1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
|
/*
* Copyright (C) 2012 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include "pipe/p_state.h"
#include "util/u_debug.h"
#include "util/format/u_format.h"
#include "util/hash_table.h"
#include "util/u_dump.h"
#include "util/u_inlines.h"
#include "util/u_memory.h"
#include "util/u_string.h"
#include "u_tracepoints.h"
#include "util/u_trace_gallium.h"
#include "freedreno_context.h"
#include "freedreno_fence.h"
#include "freedreno_gmem.h"
#include "freedreno_query_hw.h"
#include "freedreno_resource.h"
#include "freedreno_tracepoints.h"
#include "freedreno_util.h"
/*
* GMEM is the small (ie. 256KiB for a200, 512KiB for a220, etc) tile buffer
* inside the GPU. All rendering happens to GMEM. Larger render targets
* are split into tiles that are small enough for the color (and depth and/or
* stencil, if enabled) buffers to fit within GMEM. Before rendering a tile,
* if there was not a clear invalidating the previous tile contents, we need
* to restore the previous tiles contents (system mem -> GMEM), and after all
* the draw calls, before moving to the next tile, we need to save the tile
* contents (GMEM -> system mem).
*
* The code in this file handles dealing with GMEM and tiling.
*
* The structure of the ringbuffer ends up being:
*
* +--<---<-- IB ---<---+---<---+---<---<---<--+
* | | | |
* v ^ ^ ^
* ------------------------------------------------------
* | clear/draw cmds | Tile0 | Tile1 | .... | TileN |
* ------------------------------------------------------
* ^
* |
* address submitted in issueibcmds
*
* Where the per-tile section handles scissor setup, mem2gmem restore (if
* needed), IB to draw cmds earlier in the ringbuffer, and then gmem2mem
* resolve.
*/
#ifndef BIN_DEBUG
#define BIN_DEBUG 0
#endif
/*
* GMEM Cache:
*
* Caches GMEM state based on a given framebuffer state. The key is
* meant to be the minimal set of data that results in a unique gmem
* configuration, avoiding multiple keys arriving at the same gmem
* state. For example, the render target format is not part of the
* key, only the size per pixel. And the max_scissor bounds is not
* part of they key, only the minx/miny (after clamping to tile
* alignment) and width/height. This ensures that slightly different
* max_scissor which would result in the same gmem state, do not
* become different keys that map to the same state.
*/
struct gmem_key {
uint16_t minx, miny;
uint16_t width, height;
uint8_t gmem_page_align; /* alignment in multiples of 0x1000 to reduce key size */
uint8_t nr_cbufs;
uint8_t cbuf_cpp[MAX_RENDER_TARGETS];
uint8_t zsbuf_cpp[2];
};
static uint32_t
gmem_key_hash(const void *_key)
{
const struct gmem_key *key = _key;
return _mesa_hash_data(key, sizeof(*key));
}
static bool
gmem_key_equals(const void *_a, const void *_b)
{
const struct gmem_key *a = _a;
const struct gmem_key *b = _b;
return memcmp(a, b, sizeof(*a)) == 0;
}
static void
dump_gmem_key(const struct gmem_key *key)
{
printf("{ .minx=%u, .miny=%u, .width=%u, .height=%u", key->minx, key->miny,
key->width, key->height);
printf(", .gmem_page_align=%u, .nr_cbufs=%u", key->gmem_page_align,
key->nr_cbufs);
printf(", .cbuf_cpp = {");
for (unsigned i = 0; i < ARRAY_SIZE(key->cbuf_cpp); i++)
printf("%u,", key->cbuf_cpp[i]);
printf("}, .zsbuf_cpp = {");
for (unsigned i = 0; i < ARRAY_SIZE(key->zsbuf_cpp); i++)
printf("%u,", key->zsbuf_cpp[i]);
printf("}},\n");
}
static void
dump_gmem_state(const struct fd_gmem_stateobj *gmem)
{
unsigned total = 0;
printf("GMEM LAYOUT: bin=%ux%u, nbins=%ux%u\n", gmem->bin_w, gmem->bin_h,
gmem->nbins_x, gmem->nbins_y);
for (int i = 0; i < ARRAY_SIZE(gmem->cbuf_base); i++) {
if (!gmem->cbuf_cpp[i])
continue;
unsigned size = gmem->cbuf_cpp[i] * gmem->bin_w * gmem->bin_h;
printf(" cbuf[%d]: base=0x%06x, size=0x%x, cpp=%u\n", i,
gmem->cbuf_base[i], size, gmem->cbuf_cpp[i]);
total = gmem->cbuf_base[i] + size;
}
for (int i = 0; i < ARRAY_SIZE(gmem->zsbuf_base); i++) {
if (!gmem->zsbuf_cpp[i])
continue;
unsigned size = gmem->zsbuf_cpp[i] * gmem->bin_w * gmem->bin_h;
printf(" zsbuf[%d]: base=0x%06x, size=0x%x, cpp=%u\n", i,
gmem->zsbuf_base[i], size, gmem->zsbuf_cpp[i]);
total = gmem->zsbuf_base[i] + size;
}
printf("total: 0x%06x (of 0x%06x)\n", total, gmem->screen->gmemsize_bytes);
}
static unsigned
div_align(unsigned num, unsigned denom, unsigned al)
{
return util_align_npot(DIV_ROUND_UP(num, denom), al);
}
static bool
layout_gmem(struct gmem_key *key, uint32_t nbins_x, uint32_t nbins_y,
struct fd_gmem_stateobj *gmem)
{
struct fd_screen *screen = gmem->screen;
uint32_t gmem_align = key->gmem_page_align * 0x1000;
uint32_t total = 0, i;
if ((nbins_x == 0) || (nbins_y == 0))
return false;
uint32_t bin_w, bin_h;
bin_w = div_align(key->width, nbins_x, screen->info->tile_align_w);
bin_h = div_align(key->height, nbins_y, screen->info->tile_align_h);
if (bin_w > screen->info->tile_max_w)
return false;
if (bin_h > screen->info->tile_max_h)
return false;
gmem->bin_w = bin_w;
gmem->bin_h = bin_h;
/* due to aligning bin_w/h, we could end up with one too
* many bins in either dimension, so recalculate:
*/
gmem->nbins_x = DIV_ROUND_UP(key->width, bin_w);
gmem->nbins_y = DIV_ROUND_UP(key->height, bin_h);
for (i = 0; i < MAX_RENDER_TARGETS; i++) {
if (key->cbuf_cpp[i]) {
gmem->cbuf_base[i] = util_align_npot(total, gmem_align);
total = gmem->cbuf_base[i] + key->cbuf_cpp[i] * bin_w * bin_h;
}
}
if (key->zsbuf_cpp[0]) {
gmem->zsbuf_base[0] = util_align_npot(total, gmem_align);
total = gmem->zsbuf_base[0] + key->zsbuf_cpp[0] * bin_w * bin_h;
}
if (key->zsbuf_cpp[1]) {
gmem->zsbuf_base[1] = util_align_npot(total, gmem_align);
total = gmem->zsbuf_base[1] + key->zsbuf_cpp[1] * bin_w * bin_h;
}
return total <= screen->gmemsize_bytes;
}
static void
calc_nbins(struct gmem_key *key, struct fd_gmem_stateobj *gmem)
{
struct fd_screen *screen = gmem->screen;
uint32_t nbins_x = 1, nbins_y = 1;
uint32_t max_width = screen->info->tile_max_w;
uint32_t max_height = screen->info->tile_max_h;
if (FD_DBG(MSGS)) {
debug_printf("binning input: cbuf cpp:");
for (unsigned i = 0; i < key->nr_cbufs; i++)
debug_printf(" %d", key->cbuf_cpp[i]);
debug_printf(", zsbuf cpp: %d; %dx%d\n", key->zsbuf_cpp[0], key->width,
key->height);
}
/* first, find a bin size that satisfies the maximum width/
* height restrictions:
*/
while (div_align(key->width, nbins_x, screen->info->tile_align_w) >
max_width) {
nbins_x++;
}
while (div_align(key->height, nbins_y, screen->info->tile_align_h) >
max_height) {
nbins_y++;
}
/* then find a bin width/height that satisfies the memory
* constraints:
*/
while (!layout_gmem(key, nbins_x, nbins_y, gmem)) {
if (nbins_y > nbins_x) {
nbins_x++;
} else {
nbins_y++;
}
}
/* Lets see if we can tweak the layout a bit and come up with
* something better:
*/
if ((((nbins_x - 1) * (nbins_y + 1)) < (nbins_x * nbins_y)) &&
layout_gmem(key, nbins_x - 1, nbins_y + 1, gmem)) {
nbins_x--;
nbins_y++;
} else if ((((nbins_x + 1) * (nbins_y - 1)) < (nbins_x * nbins_y)) &&
layout_gmem(key, nbins_x + 1, nbins_y - 1, gmem)) {
nbins_x++;
nbins_y--;
}
layout_gmem(key, nbins_x, nbins_y, gmem);
}
static struct fd_gmem_stateobj *
gmem_stateobj_init(struct fd_screen *screen, struct gmem_key *key)
{
struct fd_gmem_stateobj *gmem =
rzalloc(screen->gmem_cache.ht, struct fd_gmem_stateobj);
pipe_reference_init(&gmem->reference, 1);
gmem->screen = screen;
gmem->key = key;
list_inithead(&gmem->node);
const unsigned npipes = screen->info->num_vsc_pipes;
uint32_t i, j, t, xoff, yoff;
uint32_t tpp_x, tpp_y;
int tile_n[npipes];
calc_nbins(key, gmem);
DBG("using %d bins of size %dx%d", gmem->nbins_x * gmem->nbins_y,
gmem->bin_w, gmem->bin_h);
memcpy(gmem->cbuf_cpp, key->cbuf_cpp, sizeof(key->cbuf_cpp));
memcpy(gmem->zsbuf_cpp, key->zsbuf_cpp, sizeof(key->zsbuf_cpp));
gmem->minx = key->minx;
gmem->miny = key->miny;
gmem->width = key->width;
gmem->height = key->height;
gmem->tile = rzalloc_array(gmem, struct fd_tile, gmem->nbins_x * gmem->nbins_y);
if (BIN_DEBUG) {
dump_gmem_state(gmem);
dump_gmem_key(key);
}
/*
* Assign tiles and pipes:
*
* At some point it might be worth playing with different
* strategies and seeing if that makes much impact on
* performance.
*/
#define div_round_up(v, a) (((v) + (a)-1) / (a))
/* figure out number of tiles per pipe: */
if (is_a20x(screen)) {
/* for a20x we want to minimize the number of "pipes"
* binning data has 3 bits for x/y (8x8) but the edges are used to
* cull off-screen vertices with hw binning, so we have 6x6 pipes
*/
tpp_x = 6;
tpp_y = 6;
} else {
tpp_x = tpp_y = 1;
while (div_round_up(gmem->nbins_y, tpp_y) > npipes)
tpp_y += 2;
while ((div_round_up(gmem->nbins_y, tpp_y) *
div_round_up(gmem->nbins_x, tpp_x)) > npipes)
tpp_x += 1;
}
#ifdef DEBUG
tpp_x = debug_get_num_option("TPP_X", tpp_x);
tpp_y = debug_get_num_option("TPP_Y", tpp_x);
#endif
gmem->maxpw = tpp_x;
gmem->maxph = tpp_y;
/* configure pipes: */
xoff = yoff = 0;
for (i = 0; i < npipes; i++) {
struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
if (xoff >= gmem->nbins_x) {
xoff = 0;
yoff += tpp_y;
}
if (yoff >= gmem->nbins_y) {
break;
}
pipe->x = xoff;
pipe->y = yoff;
pipe->w = MIN2(tpp_x, gmem->nbins_x - xoff);
pipe->h = MIN2(tpp_y, gmem->nbins_y - yoff);
xoff += tpp_x;
}
/* number of pipes to use for a20x */
gmem->num_vsc_pipes = MAX2(1, i);
for (; i < npipes; i++) {
struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
pipe->x = pipe->y = pipe->w = pipe->h = 0;
}
if (BIN_DEBUG) {
printf("%dx%d ... tpp=%dx%d\n", gmem->nbins_x, gmem->nbins_y, tpp_x,
tpp_y);
for (i = 0; i < ARRAY_SIZE(gmem->vsc_pipe); i++) {
struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
printf("pipe[%d]: %ux%u @ %u,%u\n", i, pipe->w, pipe->h, pipe->x,
pipe->y);
}
}
/* configure tiles: */
t = 0;
yoff = key->miny;
memset(tile_n, 0, sizeof(tile_n));
for (i = 0; i < gmem->nbins_y; i++) {
int bw, bh;
xoff = key->minx;
/* clip bin height: */
bh = MIN2(gmem->bin_h, key->miny + key->height - yoff);
assert(bh > 0);
for (j = 0; j < gmem->nbins_x; j++) {
struct fd_tile *tile = &gmem->tile[t];
uint32_t p;
/* pipe number: */
p = ((i / tpp_y) * div_round_up(gmem->nbins_x, tpp_x)) + (j / tpp_x);
assert(p < gmem->num_vsc_pipes);
/* clip bin width: */
bw = MIN2(gmem->bin_w, key->minx + key->width - xoff);
assert(bw > 0);
tile->n = !is_a20x(screen) ? tile_n[p]++
: ((i % tpp_y + 1) << 3 | (j % tpp_x + 1));
tile->p = p;
tile->bin_w = bw;
tile->bin_h = bh;
tile->xoff = xoff;
tile->yoff = yoff;
if (BIN_DEBUG) {
printf("tile[%d]: p=%u, bin=%ux%u+%u+%u\n", t, p, bw, bh, xoff,
yoff);
}
t++;
xoff += bw;
}
yoff += bh;
}
/* Swap the order of alternating rows to form an 'S' pattern, to improve
* cache access patterns (ie. adjacent bins are likely to access adjacent
* portions of textures)
*/
if (!FD_DBG(NOSBIN)) {
for (i = 0; i < gmem->nbins_y; i+=2) {
unsigned col0 = gmem->nbins_x * i;
for (j = 0; j < gmem->nbins_x/2; j++) {
swap(gmem->tile[col0 + j], gmem->tile[col0 + gmem->nbins_x - j - 1]);
}
}
}
if (BIN_DEBUG) {
t = 0;
for (i = 0; i < gmem->nbins_y; i++) {
for (j = 0; j < gmem->nbins_x; j++) {
struct fd_tile *tile = &gmem->tile[t++];
printf("|p:%u n:%u|", tile->p, tile->n);
}
printf("\n");
}
}
return gmem;
}
void
__fd_gmem_destroy(struct fd_gmem_stateobj *gmem)
{
struct fd_gmem_cache *cache = &gmem->screen->gmem_cache;
fd_screen_assert_locked(gmem->screen);
_mesa_hash_table_remove_key(cache->ht, gmem->key);
list_del(&gmem->node);
ralloc_free(gmem->key);
ralloc_free(gmem);
}
static struct gmem_key *
gmem_key_init(struct fd_batch *batch, bool assume_zs, bool no_scis_opt)
{
struct fd_screen *screen = batch->ctx->screen;
struct pipe_framebuffer_state *pfb = &batch->framebuffer;
bool has_zs = pfb->zsbuf &&
!!(batch->gmem_reason & (FD_GMEM_DEPTH_ENABLED | FD_GMEM_STENCIL_ENABLED |
FD_GMEM_CLEARS_DEPTH_STENCIL));
struct gmem_key *key = rzalloc(screen->gmem_cache.ht, struct gmem_key);
if (has_zs || assume_zs) {
struct fd_resource *rsc = fd_resource(pfb->zsbuf->texture);
key->zsbuf_cpp[0] = rsc->layout.cpp;
if (rsc->stencil)
key->zsbuf_cpp[1] = rsc->stencil->layout.cpp;
} else {
/* we might have a zsbuf, but it isn't used */
batch->restore &= ~(FD_BUFFER_DEPTH | FD_BUFFER_STENCIL);
batch->resolve &= ~(FD_BUFFER_DEPTH | FD_BUFFER_STENCIL);
}
key->nr_cbufs = pfb->nr_cbufs;
for (unsigned i = 0; i < pfb->nr_cbufs; i++) {
if (pfb->cbufs[i])
key->cbuf_cpp[i] = util_format_get_blocksize(pfb->cbufs[i]->format);
else
key->cbuf_cpp[i] = 4;
/* if MSAA, color buffers are super-sampled in GMEM: */
key->cbuf_cpp[i] *= pfb->samples;
}
/* NOTE: on a6xx, the max-scissor-rect is handled in fd6_gmem, and
* we just rely on CP_COND_EXEC to skip bins with no geometry.
*/
if (no_scis_opt || is_a6xx(screen)) {
key->minx = 0;
key->miny = 0;
key->width = pfb->width;
key->height = pfb->height;
} else {
struct pipe_scissor_state *scissor = &batch->max_scissor;
if (FD_DBG(NOSCIS)) {
scissor->minx = 0;
scissor->miny = 0;
scissor->maxx = pfb->width - 1;
scissor->maxy = pfb->height - 1;
}
/* round down to multiple of alignment: */
key->minx = scissor->minx & ~(screen->info->gmem_align_w - 1);
key->miny = scissor->miny & ~(screen->info->gmem_align_h - 1);
key->width = scissor->maxx + 1 - key->minx;
key->height = scissor->maxy + 1 - key->miny;
}
if (is_a20x(screen) && batch->cleared) {
/* under normal circumstances the requirement would be 4K
* but the fast clear path requires an alignment of 32K
*/
key->gmem_page_align = 8;
} else if (is_a6xx(screen)) {
key->gmem_page_align = (screen->info->tile_align_w == 96) ? 3 : 1;
} else {
// TODO re-check this across gens.. maybe it should only
// be a single page in some cases:
key->gmem_page_align = 4;
}
return key;
}
static struct fd_gmem_stateobj *
lookup_gmem_state(struct fd_batch *batch, bool assume_zs, bool no_scis_opt)
{
struct fd_screen *screen = batch->ctx->screen;
struct fd_gmem_cache *cache = &screen->gmem_cache;
struct fd_gmem_stateobj *gmem = NULL;
/* Lock before allocating gmem_key, since that a screen-wide
* ralloc pool and ralloc itself is not thread-safe.
*/
fd_screen_lock(screen);
struct gmem_key *key = gmem_key_init(batch, assume_zs, no_scis_opt);
uint32_t hash = gmem_key_hash(key);
struct hash_entry *entry =
_mesa_hash_table_search_pre_hashed(cache->ht, hash, key);
if (entry) {
ralloc_free(key);
goto found;
}
/* limit the # of cached gmem states, discarding the least
* recently used state if needed:
*/
if (cache->ht->entries >= 20) {
struct fd_gmem_stateobj *last =
list_last_entry(&cache->lru, struct fd_gmem_stateobj, node);
fd_gmem_reference(&last, NULL);
}
entry = _mesa_hash_table_insert_pre_hashed(cache->ht, hash, key,
gmem_stateobj_init(screen, key));
found:
fd_gmem_reference(&gmem, entry->data);
/* Move to the head of the LRU: */
list_delinit(&gmem->node);
list_add(&gmem->node, &cache->lru);
fd_screen_unlock(screen);
return gmem;
}
/*
* GMEM render pass
*/
static void
render_tiles(struct fd_batch *batch, struct fd_gmem_stateobj *gmem) assert_dt
{
struct fd_context *ctx = batch->ctx;
int i;
simple_mtx_lock(&ctx->gmem_lock);
ctx->emit_tile_init(batch);
if (batch->restore)
ctx->stats.batch_restore++;
for (i = 0; i < (gmem->nbins_x * gmem->nbins_y); i++) {
struct fd_tile *tile = &gmem->tile[i];
trace_start_tile(&batch->trace, batch->gmem, tile->bin_h, tile->yoff, tile->bin_w,
tile->xoff);
ctx->emit_tile_prep(batch, tile);
if (batch->restore) {
ctx->emit_tile_mem2gmem(batch, tile);
}
ctx->emit_tile_renderprep(batch, tile);
if (ctx->query_prepare_tile)
ctx->query_prepare_tile(batch, i, batch->gmem);
/* emit IB to drawcmds: */
trace_start_draw_ib(&batch->trace, batch->gmem);
if (ctx->emit_tile) {
ctx->emit_tile(batch, tile);
} else {
ctx->screen->emit_ib(batch->gmem, batch->draw);
}
trace_end_draw_ib(&batch->trace, batch->gmem);
fd_reset_wfi(batch);
/* emit gmem2mem to transfer tile back to system memory: */
ctx->emit_tile_gmem2mem(batch, tile);
}
if (ctx->emit_tile_fini)
ctx->emit_tile_fini(batch);
simple_mtx_unlock(&ctx->gmem_lock);
}
static void
render_sysmem(struct fd_batch *batch) assert_dt
{
struct fd_context *ctx = batch->ctx;
ctx->emit_sysmem_prep(batch);
if (ctx->query_prepare_tile)
ctx->query_prepare_tile(batch, 0, batch->gmem);
if (!batch->nondraw) {
trace_start_draw_ib(&batch->trace, batch->gmem);
}
/* emit IB to drawcmds: */
ctx->screen->emit_ib(batch->gmem, batch->draw);
if (!batch->nondraw) {
trace_end_draw_ib(&batch->trace, batch->gmem);
}
fd_reset_wfi(batch);
if (ctx->emit_sysmem_fini)
ctx->emit_sysmem_fini(batch);
}
static void
flush_ring(struct fd_batch *batch)
{
if (FD_DBG(NOHW))
return;
fd_submit_flush(batch->submit, batch->in_fence_fd,
batch->fence ? &batch->fence->submit_fence : NULL);
if (batch->fence)
fd_fence_set_batch(batch->fence, NULL);
}
void
fd_gmem_render_tiles(struct fd_batch *batch)
{
struct fd_context *ctx = batch->ctx;
struct pipe_framebuffer_state *pfb = &batch->framebuffer;
bool sysmem = false;
ctx->submit_count++;
if (!batch->nondraw) {
#if HAVE_PERFETTO
/* For non-draw batches, we don't really have a good place to
* match up the api event submit-id to the on-gpu rendering,
* so skip this for non-draw batches.
*/
fd_perfetto_submit(ctx);
#endif
trace_flush_batch(&batch->trace, batch->gmem, batch, batch->cleared,
batch->gmem_reason, batch->num_draws);
trace_framebuffer_state(&batch->trace, batch->gmem, pfb);
}
if (ctx->emit_sysmem_prep && !batch->nondraw) {
if (fd_autotune_use_bypass(&ctx->autotune, batch) && !FD_DBG(GMEM)) {
sysmem = true;
}
/* For ARB_framebuffer_no_attachments: */
if ((pfb->nr_cbufs == 0) && !pfb->zsbuf) {
sysmem = true;
}
}
if (FD_DBG(SYSMEM))
sysmem = true;
/* Layered rendering always needs bypass. */
for (unsigned i = 0; i < pfb->nr_cbufs; i++) {
struct pipe_surface *psurf = pfb->cbufs[i];
if (!psurf)
continue;
if (psurf->u.tex.first_layer < psurf->u.tex.last_layer)
sysmem = true;
}
if (pfb->zsbuf && pfb->zsbuf->u.tex.first_layer < pfb->zsbuf->u.tex.last_layer)
sysmem = true;
/* Tessellation doesn't seem to support tiled rendering so fall back to
* bypass.
*/
if (batch->tessellation) {
assert(ctx->emit_sysmem_prep);
sysmem = true;
}
fd_reset_wfi(batch);
ctx->stats.batch_total++;
if (batch->nondraw) {
DBG("%p: rendering non-draw", batch);
if (!fd_ringbuffer_empty(batch->draw))
render_sysmem(batch);
ctx->stats.batch_nondraw++;
} else if (sysmem) {
trace_render_sysmem(&batch->trace, batch->gmem);
trace_start_render_pass(&batch->trace, batch->gmem,
ctx->submit_count, pipe_surface_format(pfb->cbufs[0]),
pipe_surface_format(pfb->zsbuf), pfb->width, pfb->height,
pfb->nr_cbufs, pfb->samples, 0, 0, 0);
if (ctx->query_prepare)
ctx->query_prepare(batch, 1);
render_sysmem(batch);
trace_end_render_pass(&batch->trace, batch->gmem);
ctx->stats.batch_sysmem++;
} else {
struct fd_gmem_stateobj *gmem = lookup_gmem_state(batch, false, false);
batch->gmem_state = gmem;
trace_render_gmem(&batch->trace, batch->gmem, gmem->nbins_x, gmem->nbins_y,
gmem->bin_w, gmem->bin_h);
trace_start_render_pass(&batch->trace, batch->gmem,
ctx->submit_count, pipe_surface_format(pfb->cbufs[0]),
pipe_surface_format(pfb->zsbuf), pfb->width, pfb->height,
pfb->nr_cbufs, pfb->samples, gmem->nbins_x * gmem->nbins_y,
gmem->bin_w, gmem->bin_h);
if (ctx->query_prepare)
ctx->query_prepare(batch, gmem->nbins_x * gmem->nbins_y);
render_tiles(batch, gmem);
trace_end_render_pass(&batch->trace, batch->gmem);
batch->gmem_state = NULL;
fd_screen_lock(ctx->screen);
fd_gmem_reference(&gmem, NULL);
fd_screen_unlock(ctx->screen);
ctx->stats.batch_gmem++;
}
flush_ring(batch);
u_trace_flush(&batch->trace, NULL, false);
}
/* Determine a worst-case estimate (ie. assuming we don't eliminate an
* unused depth/stencil) number of bins per vsc pipe.
*/
unsigned
fd_gmem_estimate_bins_per_pipe(struct fd_batch *batch)
{
struct pipe_framebuffer_state *pfb = &batch->framebuffer;
struct fd_screen *screen = batch->ctx->screen;
struct fd_gmem_stateobj *gmem = lookup_gmem_state(batch, !!pfb->zsbuf, true);
unsigned nbins = gmem->maxpw * gmem->maxph;
fd_screen_lock(screen);
fd_gmem_reference(&gmem, NULL);
fd_screen_unlock(screen);
return nbins;
}
/* When deciding whether a tile needs mem2gmem, we need to take into
* account the scissor rect(s) that were cleared. To simplify we only
* consider the last scissor rect for each buffer, since the common
* case would be a single clear.
*/
bool
fd_gmem_needs_restore(struct fd_batch *batch, const struct fd_tile *tile,
uint32_t buffers)
{
if (!(batch->restore & buffers))
return false;
return true;
}
void
fd_gmem_screen_init(struct pipe_screen *pscreen)
{
struct fd_gmem_cache *cache = &fd_screen(pscreen)->gmem_cache;
cache->ht = _mesa_hash_table_create(NULL, gmem_key_hash, gmem_key_equals);
list_inithead(&cache->lru);
}
void
fd_gmem_screen_fini(struct pipe_screen *pscreen)
{
struct fd_gmem_cache *cache = &fd_screen(pscreen)->gmem_cache;
_mesa_hash_table_destroy(cache->ht, NULL);
}
|