summaryrefslogtreecommitdiff
path: root/lib/mesa/src/gallium/drivers/freedreno/freedreno_gmem.c
blob: 3b2ecbaeac016fe4082bf5b13f04d64814348108 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */

/*
 * Copyright (C) 2012 Rob Clark <robclark@freedesktop.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Authors:
 *    Rob Clark <robclark@freedesktop.org>
 */

#include "pipe/p_state.h"
#include "util/u_string.h"
#include "util/u_memory.h"
#include "util/u_inlines.h"
#include "util/u_format.h"

#include "freedreno_gmem.h"
#include "freedreno_context.h"
#include "freedreno_fence.h"
#include "freedreno_resource.h"
#include "freedreno_query_hw.h"
#include "freedreno_util.h"

/*
 * GMEM is the small (ie. 256KiB for a200, 512KiB for a220, etc) tile buffer
 * inside the GPU.  All rendering happens to GMEM.  Larger render targets
 * are split into tiles that are small enough for the color (and depth and/or
 * stencil, if enabled) buffers to fit within GMEM.  Before rendering a tile,
 * if there was not a clear invalidating the previous tile contents, we need
 * to restore the previous tiles contents (system mem -> GMEM), and after all
 * the draw calls, before moving to the next tile, we need to save the tile
 * contents (GMEM -> system mem).
 *
 * The code in this file handles dealing with GMEM and tiling.
 *
 * The structure of the ringbuffer ends up being:
 *
 *     +--<---<-- IB ---<---+---<---+---<---<---<--+
 *     |                    |       |              |
 *     v                    ^       ^              ^
 *   ------------------------------------------------------
 *     | clear/draw cmds | Tile0 | Tile1 | .... | TileN |
 *   ------------------------------------------------------
 *                       ^
 *                       |
 *                       address submitted in issueibcmds
 *
 * Where the per-tile section handles scissor setup, mem2gmem restore (if
 * needed), IB to draw cmds earlier in the ringbuffer, and then gmem2mem
 * resolve.
 */

static uint32_t bin_width(struct fd_screen *screen)
{
	if (is_a4xx(screen))
		return 1024;
	if (is_a3xx(screen))
		return 992;
	return 512;
}

static uint32_t
total_size(uint8_t cbuf_cpp[], uint8_t zsbuf_cpp[2],
		   uint32_t bin_w, uint32_t bin_h, struct fd_gmem_stateobj *gmem)
{
	uint32_t total = 0, i;

	for (i = 0; i < MAX_RENDER_TARGETS; i++) {
		if (cbuf_cpp[i]) {
			gmem->cbuf_base[i] = align(total, 0x4000);
			total = gmem->cbuf_base[i] + cbuf_cpp[i] * bin_w * bin_h;
		}
	}

	if (zsbuf_cpp[0]) {
		gmem->zsbuf_base[0] = align(total, 0x4000);
		total = gmem->zsbuf_base[0] + zsbuf_cpp[0] * bin_w * bin_h;
	}

	if (zsbuf_cpp[1]) {
		gmem->zsbuf_base[1] = align(total, 0x4000);
		total = gmem->zsbuf_base[1] + zsbuf_cpp[1] * bin_w * bin_h;
	}

	return total;
}

static void
calculate_tiles(struct fd_batch *batch)
{
	struct fd_context *ctx = batch->ctx;
	struct fd_gmem_stateobj *gmem = &ctx->gmem;
	struct pipe_scissor_state *scissor = &batch->max_scissor;
	struct pipe_framebuffer_state *pfb = &batch->framebuffer;
	uint32_t gmem_size = ctx->screen->gmemsize_bytes;
	uint32_t minx, miny, width, height;
	uint32_t nbins_x = 1, nbins_y = 1;
	uint32_t bin_w, bin_h;
	uint32_t max_width = bin_width(ctx->screen);
	uint8_t cbuf_cpp[MAX_RENDER_TARGETS] = {0}, zsbuf_cpp[2] = {0};
	uint32_t i, j, t, xoff, yoff;
	uint32_t tpp_x, tpp_y;
	bool has_zs = !!(batch->resolve & (FD_BUFFER_DEPTH | FD_BUFFER_STENCIL));
	int tile_n[ARRAY_SIZE(ctx->pipe)];

	if (has_zs) {
		struct fd_resource *rsc = fd_resource(pfb->zsbuf->texture);
		zsbuf_cpp[0] = rsc->cpp;
		if (rsc->stencil)
			zsbuf_cpp[1] = rsc->stencil->cpp;
	}
	for (i = 0; i < pfb->nr_cbufs; i++) {
		if (pfb->cbufs[i])
			cbuf_cpp[i] = util_format_get_blocksize(pfb->cbufs[i]->format);
		else
			cbuf_cpp[i] = 4;
	}

	if (!memcmp(gmem->zsbuf_cpp, zsbuf_cpp, sizeof(zsbuf_cpp)) &&
		!memcmp(gmem->cbuf_cpp, cbuf_cpp, sizeof(cbuf_cpp)) &&
		!memcmp(&gmem->scissor, scissor, sizeof(gmem->scissor))) {
		/* everything is up-to-date */
		return;
	}

	if (fd_mesa_debug & FD_DBG_NOSCIS) {
		minx = 0;
		miny = 0;
		width = pfb->width;
		height = pfb->height;
	} else {
		minx = scissor->minx & ~31; /* round down to multiple of 32 */
		miny = scissor->miny & ~31;
		width = scissor->maxx - minx;
		height = scissor->maxy - miny;
	}

	bin_w = align(width, 32);
	bin_h = align(height, 32);

	/* first, find a bin width that satisfies the maximum width
	 * restrictions:
	 */
	while (bin_w > max_width) {
		nbins_x++;
		bin_w = align(width / nbins_x, 32);
	}

	if (fd_mesa_debug & FD_DBG_MSGS) {
		debug_printf("binning input: cbuf cpp:");
		for (i = 0; i < pfb->nr_cbufs; i++)
			debug_printf(" %d", cbuf_cpp[i]);
		debug_printf(", zsbuf cpp: %d; %dx%d\n",
				zsbuf_cpp[0], width, height);
	}

	/* then find a bin width/height that satisfies the memory
	 * constraints:
	 */
	while (total_size(cbuf_cpp, zsbuf_cpp, bin_w, bin_h, gmem) > gmem_size) {
		if (bin_w > bin_h) {
			nbins_x++;
			bin_w = align(width / nbins_x, 32);
		} else {
			nbins_y++;
			bin_h = align(height / nbins_y, 32);
		}
	}

	DBG("using %d bins of size %dx%d", nbins_x*nbins_y, bin_w, bin_h);

	gmem->scissor = *scissor;
	memcpy(gmem->cbuf_cpp, cbuf_cpp, sizeof(cbuf_cpp));
	memcpy(gmem->zsbuf_cpp, zsbuf_cpp, sizeof(zsbuf_cpp));
	gmem->bin_h = bin_h;
	gmem->bin_w = bin_w;
	gmem->nbins_x = nbins_x;
	gmem->nbins_y = nbins_y;
	gmem->minx = minx;
	gmem->miny = miny;
	gmem->width = width;
	gmem->height = height;

	/*
	 * Assign tiles and pipes:
	 *
	 * At some point it might be worth playing with different
	 * strategies and seeing if that makes much impact on
	 * performance.
	 */

#define div_round_up(v, a)  (((v) + (a) - 1) / (a))
	/* figure out number of tiles per pipe: */
	tpp_x = tpp_y = 1;
	while (div_round_up(nbins_y, tpp_y) > 8)
		tpp_y += 2;
	while ((div_round_up(nbins_y, tpp_y) *
			div_round_up(nbins_x, tpp_x)) > 8)
		tpp_x += 1;

	/* configure pipes: */
	xoff = yoff = 0;
	for (i = 0; i < ARRAY_SIZE(ctx->pipe); i++) {
		struct fd_vsc_pipe *pipe = &ctx->pipe[i];

		if (xoff >= nbins_x) {
			xoff = 0;
			yoff += tpp_y;
		}

		if (yoff >= nbins_y) {
			break;
		}

		pipe->x = xoff;
		pipe->y = yoff;
		pipe->w = MIN2(tpp_x, nbins_x - xoff);
		pipe->h = MIN2(tpp_y, nbins_y - yoff);

		xoff += tpp_x;
	}

	for (; i < ARRAY_SIZE(ctx->pipe); i++) {
		struct fd_vsc_pipe *pipe = &ctx->pipe[i];
		pipe->x = pipe->y = pipe->w = pipe->h = 0;
	}

#if 0 /* debug */
	printf("%dx%d ... tpp=%dx%d\n", nbins_x, nbins_y, tpp_x, tpp_y);
	for (i = 0; i < 8; i++) {
		struct fd_vsc_pipe *pipe = &ctx->pipe[i];
		printf("pipe[%d]: %ux%u @ %u,%u\n", i,
				pipe->w, pipe->h, pipe->x, pipe->y);
	}
#endif

	/* configure tiles: */
	t = 0;
	yoff = miny;
	memset(tile_n, 0, sizeof(tile_n));
	for (i = 0; i < nbins_y; i++) {
		uint32_t bw, bh;

		xoff = minx;

		/* clip bin height: */
		bh = MIN2(bin_h, miny + height - yoff);

		for (j = 0; j < nbins_x; j++) {
			struct fd_tile *tile = &ctx->tile[t];
			uint32_t p;

			assert(t < ARRAY_SIZE(ctx->tile));

			/* pipe number: */
			p = ((i / tpp_y) * div_round_up(nbins_x, tpp_x)) + (j / tpp_x);

			/* clip bin width: */
			bw = MIN2(bin_w, minx + width - xoff);

			tile->n = tile_n[p]++;
			tile->p = p;
			tile->bin_w = bw;
			tile->bin_h = bh;
			tile->xoff = xoff;
			tile->yoff = yoff;

			t++;

			xoff += bw;
		}

		yoff += bh;
	}

#if 0 /* debug */
	t = 0;
	for (i = 0; i < nbins_y; i++) {
		for (j = 0; j < nbins_x; j++) {
			struct fd_tile *tile = &ctx->tile[t++];
			printf("|p:%u n:%u|", tile->p, tile->n);
		}
		printf("\n");
	}
#endif
}

static void
render_tiles(struct fd_batch *batch)
{
	struct fd_context *ctx = batch->ctx;
	struct fd_gmem_stateobj *gmem = &ctx->gmem;
	int i;

	ctx->emit_tile_init(batch);

	if (batch->restore)
		ctx->stats.batch_restore++;

	for (i = 0; i < (gmem->nbins_x * gmem->nbins_y); i++) {
		struct fd_tile *tile = &ctx->tile[i];

		DBG("bin_h=%d, yoff=%d, bin_w=%d, xoff=%d",
			tile->bin_h, tile->yoff, tile->bin_w, tile->xoff);

		ctx->emit_tile_prep(batch, tile);

		if (batch->restore) {
			ctx->emit_tile_mem2gmem(batch, tile);
		}

		ctx->emit_tile_renderprep(batch, tile);

		fd_hw_query_prepare_tile(batch, i, batch->gmem);

		/* emit IB to drawcmds: */
		ctx->emit_ib(batch->gmem, batch->draw);
		fd_reset_wfi(batch);

		/* emit gmem2mem to transfer tile back to system memory: */
		ctx->emit_tile_gmem2mem(batch, tile);
	}
}

static void
render_sysmem(struct fd_batch *batch)
{
	struct fd_context *ctx = batch->ctx;

	ctx->emit_sysmem_prep(batch);

	fd_hw_query_prepare_tile(batch, 0, batch->gmem);

	/* emit IB to drawcmds: */
	ctx->emit_ib(batch->gmem, batch->draw);
	fd_reset_wfi(batch);
}

void
fd_gmem_render_tiles(struct fd_batch *batch)
{
	struct fd_context *ctx = batch->ctx;
	struct pipe_framebuffer_state *pfb = &batch->framebuffer;
	bool sysmem = false;

	if (ctx->emit_sysmem_prep) {
		if (batch->cleared || batch->gmem_reason || (batch->num_draws > 5)) {
			DBG("GMEM: cleared=%x, gmem_reason=%x, num_draws=%u",
				batch->cleared, batch->gmem_reason, batch->num_draws);
		} else if (!(fd_mesa_debug & FD_DBG_NOBYPASS)) {
			sysmem = true;
		}
	}

	fd_reset_wfi(batch);

	ctx->stats.batch_total++;

	if (sysmem) {
		DBG("%p: rendering sysmem %ux%u (%s/%s)",
			batch, pfb->width, pfb->height,
			util_format_short_name(pipe_surface_format(pfb->cbufs[0])),
			util_format_short_name(pipe_surface_format(pfb->zsbuf)));
		fd_hw_query_prepare(batch, 1);
		render_sysmem(batch);
		ctx->stats.batch_sysmem++;
	} else {
		struct fd_gmem_stateobj *gmem = &ctx->gmem;
		calculate_tiles(batch);
		DBG("%p: rendering %dx%d tiles %ux%u (%s/%s)",
			batch, pfb->width, pfb->height, gmem->nbins_x, gmem->nbins_y,
			util_format_short_name(pipe_surface_format(pfb->cbufs[0])),
			util_format_short_name(pipe_surface_format(pfb->zsbuf)));
		fd_hw_query_prepare(batch, gmem->nbins_x * gmem->nbins_y);
		render_tiles(batch);
		ctx->stats.batch_gmem++;
	}

	fd_ringbuffer_flush(batch->gmem);

	fd_fence_ref(&ctx->screen->base, &ctx->last_fence, NULL);
	ctx->last_fence = fd_fence_create(ctx, fd_ringbuffer_timestamp(batch->gmem));
}

/* tile needs restore if it isn't completely contained within the
 * cleared scissor:
 */
static bool
skip_restore(struct pipe_scissor_state *scissor, struct fd_tile *tile)
{
	unsigned minx = tile->xoff;
	unsigned maxx = tile->xoff + tile->bin_w;
	unsigned miny = tile->yoff;
	unsigned maxy = tile->yoff + tile->bin_h;
	return (minx >= scissor->minx) && (maxx <= scissor->maxx) &&
			(miny >= scissor->miny) && (maxy <= scissor->maxy);
}

/* When deciding whether a tile needs mem2gmem, we need to take into
 * account the scissor rect(s) that were cleared.  To simplify we only
 * consider the last scissor rect for each buffer, since the common
 * case would be a single clear.
 */
bool
fd_gmem_needs_restore(struct fd_batch *batch, struct fd_tile *tile,
		uint32_t buffers)
{
	if (!(batch->restore & buffers))
		return false;

	/* if buffers partially cleared, then slow-path to figure out
	 * if this particular tile needs restoring:
	 */
	if ((buffers & FD_BUFFER_COLOR) &&
			(batch->partial_cleared & FD_BUFFER_COLOR) &&
			skip_restore(&batch->cleared_scissor.color, tile))
		return false;
	if ((buffers & FD_BUFFER_DEPTH) &&
			(batch->partial_cleared & FD_BUFFER_DEPTH) &&
			skip_restore(&batch->cleared_scissor.depth, tile))
		return false;
	if ((buffers & FD_BUFFER_STENCIL) &&
			(batch->partial_cleared & FD_BUFFER_STENCIL) &&
			skip_restore(&batch->cleared_scissor.stencil, tile))
		return false;

	return true;
}