inplace.
*/
{
__m128i src_00_10 = _mm_loadl_epi64((const __m128i *)&src[src_x0]);
__m128i src_01_11 = _mm_loadl_epi64((const __m128i *)&src[src_x1]);
__m128i src_02_12 = _mm_loadl_epi64((const __m128i *)&src[src_x2]);
__m128i src_03_13 = _mm_loadl_epi64((const __m128i *)&src[src_x3]);
__m128i src_00_01_10_11 = _mm_unpacklo_epi32(src_00_10, src_01_11);
__m128i src_02_03_12_13 = _mm_unpacklo_epi32(src_02_12, src_03_13);
src0 = _mm_unpacklo_epi64(src_00_01_10_11, src_02_03_12_13);
src1 = _mm_unpackhi_epi64(src_00_01_10_11, src_02_03_12_13);
}
weight_lo = _mm_srli_epi16(error_lo, 8);
weight_hi = _mm_srli_epi16(error_hi, 8);
*dst = util_sse2_lerp_epi8_fixed88(src0, src1,
&weight_lo, &weight_hi);
error_lo = _mm_add_epi16(error_lo, error_step);
error_hi = _mm_add_epi16(error_hi, error_step);
++dst;
--dst_width;
}
return src_x;
}
#endif /* PIPE_ARCH_SSE */
#endif /* U_SSE_H_ */
|