summaryrefslogtreecommitdiff
path: root/lib/mesa/src/gallium/drivers/freedreno/ir3/ir3_sched.c
blob: 8f640febc5da6b691a3668278fd85d7b4fb0de13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */

/*
 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Authors:
 *    Rob Clark <robclark@freedesktop.org>
 */


#include "util/u_math.h"

#include "ir3.h"

/*
 * Instruction Scheduling:
 *
 * A recursive depth based scheduling algo.  Recursively find an eligible
 * instruction to schedule from the deepest instruction (recursing through
 * it's unscheduled src instructions).  Normally this would result in a
 * lot of re-traversal of the same instructions, so we cache results in
 * instr->data (and clear cached results that would be no longer valid
 * after scheduling an instruction).
 *
 * There are a few special cases that need to be handled, since sched
 * is currently independent of register allocation.  Usages of address
 * register (a0.x) or predicate register (p0.x) must be serialized.  Ie.
 * if you have two pairs of instructions that write the same special
 * register and then read it, then those pairs cannot be interleaved.
 * To solve this, when we are in such a scheduling "critical section",
 * and we encounter a conflicting write to a special register, we try
 * to schedule any remaining instructions that use that value first.
 */

struct ir3_sched_ctx {
	struct ir3_block *block;           /* the current block */
	struct list_head depth_list;       /* depth sorted unscheduled instrs */
	struct ir3_instruction *scheduled; /* last scheduled instr XXX remove*/
	struct ir3_instruction *addr;      /* current a0.x user, if any */
	struct ir3_instruction *pred;      /* current p0.x user, if any */
	bool error;
};

static bool is_sfu_or_mem(struct ir3_instruction *instr)
{
	return is_sfu(instr) || is_mem(instr);
}

#define NULL_INSTR ((void *)~0)

static void
clear_cache(struct ir3_sched_ctx *ctx, struct ir3_instruction *instr)
{
	list_for_each_entry (struct ir3_instruction, instr2, &ctx->depth_list, node) {
		if ((instr2->data == instr) || (instr2->data == NULL_INSTR) || !instr)
			instr2->data = NULL;
	}
}

static void
schedule(struct ir3_sched_ctx *ctx, struct ir3_instruction *instr)
{
	debug_assert(ctx->block == instr->block);

	/* maybe there is a better way to handle this than just stuffing
	 * a nop.. ideally we'd know about this constraint in the
	 * scheduling and depth calculation..
	 */
	if (ctx->scheduled && is_sfu_or_mem(ctx->scheduled) && is_sfu_or_mem(instr))
		ir3_NOP(ctx->block);

	/* remove from depth list:
	 */
	list_delinit(&instr->node);

	if (writes_addr(instr)) {
		debug_assert(ctx->addr == NULL);
		ctx->addr = instr;
	}

	if (writes_pred(instr)) {
		debug_assert(ctx->pred == NULL);
		ctx->pred = instr;
	}

	instr->flags |= IR3_INSTR_MARK;

	list_addtail(&instr->node, &instr->block->instr_list);
	ctx->scheduled = instr;

	if (writes_addr(instr) || writes_pred(instr) || is_input(instr)) {
		clear_cache(ctx, NULL);
	} else {
		/* invalidate only the necessary entries.. */
		clear_cache(ctx, instr);
	}
}

static struct ir3_instruction *
deepest(struct ir3_instruction **srcs, unsigned nsrcs)
{
	struct ir3_instruction *d = NULL;
	unsigned i = 0, id = 0;

	while ((i < nsrcs) && !(d = srcs[id = i]))
		i++;

	if (!d)
		return NULL;

	for (; i < nsrcs; i++)
		if (srcs[i] && (srcs[i]->depth > d->depth))
			d = srcs[id = i];

	srcs[id] = NULL;

	return d;
}

static unsigned
distance(struct ir3_sched_ctx *ctx, struct ir3_instruction *instr,
		unsigned maxd)
{
	struct list_head *instr_list = &ctx->block->instr_list;
	unsigned d = 0;

	list_for_each_entry_rev (struct ir3_instruction, n, instr_list, node) {
		if ((n == instr) || (d >= maxd))
			break;
		if (is_alu(n) || is_flow(n))
			d++;
	}

	return d;
}

/* calculate delay for specified src: */
static unsigned
delay_calc_srcn(struct ir3_sched_ctx *ctx,
		struct ir3_instruction *assigner,
		struct ir3_instruction *consumer, unsigned srcn)
{
	unsigned delay = 0;

	if (is_meta(assigner)) {
		struct ir3_instruction *src;
		foreach_ssa_src(src, assigner) {
			unsigned d;
			if (src->block != assigner->block)
				break;
			d = delay_calc_srcn(ctx, src, consumer, srcn);
			delay = MAX2(delay, d);
		}
	} else {
		delay = ir3_delayslots(assigner, consumer, srcn);
		delay -= distance(ctx, assigner, delay);
	}

	return delay;
}

/* calculate delay for instruction (maximum of delay for all srcs): */
static unsigned
delay_calc(struct ir3_sched_ctx *ctx, struct ir3_instruction *instr)
{
	unsigned delay = 0;
	struct ir3_instruction *src;

	foreach_ssa_src_n(src, i, instr) {
		unsigned d;
		/* for array writes, no need to delay on previous write: */
		if (i == 0)
			continue;
		if (src->block != instr->block)
			continue;
		d = delay_calc_srcn(ctx, src, instr, i);
		delay = MAX2(delay, d);
	}

	return delay;
}

struct ir3_sched_notes {
	/* there is at least one kill which could be scheduled, except
	 * for unscheduled bary.f's:
	 */
	bool blocked_kill;
	/* there is at least one instruction that could be scheduled,
	 * except for conflicting address/predicate register usage:
	 */
	bool addr_conflict, pred_conflict;
};

static bool is_scheduled(struct ir3_instruction *instr)
{
	return !!(instr->flags & IR3_INSTR_MARK);
}

/* could an instruction be scheduled if specified ssa src was scheduled? */
static bool
could_sched(struct ir3_instruction *instr, struct ir3_instruction *src)
{
	struct ir3_instruction *other_src;
	foreach_ssa_src(other_src, instr) {
		/* if dependency not scheduled, we aren't ready yet: */
		if ((src != other_src) && !is_scheduled(other_src)) {
			return false;
		}
	}
	return true;
}

/* Check if instruction is ok to schedule.  Make sure it is not blocked
 * by use of addr/predicate register, etc.
 */
static bool
check_instr(struct ir3_sched_ctx *ctx, struct ir3_sched_notes *notes,
		struct ir3_instruction *instr)
{
	/* For instructions that write address register we need to
	 * make sure there is at least one instruction that uses the
	 * addr value which is otherwise ready.
	 *
	 * TODO if any instructions use pred register and have other
	 * src args, we would need to do the same for writes_pred()..
	 */
	if (writes_addr(instr)) {
		struct ir3 *ir = instr->block->shader;
		bool ready = false;
		for (unsigned i = 0; (i < ir->indirects_count) && !ready; i++) {
			struct ir3_instruction *indirect = ir->indirects[i];
			if (!indirect)
				continue;
			if (indirect->address != instr)
				continue;
			ready = could_sched(indirect, instr);
		}

		/* nothing could be scheduled, so keep looking: */
		if (!ready)
			return false;
	}

	/* if this is a write to address/predicate register, and that
	 * register is currently in use, we need to defer until it is
	 * free:
	 */
	if (writes_addr(instr) && ctx->addr) {
		debug_assert(ctx->addr != instr);
		notes->addr_conflict = true;
		return false;
	}

	if (writes_pred(instr) && ctx->pred) {
		debug_assert(ctx->pred != instr);
		notes->pred_conflict = true;
		return false;
	}

	/* if the instruction is a kill, we need to ensure *every*
	 * bary.f is scheduled.  The hw seems unhappy if the thread
	 * gets killed before the end-input (ei) flag is hit.
	 *
	 * We could do this by adding each bary.f instruction as
	 * virtual ssa src for the kill instruction.  But we have
	 * fixed length instr->regs[].
	 *
	 * TODO this wouldn't be quite right if we had multiple
	 * basic blocks, if any block was conditional.  We'd need
	 * to schedule the bary.f's outside of any block which
	 * was conditional that contained a kill.. I think..
	 */
	if (is_kill(instr)) {
		struct ir3 *ir = instr->block->shader;

		for (unsigned i = 0; i < ir->baryfs_count; i++) {
			struct ir3_instruction *baryf = ir->baryfs[i];
			if (baryf->flags & IR3_INSTR_UNUSED)
				continue;
			if (!is_scheduled(baryf)) {
				notes->blocked_kill = true;
				return false;
			}
		}
	}

	return true;
}

/* Find the best instruction to schedule from specified instruction or
 * recursively it's ssa sources.
 */
static struct ir3_instruction *
find_instr_recursive(struct ir3_sched_ctx *ctx, struct ir3_sched_notes *notes,
		struct ir3_instruction *instr)
{
	struct ir3_instruction *srcs[__ssa_src_cnt(instr)];
	struct ir3_instruction *src;
	unsigned nsrcs = 0;

	if (is_scheduled(instr))
		return NULL;

	/* use instr->data to cache the results of recursing up the
	 * instr src's.  Otherwise the recursive algo can scale quite
	 * badly w/ shader size.  But this takes some care to clear
	 * the cache appropriately when instructions are scheduled.
	 */
	if (instr->data) {
		if (instr->data == NULL_INSTR)
			return NULL;
		return instr->data;
	}

	/* find unscheduled srcs: */
	foreach_ssa_src(src, instr) {
		if (!is_scheduled(src)) {
			debug_assert(nsrcs < ARRAY_SIZE(srcs));
			srcs[nsrcs++] = src;
		}
	}

	/* if all our src's are already scheduled: */
	if (nsrcs == 0) {
		if (check_instr(ctx, notes, instr)) {
			instr->data = instr;
			return instr;
		}
		return NULL;
	}

	while ((src = deepest(srcs, nsrcs))) {
		struct ir3_instruction *candidate;

		candidate = find_instr_recursive(ctx, notes, src);
		if (!candidate)
			continue;

		if (check_instr(ctx, notes, candidate)) {
			instr->data = candidate;
			return candidate;
		}
	}

	instr->data = NULL_INSTR;
	return NULL;
}

/* find instruction to schedule: */
static struct ir3_instruction *
find_eligible_instr(struct ir3_sched_ctx *ctx, struct ir3_sched_notes *notes)
{
	struct ir3_instruction *best_instr = NULL;
	unsigned min_delay = ~0;

	/* TODO we'd really rather use the list/array of block outputs.  But we
	 * don't have such a thing.  Recursing *every* instruction in the list
	 * will result in a lot of repeated traversal, since instructions will
	 * get traversed both when they appear as ssa src to a later instruction
	 * as well as where they appear in the depth_list.
	 */
	list_for_each_entry_rev (struct ir3_instruction, instr, &ctx->depth_list, node) {
		struct ir3_instruction *candidate;
		unsigned delay;

		candidate = find_instr_recursive(ctx, notes, instr);
		if (!candidate)
			continue;

		delay = delay_calc(ctx, candidate);
		if (delay < min_delay) {
			best_instr = candidate;
			min_delay = delay;
		}

		if (min_delay == 0)
			break;
	}

	return best_instr;
}

/* "spill" the address register by remapping any unscheduled
 * instructions which depend on the current address register
 * to a clone of the instruction which wrote the address reg.
 */
static struct ir3_instruction *
split_addr(struct ir3_sched_ctx *ctx)
{
	struct ir3 *ir;
	struct ir3_instruction *new_addr = NULL;
	unsigned i;

	debug_assert(ctx->addr);

	ir = ctx->addr->block->shader;

	for (i = 0; i < ir->indirects_count; i++) {
		struct ir3_instruction *indirect = ir->indirects[i];

		if (!indirect)
			continue;

		/* skip instructions already scheduled: */
		if (is_scheduled(indirect))
			continue;

		/* remap remaining instructions using current addr
		 * to new addr:
		 */
		if (indirect->address == ctx->addr) {
			if (!new_addr) {
				new_addr = ir3_instr_clone(ctx->addr);
				/* original addr is scheduled, but new one isn't: */
				new_addr->flags &= ~IR3_INSTR_MARK;
			}
			ir3_instr_set_address(indirect, new_addr);
		}
	}

	/* all remaining indirects remapped to new addr: */
	ctx->addr = NULL;

	return new_addr;
}

/* "spill" the predicate register by remapping any unscheduled
 * instructions which depend on the current predicate register
 * to a clone of the instruction which wrote the address reg.
 */
static struct ir3_instruction *
split_pred(struct ir3_sched_ctx *ctx)
{
	struct ir3 *ir;
	struct ir3_instruction *new_pred = NULL;
	unsigned i;

	debug_assert(ctx->pred);

	ir = ctx->pred->block->shader;

	for (i = 0; i < ir->predicates_count; i++) {
		struct ir3_instruction *predicated = ir->predicates[i];

		/* skip instructions already scheduled: */
		if (is_scheduled(predicated))
			continue;

		/* remap remaining instructions using current pred
		 * to new pred:
		 *
		 * TODO is there ever a case when pred isn't first
		 * (and only) src?
		 */
		if (ssa(predicated->regs[1]) == ctx->pred) {
			if (!new_pred) {
				new_pred = ir3_instr_clone(ctx->pred);
				/* original pred is scheduled, but new one isn't: */
				new_pred->flags &= ~IR3_INSTR_MARK;
			}
			predicated->regs[1]->instr = new_pred;
		}
	}

	/* all remaining predicated remapped to new pred: */
	ctx->pred = NULL;

	return new_pred;
}

static void
sched_block(struct ir3_sched_ctx *ctx, struct ir3_block *block)
{
	struct list_head unscheduled_list;

	ctx->block = block;

	/* addr/pred writes are per-block: */
	ctx->addr = NULL;
	ctx->pred = NULL;

	/* move all instructions to the unscheduled list, and
	 * empty the block's instruction list (to which we will
	 * be inserting).
	 */
	list_replace(&block->instr_list, &unscheduled_list);
	list_inithead(&block->instr_list);
	list_inithead(&ctx->depth_list);

	/* first a pre-pass to schedule all meta:input/phi instructions
	 * (which need to appear first so that RA knows the register is
	 * occupied), and move remaining to depth sorted list:
	 */
	list_for_each_entry_safe (struct ir3_instruction, instr, &unscheduled_list, node) {
		if (is_meta(instr) && ((instr->opc == OPC_META_INPUT) ||
				(instr->opc == OPC_META_PHI))) {
			schedule(ctx, instr);
		} else {
			ir3_insert_by_depth(instr, &ctx->depth_list);
		}
	}

	while (!list_empty(&ctx->depth_list)) {
		struct ir3_sched_notes notes = {0};
		struct ir3_instruction *instr;

		instr = find_eligible_instr(ctx, &notes);

		if (instr) {
			unsigned delay = delay_calc(ctx, instr);

			/* and if we run out of instructions that can be scheduled,
			 * then it is time for nop's:
			 */
			debug_assert(delay <= 6);
			while (delay > 0) {
				ir3_NOP(block);
				delay--;
			}

			schedule(ctx, instr);
		} else {
			struct ir3_instruction *new_instr = NULL;

			/* nothing available to schedule.. if we are blocked on
			 * address/predicate register conflict, then break the
			 * deadlock by cloning the instruction that wrote that
			 * reg:
			 */
			if (notes.addr_conflict) {
				new_instr = split_addr(ctx);
			} else if (notes.pred_conflict) {
				new_instr = split_pred(ctx);
			} else {
				debug_assert(0);
				ctx->error = true;
				return;
			}

			if (new_instr) {
				/* clearing current addr/pred can change what is
				 * available to schedule, so clear cache..
				 */
				clear_cache(ctx, NULL);

				ir3_insert_by_depth(new_instr, &ctx->depth_list);
				/* the original instr that wrote addr/pred may have
				 * originated from a different block:
				 */
				new_instr->block = block;
			}
		}
	}

	/* And lastly, insert branch/jump instructions to take us to
	 * the next block.  Later we'll strip back out the branches
	 * that simply jump to next instruction.
	 */
	if (block->successors[1]) {
		/* if/else, conditional branches to "then" or "else": */
		struct ir3_instruction *br;
		unsigned delay = 6;

		debug_assert(ctx->pred);
		debug_assert(block->condition);

		delay -= distance(ctx, ctx->pred, delay);

		while (delay > 0) {
			ir3_NOP(block);
			delay--;
		}

		/* create "else" branch first (since "then" block should
		 * frequently/always end up being a fall-thru):
		 */
		br = ir3_BR(block);
		br->cat0.inv = true;
		br->cat0.target = block->successors[1];

		/* NOTE: we have to hard code delay of 6 above, since
		 * we want to insert the nop's before constructing the
		 * branch.  Throw in an assert so we notice if this
		 * ever breaks on future generation:
		 */
		debug_assert(ir3_delayslots(ctx->pred, br, 0) == 6);

		br = ir3_BR(block);
		br->cat0.target = block->successors[0];

	} else if (block->successors[0]) {
		/* otherwise unconditional jump to next block: */
		struct ir3_instruction *jmp;

		jmp = ir3_JUMP(block);
		jmp->cat0.target = block->successors[0];
	}

	/* NOTE: if we kept track of the predecessors, we could do a better
	 * job w/ (jp) flags.. every node w/ > predecessor is a join point.
	 * Note that as we eliminate blocks which contain only an unconditional
	 * jump we probably need to propagate (jp) flag..
	 */
}

/* this is needed to ensure later RA stage succeeds: */
static void
sched_insert_parallel_copies(struct ir3_block *block)
{
	list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
		if (is_meta(instr) && (instr->opc == OPC_META_PHI)) {
			struct ir3_register *reg;
			foreach_src(reg, instr) {
				struct ir3_instruction *src = reg->instr;
				struct ir3_instruction *mov =
					ir3_MOV(src->block, src, TYPE_U32);
				mov->regs[0]->flags |= IR3_REG_PHI_SRC;
				mov->regs[0]->instr = instr;
				reg->instr = mov;
			}
		}
	}
}

int ir3_sched(struct ir3 *ir)
{
	struct ir3_sched_ctx ctx = {0};
	list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
		sched_insert_parallel_copies(block);
	}
	ir3_clear_mark(ir);
	list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
		sched_block(&ctx, block);
	}
	if (ctx.error)
		return -1;
	return 0;
}