summaryrefslogtreecommitdiff
path: root/lib/mesa/src/gallium/auxiliary/util/u_vbuf.c
blob: 372d61ea0ab06c0a5af6ded7fbc50015283f379a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
/**************************************************************************
 *
 * Copyright 2011 Marek Olšák <maraeo@gmail.com>
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
 * IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 **************************************************************************/

/**
 * This module uploads user buffers and translates the vertex buffers which
 * contain incompatible vertices (i.e. not supported by the driver/hardware)
 * into compatible ones, based on the Gallium CAPs.
 *
 * It does not upload index buffers.
 *
 * The module heavily uses bitmasks to represent per-buffer and
 * per-vertex-element flags to avoid looping over the list of buffers just
 * to see if there's a non-zero stride, or user buffer, or unsupported format,
 * etc.
 *
 * There are 3 categories of vertex elements, which are processed separately:
 * - per-vertex attribs (stride != 0, instance_divisor == 0)
 * - instanced attribs (stride != 0, instance_divisor > 0)
 * - constant attribs (stride == 0)
 *
 * All needed uploads and translations are performed every draw command, but
 * only the subset of vertices needed for that draw command is uploaded or
 * translated. (the module never translates whole buffers)
 *
 *
 * The module consists of two main parts:
 *
 *
 * 1) Translate (u_vbuf_translate_begin/end)
 *
 * This is pretty much a vertex fetch fallback. It translates vertices from
 * one vertex buffer to another in an unused vertex buffer slot. It does
 * whatever is needed to make the vertices readable by the hardware (changes
 * vertex formats and aligns offsets and strides). The translate module is
 * used here.
 *
 * Each of the 3 categories is translated to a separate buffer.
 * Only the [min_index, max_index] range is translated. For instanced attribs,
 * the range is [start_instance, start_instance+instance_count]. For constant
 * attribs, the range is [0, 1].
 *
 *
 * 2) User buffer uploading (u_vbuf_upload_buffers)
 *
 * Only the [min_index, max_index] range is uploaded (just like Translate)
 * with a single memcpy.
 *
 * This method works best for non-indexed draw operations or indexed draw
 * operations where the [min_index, max_index] range is not being way bigger
 * than the vertex count.
 *
 * If the range is too big (e.g. one triangle with indices {0, 1, 10000}),
 * the per-vertex attribs are uploaded via the translate module, all packed
 * into one vertex buffer, and the indexed draw call is turned into
 * a non-indexed one in the process. This adds additional complexity
 * to the translate part, but it prevents bad apps from bringing your frame
 * rate down.
 *
 *
 * If there is nothing to do, it forwards every command to the driver.
 * The module also has its own CSO cache of vertex element states.
 */

#include "util/u_vbuf.h"

#include "util/u_dump.h"
#include "util/format/u_format.h"
#include "util/u_inlines.h"
#include "util/u_memory.h"
#include "util/u_screen.h"
#include "util/u_upload_mgr.h"
#include "translate/translate.h"
#include "translate/translate_cache.h"
#include "cso_cache/cso_cache.h"
#include "cso_cache/cso_hash.h"

struct u_vbuf_elements {
   unsigned count;
   struct pipe_vertex_element ve[PIPE_MAX_ATTRIBS];

   unsigned src_format_size[PIPE_MAX_ATTRIBS];

   /* If (velem[i].src_format != native_format[i]), the vertex buffer
    * referenced by the vertex element cannot be used for rendering and
    * its vertex data must be translated to native_format[i]. */
   enum pipe_format native_format[PIPE_MAX_ATTRIBS];
   unsigned native_format_size[PIPE_MAX_ATTRIBS];

   /* Which buffers are used by the vertex element state. */
   uint32_t used_vb_mask;
   /* This might mean two things:
    * - src_format != native_format, as discussed above.
    * - src_offset % 4 != 0 (if the caps don't allow such an offset). */
   uint32_t incompatible_elem_mask; /* each bit describes a corresp. attrib  */
   /* Which buffer has at least one vertex element referencing it
    * incompatible. */
   uint32_t incompatible_vb_mask_any;
   /* Which buffer has all vertex elements referencing it incompatible. */
   uint32_t incompatible_vb_mask_all;
   /* Which buffer has at least one vertex element referencing it
    * compatible. */
   uint32_t compatible_vb_mask_any;
   /* Which buffer has all vertex elements referencing it compatible. */
   uint32_t compatible_vb_mask_all;

   /* Which buffer has at least one vertex element referencing it
    * non-instanced. */
   uint32_t noninstance_vb_mask_any;

   /* Which buffers are used by multiple vertex attribs. */
   uint32_t interleaved_vb_mask;

   void *driver_cso;
};

enum {
   VB_VERTEX = 0,
   VB_INSTANCE = 1,
   VB_CONST = 2,
   VB_NUM = 3
};

struct u_vbuf {
   struct u_vbuf_caps caps;
   bool has_signed_vb_offset;

   struct pipe_context *pipe;
   struct translate_cache *translate_cache;
   struct cso_cache cso_cache;

   /* This is what was set in set_vertex_buffers.
    * May contain user buffers. */
   struct pipe_vertex_buffer vertex_buffer[PIPE_MAX_ATTRIBS];
   uint32_t enabled_vb_mask;

   /* Vertex buffers for the driver.
    * There are usually no user buffers. */
   struct pipe_vertex_buffer real_vertex_buffer[PIPE_MAX_ATTRIBS];
   uint32_t dirty_real_vb_mask; /* which buffers are dirty since the last
                                   call of set_vertex_buffers */

   /* Vertex elements. */
   struct u_vbuf_elements *ve, *ve_saved;

   /* Vertex elements used for the translate fallback. */
   struct cso_velems_state fallback_velems;
   /* If non-NULL, this is a vertex element state used for the translate
    * fallback and therefore used for rendering too. */
   boolean using_translate;
   /* The vertex buffer slot index where translated vertices have been
    * stored in. */
   unsigned fallback_vbs[VB_NUM];
   unsigned fallback_vbs_mask;

   /* Which buffer is a user buffer. */
   uint32_t user_vb_mask; /* each bit describes a corresp. buffer */
   /* Which buffer is incompatible (unaligned). */
   uint32_t incompatible_vb_mask; /* each bit describes a corresp. buffer */
   /* Which buffer has a non-zero stride. */
   uint32_t nonzero_stride_vb_mask; /* each bit describes a corresp. buffer */
   /* Which buffers are allowed (supported by hardware). */
   uint32_t allowed_vb_mask;
};

static void *
u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
                              const struct pipe_vertex_element *attribs);
static void u_vbuf_delete_vertex_elements(void *ctx, void *state,
                                          enum cso_cache_type type);

static const struct {
   enum pipe_format from, to;
} vbuf_format_fallbacks[] = {
   { PIPE_FORMAT_R32_FIXED,            PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R32G32_FIXED,         PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R32G32B32_FIXED,      PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R32G32B32A32_FIXED,   PIPE_FORMAT_R32G32B32A32_FLOAT },
   { PIPE_FORMAT_R16_FLOAT,            PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R16G16_FLOAT,         PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R16G16B16_FLOAT,      PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R16G16B16A16_FLOAT,   PIPE_FORMAT_R32G32B32A32_FLOAT },
   { PIPE_FORMAT_R64_FLOAT,            PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R64G64_FLOAT,         PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R64G64B64_FLOAT,      PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R64G64B64A64_FLOAT,   PIPE_FORMAT_R32G32B32A32_FLOAT },
   { PIPE_FORMAT_R32_UNORM,            PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R32G32_UNORM,         PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R32G32B32_UNORM,      PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R32G32B32A32_UNORM,   PIPE_FORMAT_R32G32B32A32_FLOAT },
   { PIPE_FORMAT_R32_SNORM,            PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R32G32_SNORM,         PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R32G32B32_SNORM,      PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R32G32B32A32_SNORM,   PIPE_FORMAT_R32G32B32A32_FLOAT },
   { PIPE_FORMAT_R32_USCALED,          PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R32G32_USCALED,       PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R32G32B32_USCALED,    PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R32G32B32A32_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
   { PIPE_FORMAT_R32_SSCALED,          PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R32G32_SSCALED,       PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R32G32B32_SSCALED,    PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R32G32B32A32_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
   { PIPE_FORMAT_R16_UNORM,            PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R16G16_UNORM,         PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R16G16B16_UNORM,      PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R16G16B16A16_UNORM,   PIPE_FORMAT_R32G32B32A32_FLOAT },
   { PIPE_FORMAT_R16_SNORM,            PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R16G16_SNORM,         PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R16G16B16_SNORM,      PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R16G16B16A16_SNORM,   PIPE_FORMAT_R32G32B32A32_FLOAT },
   { PIPE_FORMAT_R16_USCALED,          PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R16G16_USCALED,       PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R16G16B16_USCALED,    PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R16G16B16A16_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
   { PIPE_FORMAT_R16_SSCALED,          PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R16G16_SSCALED,       PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R16G16B16_SSCALED,    PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R16G16B16A16_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
   { PIPE_FORMAT_R8_UNORM,             PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R8G8_UNORM,           PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R8G8B8_UNORM,         PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R8G8B8A8_UNORM,       PIPE_FORMAT_R32G32B32A32_FLOAT },
   { PIPE_FORMAT_R8_SNORM,             PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R8G8_SNORM,           PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R8G8B8_SNORM,         PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R8G8B8A8_SNORM,       PIPE_FORMAT_R32G32B32A32_FLOAT },
   { PIPE_FORMAT_R8_USCALED,           PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R8G8_USCALED,         PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R8G8B8_USCALED,       PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R8G8B8A8_USCALED,     PIPE_FORMAT_R32G32B32A32_FLOAT },
   { PIPE_FORMAT_R8_SSCALED,           PIPE_FORMAT_R32_FLOAT },
   { PIPE_FORMAT_R8G8_SSCALED,         PIPE_FORMAT_R32G32_FLOAT },
   { PIPE_FORMAT_R8G8B8_SSCALED,       PIPE_FORMAT_R32G32B32_FLOAT },
   { PIPE_FORMAT_R8G8B8A8_SSCALED,     PIPE_FORMAT_R32G32B32A32_FLOAT },
};

void u_vbuf_get_caps(struct pipe_screen *screen, struct u_vbuf_caps *caps,
                     bool needs64b)
{
   unsigned i;

   memset(caps, 0, sizeof(*caps));

   /* I'd rather have a bitfield of which formats are supported and a static
    * table of the translations indexed by format, but since we don't have C99
    * we can't easily make a sparsely-populated table indexed by format.  So,
    * we construct the sparse table here.
    */
   for (i = 0; i < PIPE_FORMAT_COUNT; i++)
      caps->format_translation[i] = i;

   for (i = 0; i < ARRAY_SIZE(vbuf_format_fallbacks); i++) {
      enum pipe_format format = vbuf_format_fallbacks[i].from;
      unsigned comp_bits = util_format_get_component_bits(format, 0, 0);

      if ((comp_bits > 32) && !needs64b)
         continue;

      if (!screen->is_format_supported(screen, format, PIPE_BUFFER, 0, 0,
                                       PIPE_BIND_VERTEX_BUFFER)) {
         caps->format_translation[format] = vbuf_format_fallbacks[i].to;
         caps->fallback_always = true;
      }
   }

   caps->buffer_offset_unaligned =
      !screen->get_param(screen,
                         PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY);
   caps->buffer_stride_unaligned =
     !screen->get_param(screen,
                        PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY);
   caps->velem_src_offset_unaligned =
      !screen->get_param(screen,
                         PIPE_CAP_VERTEX_ELEMENT_SRC_OFFSET_4BYTE_ALIGNED_ONLY);
   caps->user_vertex_buffers =
      screen->get_param(screen, PIPE_CAP_USER_VERTEX_BUFFERS);
   caps->max_vertex_buffers =
      screen->get_param(screen, PIPE_CAP_MAX_VERTEX_BUFFERS);

   /* OpenGL 2.0 requires a minimum of 16 vertex buffers */
   if (caps->max_vertex_buffers < 16)
      caps->fallback_always = true;

   if (!caps->buffer_offset_unaligned ||
       !caps->buffer_stride_unaligned ||
       !caps->velem_src_offset_unaligned)
      caps->fallback_always = true;

   if (!caps->fallback_always && !caps->user_vertex_buffers)
      caps->fallback_only_for_user_vbuffers = true;
}

struct u_vbuf *
u_vbuf_create(struct pipe_context *pipe, struct u_vbuf_caps *caps)
{
   struct u_vbuf *mgr = CALLOC_STRUCT(u_vbuf);

   mgr->caps = *caps;
   mgr->pipe = pipe;
   mgr->translate_cache = translate_cache_create();
   memset(mgr->fallback_vbs, ~0, sizeof(mgr->fallback_vbs));
   mgr->allowed_vb_mask = u_bit_consecutive(0, mgr->caps.max_vertex_buffers);

   mgr->has_signed_vb_offset =
      pipe->screen->get_param(pipe->screen,
                              PIPE_CAP_SIGNED_VERTEX_BUFFER_OFFSET);

   cso_cache_init(&mgr->cso_cache, pipe);
   cso_cache_set_delete_cso_callback(&mgr->cso_cache,
                                     u_vbuf_delete_vertex_elements, pipe);

   return mgr;
}

/* u_vbuf uses its own caching for vertex elements, because it needs to keep
 * its own preprocessed state per vertex element CSO. */
static struct u_vbuf_elements *
u_vbuf_set_vertex_elements_internal(struct u_vbuf *mgr,
                                    const struct cso_velems_state *velems)
{
   struct pipe_context *pipe = mgr->pipe;
   unsigned key_size, hash_key;
   struct cso_hash_iter iter;
   struct u_vbuf_elements *ve;

   /* need to include the count into the stored state data too. */
   key_size = sizeof(struct pipe_vertex_element) * velems->count +
              sizeof(unsigned);
   hash_key = cso_construct_key((void*)velems, key_size);
   iter = cso_find_state_template(&mgr->cso_cache, hash_key, CSO_VELEMENTS,
                                  (void*)velems, key_size);

   if (cso_hash_iter_is_null(iter)) {
      struct cso_velements *cso = MALLOC_STRUCT(cso_velements);
      memcpy(&cso->state, velems, key_size);
      cso->data = u_vbuf_create_vertex_elements(mgr, velems->count,
                                                velems->velems);

      iter = cso_insert_state(&mgr->cso_cache, hash_key, CSO_VELEMENTS, cso);
      ve = cso->data;
   } else {
      ve = ((struct cso_velements *)cso_hash_iter_data(iter))->data;
   }

   assert(ve);

   if (ve != mgr->ve)
      pipe->bind_vertex_elements_state(pipe, ve->driver_cso);

   return ve;
}

void u_vbuf_set_vertex_elements(struct u_vbuf *mgr,
                                const struct cso_velems_state *velems)
{
   mgr->ve = u_vbuf_set_vertex_elements_internal(mgr, velems);
}

void u_vbuf_unset_vertex_elements(struct u_vbuf *mgr)
{
   mgr->ve = NULL;
}

void u_vbuf_destroy(struct u_vbuf *mgr)
{
   struct pipe_screen *screen = mgr->pipe->screen;
   unsigned i;
   const unsigned num_vb = screen->get_shader_param(screen, PIPE_SHADER_VERTEX,
                                                    PIPE_SHADER_CAP_MAX_INPUTS);

   mgr->pipe->set_vertex_buffers(mgr->pipe, 0, 0, num_vb, false, NULL);

   for (i = 0; i < PIPE_MAX_ATTRIBS; i++)
      pipe_vertex_buffer_unreference(&mgr->vertex_buffer[i]);
   for (i = 0; i < PIPE_MAX_ATTRIBS; i++)
      pipe_vertex_buffer_unreference(&mgr->real_vertex_buffer[i]);

   translate_cache_destroy(mgr->translate_cache);
   cso_cache_delete(&mgr->cso_cache);
   FREE(mgr);
}

static enum pipe_error
u_vbuf_translate_buffers(struct u_vbuf *mgr, struct translate_key *key,
                         const struct pipe_draw_info *info,
                         const struct pipe_draw_start_count *draw,
                         unsigned vb_mask, unsigned out_vb,
                         int start_vertex, unsigned num_vertices,
                         int min_index, boolean unroll_indices)
{
   struct translate *tr;
   struct pipe_transfer *vb_transfer[PIPE_MAX_ATTRIBS] = {0};
   struct pipe_resource *out_buffer = NULL;
   uint8_t *out_map;
   unsigned out_offset, mask;

   /* Get a translate object. */
   tr = translate_cache_find(mgr->translate_cache, key);

   /* Map buffers we want to translate. */
   mask = vb_mask;
   while (mask) {
      struct pipe_vertex_buffer *vb;
      unsigned offset;
      uint8_t *map;
      unsigned i = u_bit_scan(&mask);

      vb = &mgr->vertex_buffer[i];
      offset = vb->buffer_offset + vb->stride * start_vertex;

      if (vb->is_user_buffer) {
         map = (uint8_t*)vb->buffer.user + offset;
      } else {
         unsigned size = vb->stride ? num_vertices * vb->stride
                                    : sizeof(double)*4;

         if (!vb->buffer.resource) {
            static uint64_t dummy_buf[4] = { 0 };
            tr->set_buffer(tr, i, dummy_buf, 0, 0);
            continue;
         }

         if (vb->stride) {
            /* the stride cannot be used to calculate the map size of the buffer,
             * as it only determines the bytes between elements, not the size of elements
             * themselves, meaning that if stride < element_size, the mapped size will
             * be too small and conversion will overrun the map buffer
             *
             * instead, add the size of the largest possible attribute to ensure the map is large enough
             */
            unsigned last_offset = offset + size - vb->stride;
            size = MAX2(size, last_offset + sizeof(double)*4);
         }

         if (offset + size > vb->buffer.resource->width0) {
            /* Don't try to map past end of buffer.  This often happens when
             * we're translating an attribute that's at offset > 0 from the
             * start of the vertex.  If we'd subtract attrib's offset from
             * the size, this probably wouldn't happen.
             */
            size = vb->buffer.resource->width0 - offset;

            /* Also adjust num_vertices.  A common user error is to call
             * glDrawRangeElements() with incorrect 'end' argument.  The 'end
             * value should be the max index value, but people often
             * accidentally add one to this value.  This adjustment avoids
             * crashing (by reading past the end of a hardware buffer mapping)
             * when people do that.
             */
            num_vertices = (size + vb->stride - 1) / vb->stride;
         }

         map = pipe_buffer_map_range(mgr->pipe, vb->buffer.resource, offset, size,
                                     PIPE_MAP_READ, &vb_transfer[i]);
      }

      /* Subtract min_index so that indexing with the index buffer works. */
      if (unroll_indices) {
         map -= (ptrdiff_t)vb->stride * min_index;
      }

      tr->set_buffer(tr, i, map, vb->stride, info->max_index);
   }

   /* Translate. */
   if (unroll_indices) {
      struct pipe_transfer *transfer = NULL;
      const unsigned offset = draw->start * info->index_size;
      uint8_t *map;

      /* Create and map the output buffer. */
      u_upload_alloc(mgr->pipe->stream_uploader, 0,
                     key->output_stride * draw->count, 4,
                     &out_offset, &out_buffer,
                     (void**)&out_map);
      if (!out_buffer)
         return PIPE_ERROR_OUT_OF_MEMORY;

      if (info->has_user_indices) {
         map = (uint8_t*)info->index.user + offset;
      } else {
         map = pipe_buffer_map_range(mgr->pipe, info->index.resource, offset,
                                     draw->count * info->index_size,
                                     PIPE_MAP_READ, &transfer);
      }

      switch (info->index_size) {
      case 4:
         tr->run_elts(tr, (unsigned*)map, draw->count, 0, 0, out_map);
         break;
      case 2:
         tr->run_elts16(tr, (uint16_t*)map, draw->count, 0, 0, out_map);
         break;
      case 1:
         tr->run_elts8(tr, map, draw->count, 0, 0, out_map);
         break;
      }

      if (transfer) {
         pipe_buffer_unmap(mgr->pipe, transfer);
      }
   } else {
      /* Create and map the output buffer. */
      u_upload_alloc(mgr->pipe->stream_uploader,
                     mgr->has_signed_vb_offset ?
                        0 : key->output_stride * start_vertex,
                     key->output_stride * num_vertices, 4,
                     &out_offset, &out_buffer,
                     (void**)&out_map);
      if (!out_buffer)
         return PIPE_ERROR_OUT_OF_MEMORY;

      out_offset -= key->output_stride * start_vertex;

      tr->run(tr, 0, num_vertices, 0, 0, out_map);
   }

   /* Unmap all buffers. */
   mask = vb_mask;
   while (mask) {
      unsigned i = u_bit_scan(&mask);

      if (vb_transfer[i]) {
         pipe_buffer_unmap(mgr->pipe, vb_transfer[i]);
      }
   }

   /* Setup the new vertex buffer. */
   mgr->real_vertex_buffer[out_vb].buffer_offset = out_offset;
   mgr->real_vertex_buffer[out_vb].stride = key->output_stride;

   /* Move the buffer reference. */
   pipe_vertex_buffer_unreference(&mgr->real_vertex_buffer[out_vb]);
   mgr->real_vertex_buffer[out_vb].buffer.resource = out_buffer;
   mgr->real_vertex_buffer[out_vb].is_user_buffer = false;

   return PIPE_OK;
}

static boolean
u_vbuf_translate_find_free_vb_slots(struct u_vbuf *mgr,
                                    unsigned mask[VB_NUM])
{
   unsigned type;
   unsigned fallback_vbs[VB_NUM];
   /* Set the bit for each buffer which is incompatible, or isn't set. */
   uint32_t unused_vb_mask =
      mgr->ve->incompatible_vb_mask_all | mgr->incompatible_vb_mask |
      ~mgr->enabled_vb_mask;
   uint32_t unused_vb_mask_orig;
   boolean insufficient_buffers = false;

   /* No vertex buffers available at all */
   if (!unused_vb_mask)
      return FALSE;

   memset(fallback_vbs, ~0, sizeof(fallback_vbs));
   mgr->fallback_vbs_mask = 0;

   /* Find free slots for each type if needed. */
   unused_vb_mask_orig = unused_vb_mask;
   for (type = 0; type < VB_NUM; type++) {
      if (mask[type]) {
         uint32_t index;

         if (!unused_vb_mask) {
            insufficient_buffers = true;
            break;
         }

         index = ffs(unused_vb_mask) - 1;
         fallback_vbs[type] = index;
         mgr->fallback_vbs_mask |= 1 << index;
         unused_vb_mask &= ~(1 << index);
         /*printf("found slot=%i for type=%i\n", index, type);*/
      }
   }

   if (insufficient_buffers) {
      /* not enough vbs for all types supported by the hardware, they will have to share one
       * buffer */
      uint32_t index = ffs(unused_vb_mask_orig) - 1;
      /* When sharing one vertex buffer use per-vertex frequency for everything. */
      fallback_vbs[VB_VERTEX] = index;
      mgr->fallback_vbs_mask = 1 << index;
      mask[VB_VERTEX] = mask[VB_VERTEX] | mask[VB_CONST] | mask[VB_INSTANCE];
      mask[VB_CONST] = 0;
      mask[VB_INSTANCE] = 0;
   }

   for (type = 0; type < VB_NUM; type++) {
      if (mask[type]) {
         mgr->dirty_real_vb_mask |= 1 << fallback_vbs[type];
      }
   }

   memcpy(mgr->fallback_vbs, fallback_vbs, sizeof(fallback_vbs));
   return TRUE;
}

static boolean
u_vbuf_translate_begin(struct u_vbuf *mgr,
                       const struct pipe_draw_info *info,
                       const struct pipe_draw_start_count *draw,
                       int start_vertex, unsigned num_vertices,
                       int min_index, boolean unroll_indices)
{
   unsigned mask[VB_NUM] = {0};
   struct translate_key key[VB_NUM];
   unsigned elem_index[VB_NUM][PIPE_MAX_ATTRIBS]; /* ... into key.elements */
   unsigned i, type;
   const unsigned incompatible_vb_mask = mgr->incompatible_vb_mask &
                                         mgr->ve->used_vb_mask;

   const int start[VB_NUM] = {
      start_vertex,           /* VERTEX */
      info->start_instance,   /* INSTANCE */
      0                       /* CONST */
   };

   const unsigned num[VB_NUM] = {
      num_vertices,           /* VERTEX */
      info->instance_count,   /* INSTANCE */
      1                       /* CONST */
   };

   memset(key, 0, sizeof(key));
   memset(elem_index, ~0, sizeof(elem_index));

   /* See if there are vertex attribs of each type to translate and
    * which ones. */
   for (i = 0; i < mgr->ve->count; i++) {
      unsigned vb_index = mgr->ve->ve[i].vertex_buffer_index;

      if (!mgr->vertex_buffer[vb_index].stride) {
         if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
             !(incompatible_vb_mask & (1 << vb_index))) {
            continue;
         }
         mask[VB_CONST] |= 1 << vb_index;
      } else if (mgr->ve->ve[i].instance_divisor) {
         if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
             !(incompatible_vb_mask & (1 << vb_index))) {
            continue;
         }
         mask[VB_INSTANCE] |= 1 << vb_index;
      } else {
         if (!unroll_indices &&
             !(mgr->ve->incompatible_elem_mask & (1 << i)) &&
             !(incompatible_vb_mask & (1 << vb_index))) {
            continue;
         }
         mask[VB_VERTEX] |= 1 << vb_index;
      }
   }

   assert(mask[VB_VERTEX] || mask[VB_INSTANCE] || mask[VB_CONST]);

   /* Find free vertex buffer slots. */
   if (!u_vbuf_translate_find_free_vb_slots(mgr, mask)) {
      return FALSE;
   }

   /* Initialize the translate keys. */
   for (i = 0; i < mgr->ve->count; i++) {
      struct translate_key *k;
      struct translate_element *te;
      enum pipe_format output_format = mgr->ve->native_format[i];
      unsigned bit, vb_index = mgr->ve->ve[i].vertex_buffer_index;
      bit = 1 << vb_index;

      if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
          !(incompatible_vb_mask & (1 << vb_index)) &&
          (!unroll_indices || !(mask[VB_VERTEX] & bit))) {
         continue;
      }

      /* Set type to what we will translate.
       * Whether vertex, instance, or constant attribs. */
      for (type = 0; type < VB_NUM; type++) {
         if (mask[type] & bit) {
            break;
         }
      }
      assert(type < VB_NUM);
      if (mgr->ve->ve[i].src_format != output_format)
         assert(translate_is_output_format_supported(output_format));
      /*printf("velem=%i type=%i\n", i, type);*/

      /* Add the vertex element. */
      k = &key[type];
      elem_index[type][i] = k->nr_elements;

      te = &k->element[k->nr_elements];
      te->type = TRANSLATE_ELEMENT_NORMAL;
      te->instance_divisor = 0;
      te->input_buffer = vb_index;
      te->input_format = mgr->ve->ve[i].src_format;
      te->input_offset = mgr->ve->ve[i].src_offset;
      te->output_format = output_format;
      te->output_offset = k->output_stride;

      k->output_stride += mgr->ve->native_format_size[i];
      k->nr_elements++;
   }

   /* Translate buffers. */
   for (type = 0; type < VB_NUM; type++) {
      if (key[type].nr_elements) {
         enum pipe_error err;
         err = u_vbuf_translate_buffers(mgr, &key[type], info, draw,
                                        mask[type], mgr->fallback_vbs[type],
                                        start[type], num[type], min_index,
                                        unroll_indices && type == VB_VERTEX);
         if (err != PIPE_OK)
            return FALSE;

         /* Fixup the stride for constant attribs. */
         if (type == VB_CONST) {
            mgr->real_vertex_buffer[mgr->fallback_vbs[VB_CONST]].stride = 0;
         }
      }
   }

   /* Setup new vertex elements. */
   for (i = 0; i < mgr->ve->count; i++) {
      for (type = 0; type < VB_NUM; type++) {
         if (elem_index[type][i] < key[type].nr_elements) {
            struct translate_element *te = &key[type].element[elem_index[type][i]];
            mgr->fallback_velems.velems[i].instance_divisor = mgr->ve->ve[i].instance_divisor;
            mgr->fallback_velems.velems[i].src_format = te->output_format;
            mgr->fallback_velems.velems[i].src_offset = te->output_offset;
            mgr->fallback_velems.velems[i].vertex_buffer_index = mgr->fallback_vbs[type];

            /* elem_index[type][i] can only be set for one type. */
            assert(type > VB_INSTANCE || elem_index[type+1][i] == ~0u);
            assert(type > VB_VERTEX   || elem_index[type+2][i] == ~0u);
            break;
         }
      }
      /* No translating, just copy the original vertex element over. */
      if (type == VB_NUM) {
         memcpy(&mgr->fallback_velems.velems[i], &mgr->ve->ve[i],
                sizeof(struct pipe_vertex_element));
      }
   }

   mgr->fallback_velems.count = mgr->ve->count;

   u_vbuf_set_vertex_elements_internal(mgr, &mgr->fallback_velems);
   mgr->using_translate = TRUE;
   return TRUE;
}

static void u_vbuf_translate_end(struct u_vbuf *mgr)
{
   unsigned i;

   /* Restore vertex elements. */
   mgr->pipe->bind_vertex_elements_state(mgr->pipe, mgr->ve->driver_cso);
   mgr->using_translate = FALSE;

   /* Unreference the now-unused VBOs. */
   for (i = 0; i < VB_NUM; i++) {
      unsigned vb = mgr->fallback_vbs[i];
      if (vb != ~0u) {
         pipe_resource_reference(&mgr->real_vertex_buffer[vb].buffer.resource, NULL);
         mgr->fallback_vbs[i] = ~0;
      }
   }
   /* This will cause the buffer to be unbound in the driver later. */
   mgr->dirty_real_vb_mask |= mgr->fallback_vbs_mask;
   mgr->fallback_vbs_mask = 0;
}

static void *
u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
                              const struct pipe_vertex_element *attribs)
{
   struct pipe_context *pipe = mgr->pipe;
   unsigned i;
   struct pipe_vertex_element driver_attribs[PIPE_MAX_ATTRIBS];
   struct u_vbuf_elements *ve = CALLOC_STRUCT(u_vbuf_elements);
   uint32_t used_buffers = 0;

   ve->count = count;

   memcpy(ve->ve, attribs, sizeof(struct pipe_vertex_element) * count);
   memcpy(driver_attribs, attribs, sizeof(struct pipe_vertex_element) * count);

   /* Set the best native format in case the original format is not
    * supported. */
   for (i = 0; i < count; i++) {
      enum pipe_format format = ve->ve[i].src_format;
      unsigned vb_index_bit = 1 << ve->ve[i].vertex_buffer_index;

      ve->src_format_size[i] = util_format_get_blocksize(format);

      if (used_buffers & vb_index_bit)
         ve->interleaved_vb_mask |= vb_index_bit;

      used_buffers |= vb_index_bit;

      if (!ve->ve[i].instance_divisor) {
         ve->noninstance_vb_mask_any |= vb_index_bit;
      }

      format = mgr->caps.format_translation[format];

      driver_attribs[i].src_format = format;
      ve->native_format[i] = format;
      ve->native_format_size[i] =
            util_format_get_blocksize(ve->native_format[i]);

      if (ve->ve[i].src_format != format ||
          (!mgr->caps.velem_src_offset_unaligned &&
           ve->ve[i].src_offset % 4 != 0)) {
         ve->incompatible_elem_mask |= 1 << i;
         ve->incompatible_vb_mask_any |= vb_index_bit;
      } else {
         ve->compatible_vb_mask_any |= vb_index_bit;
      }
   }

   if (used_buffers & ~mgr->allowed_vb_mask) {
      /* More vertex buffers are used than the hardware supports.  In
       * principle, we only need to make sure that less vertex buffers are
       * used, and mark some of the latter vertex buffers as incompatible.
       * For now, mark all vertex buffers as incompatible.
       */
      ve->incompatible_vb_mask_any = used_buffers;
      ve->compatible_vb_mask_any = 0;
      ve->incompatible_elem_mask = u_bit_consecutive(0, count);
   }

   ve->used_vb_mask = used_buffers;
   ve->compatible_vb_mask_all = ~ve->incompatible_vb_mask_any & used_buffers;
   ve->incompatible_vb_mask_all = ~ve->compatible_vb_mask_any & used_buffers;

   /* Align the formats and offsets to the size of DWORD if needed. */
   if (!mgr->caps.velem_src_offset_unaligned) {
      for (i = 0; i < count; i++) {
         ve->native_format_size[i] = align(ve->native_format_size[i], 4);
         driver_attribs[i].src_offset = align(ve->ve[i].src_offset, 4);
      }
   }

   /* Only create driver CSO if no incompatible elements */
   if (!ve->incompatible_elem_mask) {
      ve->driver_cso =
         pipe->create_vertex_elements_state(pipe, count, driver_attribs);
   }

   return ve;
}

static void u_vbuf_delete_vertex_elements(void *ctx, void *state,
                                          enum cso_cache_type type)
{
   struct pipe_context *pipe = (struct pipe_context*)ctx;
   struct cso_velements *cso = (struct cso_velements*)state;
   struct u_vbuf_elements *ve = (struct u_vbuf_elements*)cso->data;

   if (ve->driver_cso)
      pipe->delete_vertex_elements_state(pipe, ve->driver_cso);
   FREE(ve);
   FREE(cso);
}

void u_vbuf_set_vertex_buffers(struct u_vbuf *mgr,
                               unsigned start_slot, unsigned count,
                               unsigned unbind_num_trailing_slots,
                               bool take_ownership,
                               const struct pipe_vertex_buffer *bufs)
{
   unsigned i;
   /* which buffers are enabled */
   uint32_t enabled_vb_mask = 0;
   /* which buffers are in user memory */
   uint32_t user_vb_mask = 0;
   /* which buffers are incompatible with the driver */
   uint32_t incompatible_vb_mask = 0;
   /* which buffers have a non-zero stride */
   uint32_t nonzero_stride_vb_mask = 0;
   const uint32_t mask =
      ~(((1ull << (count + unbind_num_trailing_slots)) - 1) << start_slot);

   /* Zero out the bits we are going to rewrite completely. */
   mgr->user_vb_mask &= mask;
   mgr->incompatible_vb_mask &= mask;
   mgr->nonzero_stride_vb_mask &= mask;
   mgr->enabled_vb_mask &= mask;

   if (!bufs) {
      struct pipe_context *pipe = mgr->pipe;
      /* Unbind. */
      unsigned total_count = count + unbind_num_trailing_slots;
      mgr->dirty_real_vb_mask &= mask;

      for (i = 0; i < total_count; i++) {
         unsigned dst_index = start_slot + i;

         pipe_vertex_buffer_unreference(&mgr->vertex_buffer[dst_index]);
         pipe_vertex_buffer_unreference(&mgr->real_vertex_buffer[dst_index]);
      }

      pipe->set_vertex_buffers(pipe, start_slot, count,
                               unbind_num_trailing_slots, false, NULL);
      return;
   }

   for (i = 0; i < count; i++) {
      unsigned dst_index = start_slot + i;
      const struct pipe_vertex_buffer *vb = &bufs[i];
      struct pipe_vertex_buffer *orig_vb = &mgr->vertex_buffer[dst_index];
      struct pipe_vertex_buffer *real_vb = &mgr->real_vertex_buffer[dst_index];

      if (!vb->buffer.resource) {
         pipe_vertex_buffer_unreference(orig_vb);
         pipe_vertex_buffer_unreference(real_vb);
         continue;
      }

      if (take_ownership) {
         pipe_vertex_buffer_unreference(orig_vb);
         memcpy(orig_vb, vb, sizeof(*vb));
      } else {
         pipe_vertex_buffer_reference(orig_vb, vb);
      }

      if (vb->stride) {
         nonzero_stride_vb_mask |= 1 << dst_index;
      }
      enabled_vb_mask |= 1 << dst_index;

      if ((!mgr->caps.buffer_offset_unaligned && vb->buffer_offset % 4 != 0) ||
          (!mgr->caps.buffer_stride_unaligned && vb->stride % 4 != 0)) {
         incompatible_vb_mask |= 1 << dst_index;
         real_vb->buffer_offset = vb->buffer_offset;
         real_vb->stride = vb->stride;
         pipe_vertex_buffer_unreference(real_vb);
         real_vb->is_user_buffer = false;
         continue;
      }

      if (!mgr->caps.user_vertex_buffers && vb->is_user_buffer) {
         user_vb_mask |= 1 << dst_index;
         real_vb->buffer_offset = vb->buffer_offset;
         real_vb->stride = vb->stride;
         pipe_vertex_buffer_unreference(real_vb);
         real_vb->is_user_buffer = false;
         continue;
      }

      pipe_vertex_buffer_reference(real_vb, vb);
   }

   for (i = 0; i < unbind_num_trailing_slots; i++) {
      unsigned dst_index = start_slot + count + i;

      pipe_vertex_buffer_unreference(&mgr->vertex_buffer[dst_index]);
      pipe_vertex_buffer_unreference(&mgr->real_vertex_buffer[dst_index]);
   }

   mgr->user_vb_mask |= user_vb_mask;
   mgr->incompatible_vb_mask |= incompatible_vb_mask;
   mgr->nonzero_stride_vb_mask |= nonzero_stride_vb_mask;
   mgr->enabled_vb_mask |= enabled_vb_mask;

   /* All changed buffers are marked as dirty, even the NULL ones,
    * which will cause the NULL buffers to be unbound in the driver later. */
   mgr->dirty_real_vb_mask |= ~mask;
}

static ALWAYS_INLINE bool
get_upload_offset_size(struct u_vbuf *mgr,
                       const struct pipe_vertex_buffer *vb,
                       struct u_vbuf_elements *ve,
                       const struct pipe_vertex_element *velem,
                       unsigned vb_index, unsigned velem_index,
                       int start_vertex, unsigned num_vertices,
                       int start_instance, unsigned num_instances,
                       unsigned *offset, unsigned *size)
{
   /* Skip the buffers generated by translate. */
   if ((1 << vb_index) & mgr->fallback_vbs_mask || !vb->is_user_buffer)
      return false;

   unsigned instance_div = velem->instance_divisor;
   *offset = vb->buffer_offset + velem->src_offset;

   if (!vb->stride) {
      /* Constant attrib. */
      *size = ve->src_format_size[velem_index];
   } else if (instance_div) {
      /* Per-instance attrib. */

      /* Figure out how many instances we'll render given instance_div.  We
       * can't use the typical div_round_up() pattern because the CTS uses
       * instance_div = ~0 for a test, which overflows div_round_up()'s
       * addition.
       */
      unsigned count = num_instances / instance_div;
      if (count * instance_div != num_instances)
         count++;

      *offset += vb->stride * start_instance;
      *size = vb->stride * (count - 1) + ve->src_format_size[velem_index];
   } else {
      /* Per-vertex attrib. */
      *offset += vb->stride * start_vertex;
      *size = vb->stride * (num_vertices - 1) + ve->src_format_size[velem_index];
   }
   return true;
}


static enum pipe_error
u_vbuf_upload_buffers(struct u_vbuf *mgr,
                      int start_vertex, unsigned num_vertices,
                      int start_instance, unsigned num_instances)
{
   unsigned i;
   struct u_vbuf_elements *ve = mgr->ve;
   unsigned nr_velems = ve->count;
   const struct pipe_vertex_element *velems =
         mgr->using_translate ? mgr->fallback_velems.velems : ve->ve;

   /* Faster path when no vertex attribs are interleaved. */
   if ((ve->interleaved_vb_mask & mgr->user_vb_mask) == 0) {
      for (i = 0; i < nr_velems; i++) {
         const struct pipe_vertex_element *velem = &velems[i];
         unsigned index = velem->vertex_buffer_index;
         struct pipe_vertex_buffer *vb = &mgr->vertex_buffer[index];
         unsigned offset, size;

         if (!get_upload_offset_size(mgr, vb, ve, velem, index, i, start_vertex,
                                     num_vertices, start_instance, num_instances,
                                     &offset, &size))
            continue;

         struct pipe_vertex_buffer *real_vb = &mgr->real_vertex_buffer[index];
         const uint8_t *ptr = mgr->vertex_buffer[index].buffer.user;

         u_upload_data(mgr->pipe->stream_uploader,
                       mgr->has_signed_vb_offset ? 0 : offset,
                       size, 4, ptr + offset, &real_vb->buffer_offset,
                       &real_vb->buffer.resource);
         if (!real_vb->buffer.resource)
            return PIPE_ERROR_OUT_OF_MEMORY;

         real_vb->buffer_offset -= offset;
      }
      return PIPE_OK;
   }

   unsigned start_offset[PIPE_MAX_ATTRIBS];
   unsigned end_offset[PIPE_MAX_ATTRIBS];
   uint32_t buffer_mask = 0;

   /* Slower path supporting interleaved vertex attribs using 2 loops. */
   /* Determine how much data needs to be uploaded. */
   for (i = 0; i < nr_velems; i++) {
      const struct pipe_vertex_element *velem = &velems[i];
      unsigned index = velem->vertex_buffer_index;
      struct pipe_vertex_buffer *vb = &mgr->vertex_buffer[index];
      unsigned first, size, index_bit;

      if (!get_upload_offset_size(mgr, vb, ve, velem, index, i, start_vertex,
                                  num_vertices, start_instance, num_instances,
                                  &first, &size))
         continue;

      index_bit = 1 << index;

      /* Update offsets. */
      if (!(buffer_mask & index_bit)) {
         start_offset[index] = first;
         end_offset[index] = first + size;
      } else {
         if (first < start_offset[index])
            start_offset[index] = first;
         if (first + size > end_offset[index])
            end_offset[index] = first + size;
      }

      buffer_mask |= index_bit;
   }

   /* Upload buffers. */
   while (buffer_mask) {
      unsigned start, end;
      struct pipe_vertex_buffer *real_vb;
      const uint8_t *ptr;

      i = u_bit_scan(&buffer_mask);

      start = start_offset[i];
      end = end_offset[i];
      assert(start < end);

      real_vb = &mgr->real_vertex_buffer[i];
      ptr = mgr->vertex_buffer[i].buffer.user;

      u_upload_data(mgr->pipe->stream_uploader,
                    mgr->has_signed_vb_offset ? 0 : start,
                    end - start, 4,
                    ptr + start, &real_vb->buffer_offset, &real_vb->buffer.resource);
      if (!real_vb->buffer.resource)
         return PIPE_ERROR_OUT_OF_MEMORY;

      real_vb->buffer_offset -= start;
   }

   return PIPE_OK;
}

static boolean u_vbuf_need_minmax_index(const struct u_vbuf *mgr)
{
   /* See if there are any per-vertex attribs which will be uploaded or
    * translated. Use bitmasks to get the info instead of looping over vertex
    * elements. */
   return (mgr->ve->used_vb_mask &
           ((mgr->user_vb_mask |
             mgr->incompatible_vb_mask |
             mgr->ve->incompatible_vb_mask_any) &
            mgr->ve->noninstance_vb_mask_any &
            mgr->nonzero_stride_vb_mask)) != 0;
}

static boolean u_vbuf_mapping_vertex_buffer_blocks(const struct u_vbuf *mgr)
{
   /* Return true if there are hw buffers which don't need to be translated.
    *
    * We could query whether each buffer is busy, but that would
    * be way more costly than this. */
   return (mgr->ve->used_vb_mask &
           (~mgr->user_vb_mask &
            ~mgr->incompatible_vb_mask &
            mgr->ve->compatible_vb_mask_all &
            mgr->ve->noninstance_vb_mask_any &
            mgr->nonzero_stride_vb_mask)) != 0;
}

static void
u_vbuf_get_minmax_index_mapped(const struct pipe_draw_info *info,
                               unsigned count,
                               const void *indices, unsigned *out_min_index,
                               unsigned *out_max_index)
{
   if (!count) {
      *out_min_index = 0;
      *out_max_index = 0;
      return;
   }

   switch (info->index_size) {
   case 4: {
      const unsigned *ui_indices = (const unsigned*)indices;
      unsigned max = 0;
      unsigned min = ~0u;
      if (info->primitive_restart) {
         for (unsigned i = 0; i < count; i++) {
            if (ui_indices[i] != info->restart_index) {
               if (ui_indices[i] > max) max = ui_indices[i];
               if (ui_indices[i] < min) min = ui_indices[i];
            }
         }
      }
      else {
         for (unsigned i = 0; i < count; i++) {
            if (ui_indices[i] > max) max = ui_indices[i];
            if (ui_indices[i] < min) min = ui_indices[i];
         }
      }
      *out_min_index = min;
      *out_max_index = max;
      break;
   }
   case 2: {
      const unsigned short *us_indices = (const unsigned short*)indices;
      unsigned short max = 0;
      unsigned short min = ~((unsigned short)0);
      if (info->primitive_restart) {
         for (unsigned i = 0; i < count; i++) {
            if (us_indices[i] != info->restart_index) {
               if (us_indices[i] > max) max = us_indices[i];
               if (us_indices[i] < min) min = us_indices[i];
            }
         }
      }
      else {
         for (unsigned i = 0; i < count; i++) {
            if (us_indices[i] > max) max = us_indices[i];
            if (us_indices[i] < min) min = us_indices[i];
         }
      }
      *out_min_index = min;
      *out_max_index = max;
      break;
   }
   case 1: {
      const unsigned char *ub_indices = (const unsigned char*)indices;
      unsigned char max = 0;
      unsigned char min = ~((unsigned char)0);
      if (info->primitive_restart) {
         for (unsigned i = 0; i < count; i++) {
            if (ub_indices[i] != info->restart_index) {
               if (ub_indices[i] > max) max = ub_indices[i];
               if (ub_indices[i] < min) min = ub_indices[i];
            }
         }
      }
      else {
         for (unsigned i = 0; i < count; i++) {
            if (ub_indices[i] > max) max = ub_indices[i];
            if (ub_indices[i] < min) min = ub_indices[i];
         }
      }
      *out_min_index = min;
      *out_max_index = max;
      break;
   }
   default:
      unreachable("bad index size");
   }
}

void u_vbuf_get_minmax_index(struct pipe_context *pipe,
                             const struct pipe_draw_info *info,
                             const struct pipe_draw_start_count *draw,
                             unsigned *out_min_index, unsigned *out_max_index)
{
   struct pipe_transfer *transfer = NULL;
   const void *indices;

   if (info->has_user_indices) {
      indices = (uint8_t*)info->index.user +
                draw->start * info->index_size;
   } else {
      indices = pipe_buffer_map_range(pipe, info->index.resource,
                                      draw->start * info->index_size,
                                      draw->count * info->index_size,
                                      PIPE_MAP_READ, &transfer);
   }

   u_vbuf_get_minmax_index_mapped(info, draw->count, indices,
                                  out_min_index, out_max_index);

   if (transfer) {
      pipe_buffer_unmap(pipe, transfer);
   }
}

static void u_vbuf_set_driver_vertex_buffers(struct u_vbuf *mgr)
{
   struct pipe_context *pipe = mgr->pipe;
   unsigned start_slot, count;

   start_slot = ffs(mgr->dirty_real_vb_mask) - 1;
   count = util_last_bit(mgr->dirty_real_vb_mask >> start_slot);

   pipe->set_vertex_buffers(pipe, start_slot, count, 0, false,
                            mgr->real_vertex_buffer + start_slot);
   mgr->dirty_real_vb_mask = 0;
}

static void
u_vbuf_split_indexed_multidraw(struct u_vbuf *mgr, struct pipe_draw_info *info,
                               unsigned *indirect_data, unsigned stride,
                               unsigned draw_count)
{
   /* Increase refcount to be able to use take_index_buffer_ownership with
    * all draws.
    */
   if (draw_count > 1 && info->take_index_buffer_ownership)
      p_atomic_add(&info->index.resource->reference.count, draw_count - 1);

   assert(info->index_size);

   for (unsigned i = 0; i < draw_count; i++) {
      struct pipe_draw_start_count draw;
      unsigned offset = i * stride / 4;

      draw.count = indirect_data[offset + 0];
      info->instance_count = indirect_data[offset + 1];
      draw.start = indirect_data[offset + 2];
      info->index_bias = indirect_data[offset + 3];
      info->start_instance = indirect_data[offset + 4];

      u_vbuf_draw_vbo(mgr, info, NULL, draw);
   }
}

void u_vbuf_draw_vbo(struct u_vbuf *mgr, const struct pipe_draw_info *info,
                     const struct pipe_draw_indirect_info *indirect,
                     const struct pipe_draw_start_count draw)
{
   struct pipe_context *pipe = mgr->pipe;
   int start_vertex;
   unsigned min_index;
   unsigned num_vertices;
   boolean unroll_indices = FALSE;
   const uint32_t used_vb_mask = mgr->ve->used_vb_mask;
   uint32_t user_vb_mask = mgr->user_vb_mask & used_vb_mask;
   const uint32_t incompatible_vb_mask =
      mgr->incompatible_vb_mask & used_vb_mask;
   struct pipe_draw_info new_info;
   struct pipe_draw_start_count new_draw;

   /* Normal draw. No fallback and no user buffers. */
   if (!incompatible_vb_mask &&
       !mgr->ve->incompatible_elem_mask &&
       !user_vb_mask) {

      /* Set vertex buffers if needed. */
      if (mgr->dirty_real_vb_mask & used_vb_mask) {
         u_vbuf_set_driver_vertex_buffers(mgr);
      }

      pipe->draw_vbo(pipe, info, indirect, &draw, 1);
      return;
   }

   new_info = *info;
   new_draw = draw;

   /* Handle indirect (multi)draws. */
   if (indirect && indirect->buffer) {
      unsigned draw_count = 0;

      /* Get the number of draws. */
      if (indirect->indirect_draw_count) {
         pipe_buffer_read(pipe, indirect->indirect_draw_count,
                          indirect->indirect_draw_count_offset,
                          4, &draw_count);
      } else {
         draw_count = indirect->draw_count;
      }

      if (!draw_count)
         goto cleanup;

      unsigned data_size = (draw_count - 1) * indirect->stride +
                           (new_info.index_size ? 20 : 16);
      unsigned *data = malloc(data_size);
      if (!data)
         goto cleanup; /* report an error? */

      /* Read the used buffer range only once, because the read can be
       * uncached.
       */
      pipe_buffer_read(pipe, indirect->buffer, indirect->offset, data_size,
                       data);

      if (info->index_size) {
         /* Indexed multidraw. */
         unsigned index_bias0 = data[3];
         bool index_bias_same = true;

         /* If we invoke the translate path, we have to split the multidraw. */
         if (incompatible_vb_mask ||
             mgr->ve->incompatible_elem_mask) {
            u_vbuf_split_indexed_multidraw(mgr, &new_info, data,
                                           indirect->stride, draw_count);
            free(data);
            return;
         }

         /* See if index_bias is the same for all draws. */
         for (unsigned i = 1; i < draw_count; i++) {
            if (data[i * indirect->stride / 4 + 3] != index_bias0) {
               index_bias_same = false;
               break;
            }
         }

         /* Split the multidraw if index_bias is different. */
         if (!index_bias_same) {
            u_vbuf_split_indexed_multidraw(mgr, &new_info, data,
                                           indirect->stride, draw_count);
            free(data);
            return;
         }

         /* If we don't need to use the translate path and index_bias is
          * the same, we can process the multidraw with the time complexity
          * equal to 1 draw call (except for the index range computation).
          * We only need to compute the index range covering all draw calls
          * of the multidraw.
          *
          * The driver will not look at these values because indirect != NULL.
          * These values determine the user buffer bounds to upload.
          */
         new_info.index_bias = index_bias0;
         new_info.index_bounds_valid = true;
         new_info.min_index = ~0u;
         new_info.max_index = 0;
         new_info.start_instance = ~0u;
         unsigned end_instance = 0;

         struct pipe_transfer *transfer = NULL;
         const uint8_t *indices;

         if (info->has_user_indices) {
            indices = (uint8_t*)info->index.user;
         } else {
            indices = (uint8_t*)pipe_buffer_map(pipe, info->index.resource,
                                                PIPE_MAP_READ, &transfer);
         }

         for (unsigned i = 0; i < draw_count; i++) {
            unsigned offset = i * indirect->stride / 4;
            unsigned start = data[offset + 2];
            unsigned count = data[offset + 0];
            unsigned start_instance = data[offset + 4];
            unsigned instance_count = data[offset + 1];

            if (!count || !instance_count)
               continue;

            /* Update the ranges of instances. */
            new_info.start_instance = MIN2(new_info.start_instance,
                                           start_instance);
            end_instance = MAX2(end_instance, start_instance + instance_count);

            /* Update the index range. */
            unsigned min, max;
            u_vbuf_get_minmax_index_mapped(&new_info, count,
                                           indices +
                                           new_info.index_size * start,
                                           &min, &max);

            new_info.min_index = MIN2(new_info.min_index, min);
            new_info.max_index = MAX2(new_info.max_index, max);
         }
         free(data);

         if (transfer)
            pipe_buffer_unmap(pipe, transfer);

         /* Set the final instance count. */
         new_info.instance_count = end_instance - new_info.start_instance;

         if (new_info.start_instance == ~0u || !new_info.instance_count)
            goto cleanup;
      } else {
         /* Non-indexed multidraw.
          *
          * Keep the draw call indirect and compute minimums & maximums,
          * which will determine the user buffer bounds to upload, but
          * the driver will not look at these values because indirect != NULL.
          *
          * This efficiently processes the multidraw with the time complexity
          * equal to 1 draw call.
          */
         new_draw.start = ~0u;
         new_info.start_instance = ~0u;
         unsigned end_vertex = 0;
         unsigned end_instance = 0;

         for (unsigned i = 0; i < draw_count; i++) {
            unsigned offset = i * indirect->stride / 4;
            unsigned start = data[offset + 2];
            unsigned count = data[offset + 0];
            unsigned start_instance = data[offset + 3];
            unsigned instance_count = data[offset + 1];

            new_draw.start = MIN2(new_draw.start, start);
            new_info.start_instance = MIN2(new_info.start_instance,
                                           start_instance);

            end_vertex = MAX2(end_vertex, start + count);
            end_instance = MAX2(end_instance, start_instance + instance_count);
         }
         free(data);

         /* Set the final counts. */
         new_draw.count = end_vertex - new_draw.start;
         new_info.instance_count = end_instance - new_info.start_instance;

         if (new_draw.start == ~0u || !new_draw.count || !new_info.instance_count)
            goto cleanup;
      }
   } else {
      if ((!indirect && !new_draw.count) || !new_info.instance_count)
         goto cleanup;
   }

   if (new_info.index_size) {
      /* See if anything needs to be done for per-vertex attribs. */
      if (u_vbuf_need_minmax_index(mgr)) {
         unsigned max_index;

         if (new_info.index_bounds_valid) {
            min_index = new_info.min_index;
            max_index = new_info.max_index;
         } else {
            u_vbuf_get_minmax_index(mgr->pipe, &new_info, &new_draw,
                                    &min_index, &max_index);
         }

         assert(min_index <= max_index);

         start_vertex = min_index + new_info.index_bias;
         num_vertices = max_index + 1 - min_index;

         /* Primitive restart doesn't work when unrolling indices.
          * We would have to break this drawing operation into several ones. */
         /* Use some heuristic to see if unrolling indices improves
          * performance. */
         if (!indirect &&
             !new_info.primitive_restart &&
             util_is_vbo_upload_ratio_too_large(new_draw.count, num_vertices) &&
             !u_vbuf_mapping_vertex_buffer_blocks(mgr)) {
            unroll_indices = TRUE;
            user_vb_mask &= ~(mgr->nonzero_stride_vb_mask &
                              mgr->ve->noninstance_vb_mask_any);
         }
      } else {
         /* Nothing to do for per-vertex attribs. */
         start_vertex = 0;
         num_vertices = 0;
         min_index = 0;
      }
   } else {
      start_vertex = new_draw.start;
      num_vertices = new_draw.count;
      min_index = 0;
   }

   /* Translate vertices with non-native layouts or formats. */
   if (unroll_indices ||
       incompatible_vb_mask ||
       mgr->ve->incompatible_elem_mask) {
      if (!u_vbuf_translate_begin(mgr, &new_info, &new_draw,
                                  start_vertex, num_vertices,
                                  min_index, unroll_indices)) {
         debug_warn_once("u_vbuf_translate_begin() failed");
         goto cleanup;
      }

      if (unroll_indices) {
         new_info.index_size = 0;
         new_info.index_bias = 0;
         new_info.index_bounds_valid = true;
         new_info.min_index = 0;
         new_info.max_index = new_draw.count - 1;
         new_draw.start = 0;
      }

      user_vb_mask &= ~(incompatible_vb_mask |
                        mgr->ve->incompatible_vb_mask_all);
   }

   /* Upload user buffers. */
   if (user_vb_mask) {
      if (u_vbuf_upload_buffers(mgr, start_vertex, num_vertices,
                                new_info.start_instance,
                                new_info.instance_count) != PIPE_OK) {
         debug_warn_once("u_vbuf_upload_buffers() failed");
         goto cleanup;
      }

      mgr->dirty_real_vb_mask |= user_vb_mask;
   }

   /*
   if (unroll_indices) {
      printf("unrolling indices: start_vertex = %i, num_vertices = %i\n",
             start_vertex, num_vertices);
      util_dump_draw_info(stdout, info);
      printf("\n");
   }

   unsigned i;
   for (i = 0; i < mgr->nr_vertex_buffers; i++) {
      printf("input %i: ", i);
      util_dump_vertex_buffer(stdout, mgr->vertex_buffer+i);
      printf("\n");
   }
   for (i = 0; i < mgr->nr_real_vertex_buffers; i++) {
      printf("real %i: ", i);
      util_dump_vertex_buffer(stdout, mgr->real_vertex_buffer+i);
      printf("\n");
   }
   */

   u_upload_unmap(pipe->stream_uploader);
   if (mgr->dirty_real_vb_mask)
      u_vbuf_set_driver_vertex_buffers(mgr);

   pipe->draw_vbo(pipe, &new_info, indirect, &new_draw, 1);

   if (mgr->using_translate) {
      u_vbuf_translate_end(mgr);
   }
   return;

cleanup:
   if (info->take_index_buffer_ownership) {
      struct pipe_resource *indexbuf = info->index.resource;
      pipe_resource_reference(&indexbuf, NULL);
   }
}

void u_vbuf_save_vertex_elements(struct u_vbuf *mgr)
{
   assert(!mgr->ve_saved);
   mgr->ve_saved = mgr->ve;
}

void u_vbuf_restore_vertex_elements(struct u_vbuf *mgr)
{
   if (mgr->ve != mgr->ve_saved) {
      struct pipe_context *pipe = mgr->pipe;

      mgr->ve = mgr->ve_saved;
      pipe->bind_vertex_elements_state(pipe,
                                       mgr->ve ? mgr->ve->driver_cso : NULL);
   }
   mgr->ve_saved = NULL;
}