summaryrefslogtreecommitdiff
path: root/lib/mesa/src/gallium/drivers/r600/evergreen_compute.c
blob: 6e87539cfe763a261169920a44cefcb9d309a85b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
/*
 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * on the rights to use, copy, modify, merge, publish, distribute, sub
 * license, and/or sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors:
 *      Adam Rak <adam.rak@streamnovation.com>
 */

#ifdef HAVE_OPENCL
#include <gelf.h>
#include <libelf.h>
#endif
#include <stdio.h>
#include <errno.h>
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "util/u_blitter.h"
#include "util/list.h"
#include "util/u_transfer.h"
#include "util/u_surface.h"
#include "util/u_pack_color.h"
#include "util/u_memory.h"
#include "util/u_inlines.h"
#include "util/u_framebuffer.h"
#include "pipebuffer/pb_buffer.h"
#include "evergreend.h"
#include "r600_shader.h"
#include "r600_pipe.h"
#include "r600_formats.h"
#include "evergreen_compute.h"
#include "evergreen_compute_internal.h"
#include "compute_memory_pool.h"
#include "sb/sb_public.h"
#include <inttypes.h>

/**
RAT0 is for global binding write
VTX1 is for global binding read

for wrting images RAT1...
for reading images TEX2...
  TEX2-RAT1 is paired

TEX2... consumes the same fetch resources, that VTX2... would consume

CONST0 and VTX0 is for parameters
  CONST0 is binding smaller input parameter buffer, and for constant indexing,
  also constant cached
  VTX0 is for indirect/non-constant indexing, or if the input is bigger than
  the constant cache can handle

RAT-s are limited to 12, so we can only bind at most 11 texture for writing
because we reserve RAT0 for global bindings. With byteaddressing enabled,
we should reserve another one too.=> 10 image binding for writing max.

from Nvidia OpenCL:
  CL_DEVICE_MAX_READ_IMAGE_ARGS:        128
  CL_DEVICE_MAX_WRITE_IMAGE_ARGS:       8 

so 10 for writing is enough. 176 is the max for reading according to the docs

writable images should be listed first < 10, so their id corresponds to RAT(id+1)
writable images will consume TEX slots, VTX slots too because of linear indexing

*/

struct r600_resource *r600_compute_buffer_alloc_vram(struct r600_screen *screen,
						     unsigned size)
{
	struct pipe_resource *buffer = NULL;
	assert(size);

	buffer = pipe_buffer_create((struct pipe_screen*) screen,
				    0, PIPE_USAGE_IMMUTABLE, size);

	return (struct r600_resource *)buffer;
}


static void evergreen_set_rat(struct r600_pipe_compute *pipe,
			      unsigned id,
			      struct r600_resource *bo,
			      int start,
			      int size)
{
	struct pipe_surface rat_templ;
	struct r600_surface *surf = NULL;
	struct r600_context *rctx = NULL;

	assert(id < 12);
	assert((size & 3) == 0);
	assert((start & 0xFF) == 0);

	rctx = pipe->ctx;

	COMPUTE_DBG(rctx->screen, "bind rat: %i \n", id);

	/* Create the RAT surface */
	memset(&rat_templ, 0, sizeof(rat_templ));
	rat_templ.format = PIPE_FORMAT_R32_UINT;
	rat_templ.u.tex.level = 0;
	rat_templ.u.tex.first_layer = 0;
	rat_templ.u.tex.last_layer = 0;

	/* Add the RAT the list of color buffers */
	pipe->ctx->framebuffer.state.cbufs[id] = pipe->ctx->b.b.create_surface(
		(struct pipe_context *)pipe->ctx,
		(struct pipe_resource *)bo, &rat_templ);

	/* Update the number of color buffers */
	pipe->ctx->framebuffer.state.nr_cbufs =
		MAX2(id + 1, pipe->ctx->framebuffer.state.nr_cbufs);

	/* Update the cb_target_mask
	 * XXX: I think this is a potential spot for bugs once we start doing
	 * GL interop.  cb_target_mask may be modified in the 3D sections
	 * of this driver. */
	pipe->ctx->compute_cb_target_mask |= (0xf << (id * 4));

	surf = (struct r600_surface*)pipe->ctx->framebuffer.state.cbufs[id];
	evergreen_init_color_surface_rat(rctx, surf);
}

static void evergreen_cs_set_vertex_buffer(struct r600_context *rctx,
					   unsigned vb_index,
					   unsigned offset,
					   struct pipe_resource *buffer)
{
	struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
	struct pipe_vertex_buffer *vb = &state->vb[vb_index];
	vb->stride = 1;
	vb->buffer_offset = offset;
	vb->buffer.resource = buffer;
	vb->is_user_buffer = false;

	/* The vertex instructions in the compute shaders use the texture cache,
	 * so we need to invalidate it. */
	rctx->b.flags |= R600_CONTEXT_INV_VERTEX_CACHE;
	state->enabled_mask |= 1 << vb_index;
	state->dirty_mask |= 1 << vb_index;
	r600_mark_atom_dirty(rctx, &state->atom);
}

static void evergreen_cs_set_constant_buffer(struct r600_context *rctx,
					     unsigned cb_index,
					     unsigned offset,
					     unsigned size,
					     struct pipe_resource *buffer)
{
	struct pipe_constant_buffer cb;
	cb.buffer_size = size;
	cb.buffer_offset = offset;
	cb.buffer = buffer;
	cb.user_buffer = NULL;

	rctx->b.b.set_constant_buffer(&rctx->b.b, PIPE_SHADER_COMPUTE, cb_index, &cb);
}

/* We need to define these R600 registers here, because we can't include
 * evergreend.h and r600d.h.
 */
#define R_028868_SQ_PGM_RESOURCES_VS                 0x028868
#define R_028850_SQ_PGM_RESOURCES_PS                 0x028850

#ifdef HAVE_OPENCL
static void parse_symbol_table(Elf_Data *symbol_table_data,
				const GElf_Shdr *symbol_table_header,
				struct ac_shader_binary *binary)
{
	GElf_Sym symbol;
	unsigned i = 0;
	unsigned symbol_count =
		symbol_table_header->sh_size / symbol_table_header->sh_entsize;

	/* We are over allocating this list, because symbol_count gives the
	 * total number of symbols, and we will only be filling the list
	 * with offsets of global symbols.  The memory savings from
	 * allocating the correct size of this list will be small, and
	 * I don't think it is worth the cost of pre-computing the number
	 * of global symbols.
	 */
	binary->global_symbol_offsets = CALLOC(symbol_count, sizeof(uint64_t));

	while (gelf_getsym(symbol_table_data, i++, &symbol)) {
		unsigned i;
		if (GELF_ST_BIND(symbol.st_info) != STB_GLOBAL ||
		    symbol.st_shndx == 0 /* Undefined symbol */) {
			continue;
		}

		binary->global_symbol_offsets[binary->global_symbol_count] =
					symbol.st_value;

		/* Sort the list using bubble sort.  This list will usually
		 * be small. */
		for (i = binary->global_symbol_count; i > 0; --i) {
			uint64_t lhs = binary->global_symbol_offsets[i - 1];
			uint64_t rhs = binary->global_symbol_offsets[i];
			if (lhs < rhs) {
				break;
			}
			binary->global_symbol_offsets[i] = lhs;
			binary->global_symbol_offsets[i - 1] = rhs;
		}
		++binary->global_symbol_count;
	}
}


static void parse_relocs(Elf *elf, Elf_Data *relocs, Elf_Data *symbols,
			unsigned symbol_sh_link,
			struct ac_shader_binary *binary)
{
	unsigned i;

	if (!relocs || !symbols || !binary->reloc_count) {
		return;
	}
	binary->relocs = CALLOC(binary->reloc_count,
			sizeof(struct ac_shader_reloc));
	for (i = 0; i < binary->reloc_count; i++) {
		GElf_Sym symbol;
		GElf_Rel rel;
		char *symbol_name;
		struct ac_shader_reloc *reloc = &binary->relocs[i];

		gelf_getrel(relocs, i, &rel);
		gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &symbol);
		symbol_name = elf_strptr(elf, symbol_sh_link, symbol.st_name);

		reloc->offset = rel.r_offset;
		strncpy(reloc->name, symbol_name, sizeof(reloc->name)-1);
		reloc->name[sizeof(reloc->name)-1] = 0;
	}
}

static void r600_elf_read(const char *elf_data, unsigned elf_size,
		 struct ac_shader_binary *binary)
{
	char *elf_buffer;
	Elf *elf;
	Elf_Scn *section = NULL;
	Elf_Data *symbols = NULL, *relocs = NULL;
	size_t section_str_index;
	unsigned symbol_sh_link = 0;

	/* One of the libelf implementations
	 * (http://www.mr511.de/software/english.htm) requires calling
	 * elf_version() before elf_memory().
	 */
	elf_version(EV_CURRENT);
	elf_buffer = MALLOC(elf_size);
	memcpy(elf_buffer, elf_data, elf_size);

	elf = elf_memory(elf_buffer, elf_size);

	elf_getshdrstrndx(elf, &section_str_index);

	while ((section = elf_nextscn(elf, section))) {
		const char *name;
		Elf_Data *section_data = NULL;
		GElf_Shdr section_header;
		if (gelf_getshdr(section, &section_header) != &section_header) {
			fprintf(stderr, "Failed to read ELF section header\n");
			return;
		}
		name = elf_strptr(elf, section_str_index, section_header.sh_name);
		if (!strcmp(name, ".text")) {
			section_data = elf_getdata(section, section_data);
			binary->code_size = section_data->d_size;
			binary->code = MALLOC(binary->code_size * sizeof(unsigned char));
			memcpy(binary->code, section_data->d_buf, binary->code_size);
		} else if (!strcmp(name, ".AMDGPU.config")) {
			section_data = elf_getdata(section, section_data);
			binary->config_size = section_data->d_size;
			binary->config = MALLOC(binary->config_size * sizeof(unsigned char));
			memcpy(binary->config, section_data->d_buf, binary->config_size);
		} else if (!strcmp(name, ".AMDGPU.disasm")) {
			/* Always read disassembly if it's available. */
			section_data = elf_getdata(section, section_data);
			binary->disasm_string = strndup(section_data->d_buf,
							section_data->d_size);
		} else if (!strncmp(name, ".rodata", 7)) {
			section_data = elf_getdata(section, section_data);
			binary->rodata_size = section_data->d_size;
			binary->rodata = MALLOC(binary->rodata_size * sizeof(unsigned char));
			memcpy(binary->rodata, section_data->d_buf, binary->rodata_size);
		} else if (!strncmp(name, ".symtab", 7)) {
			symbols = elf_getdata(section, section_data);
			symbol_sh_link = section_header.sh_link;
			parse_symbol_table(symbols, &section_header, binary);
		} else if (!strcmp(name, ".rel.text")) {
			relocs = elf_getdata(section, section_data);
			binary->reloc_count = section_header.sh_size /
					section_header.sh_entsize;
		}
	}

	parse_relocs(elf, relocs, symbols, symbol_sh_link, binary);

	if (elf){
		elf_end(elf);
	}
	FREE(elf_buffer);

	/* Cache the config size per symbol */
	if (binary->global_symbol_count) {
		binary->config_size_per_symbol =
			binary->config_size / binary->global_symbol_count;
	} else {
		binary->global_symbol_count = 1;
		binary->config_size_per_symbol = binary->config_size;
	}
}

static const unsigned char *r600_shader_binary_config_start(
	const struct ac_shader_binary *binary,
	uint64_t symbol_offset)
{
	unsigned i;
	for (i = 0; i < binary->global_symbol_count; ++i) {
		if (binary->global_symbol_offsets[i] == symbol_offset) {
			unsigned offset = i * binary->config_size_per_symbol;
			return binary->config + offset;
		}
	}
	return binary->config;
}

static void r600_shader_binary_read_config(const struct ac_shader_binary *binary,
					   struct r600_bytecode *bc,
					   uint64_t symbol_offset,
					   boolean *use_kill)
{
       unsigned i;
       const unsigned char *config =
               r600_shader_binary_config_start(binary, symbol_offset);

       for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
               unsigned reg =
                       util_le32_to_cpu(*(uint32_t*)(config + i));
               unsigned value =
                       util_le32_to_cpu(*(uint32_t*)(config + i + 4));
               switch (reg) {
               /* R600 / R700 */
               case R_028850_SQ_PGM_RESOURCES_PS:
               case R_028868_SQ_PGM_RESOURCES_VS:
               /* Evergreen / Northern Islands */
               case R_028844_SQ_PGM_RESOURCES_PS:
               case R_028860_SQ_PGM_RESOURCES_VS:
               case R_0288D4_SQ_PGM_RESOURCES_LS:
                       bc->ngpr = MAX2(bc->ngpr, G_028844_NUM_GPRS(value));
                       bc->nstack = MAX2(bc->nstack, G_028844_STACK_SIZE(value));
                       break;
               case R_02880C_DB_SHADER_CONTROL:
                       *use_kill = G_02880C_KILL_ENABLE(value);
                       break;
               case R_0288E8_SQ_LDS_ALLOC:
                       bc->nlds_dw = value;
                       break;
               }
       }
}

static unsigned r600_create_shader(struct r600_bytecode *bc,
				   const struct ac_shader_binary *binary,
				   boolean *use_kill)

{
	assert(binary->code_size % 4 == 0);
	bc->bytecode = CALLOC(1, binary->code_size);
	memcpy(bc->bytecode, binary->code, binary->code_size);
	bc->ndw = binary->code_size / 4;

	r600_shader_binary_read_config(binary, bc, 0, use_kill);
	return 0;
}

#endif

static void r600_destroy_shader(struct r600_bytecode *bc)
{
	FREE(bc->bytecode);
}

static void *evergreen_create_compute_state(struct pipe_context *ctx,
					    const struct pipe_compute_state *cso)
{
	struct r600_context *rctx = (struct r600_context *)ctx;
	struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
#ifdef HAVE_OPENCL
	const struct pipe_llvm_program_header *header;
	const char *code;
	void *p;
	boolean use_kill;

	COMPUTE_DBG(rctx->screen, "*** evergreen_create_compute_state\n");
	header = cso->prog;
	code = cso->prog + sizeof(struct pipe_llvm_program_header);
	radeon_shader_binary_init(&shader->binary);
	r600_elf_read(code, header->num_bytes, &shader->binary);
	r600_create_shader(&shader->bc, &shader->binary, &use_kill);

	/* Upload code + ROdata */
	shader->code_bo = r600_compute_buffer_alloc_vram(rctx->screen,
							shader->bc.ndw * 4);
	p = r600_buffer_map_sync_with_rings(&rctx->b, shader->code_bo, PIPE_TRANSFER_WRITE);
	//TODO: use util_memcpy_cpu_to_le32 ?
	memcpy(p, shader->bc.bytecode, shader->bc.ndw * 4);
	rctx->b.ws->buffer_unmap(shader->code_bo->buf);
#endif

	shader->ctx = rctx;
	shader->local_size = cso->req_local_mem;
	shader->private_size = cso->req_private_mem;
	shader->input_size = cso->req_input_mem;

	return shader;
}

static void evergreen_delete_compute_state(struct pipe_context *ctx, void *state)
{
	struct r600_context *rctx = (struct r600_context *)ctx;
	struct r600_pipe_compute *shader = state;

	COMPUTE_DBG(rctx->screen, "*** evergreen_delete_compute_state\n");

	if (!shader)
		return;

#ifdef HAVE_OPENCL
	radeon_shader_binary_clean(&shader->binary);
#endif
	r600_destroy_shader(&shader->bc);

	/* TODO destroy shader->code_bo, shader->const_bo
	 * we'll need something like r600_buffer_free */
	FREE(shader);
}

static void evergreen_bind_compute_state(struct pipe_context *ctx, void *state)
{
	struct r600_context *rctx = (struct r600_context *)ctx;

	COMPUTE_DBG(rctx->screen, "*** evergreen_bind_compute_state\n");

	rctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
}

/* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
 * kernel parameters there are implicit parameters that need to be stored
 * in the vertex buffer as well.  Here is how these parameters are organized in
 * the buffer:
 *
 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
 * DWORDS 6-8: Number of work items within each work group in each dimension
 *             (x,y,z)
 * DWORDS 9+ : Kernel parameters
 */
static void evergreen_compute_upload_input(struct pipe_context *ctx,
					   const struct pipe_grid_info *info)
{
	struct r600_context *rctx = (struct r600_context *)ctx;
	struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
	unsigned i;
	/* We need to reserve 9 dwords (36 bytes) for implicit kernel
	 * parameters.
	 */
	unsigned input_size = shader->input_size + 36;
	uint32_t *num_work_groups_start;
	uint32_t *global_size_start;
	uint32_t *local_size_start;
	uint32_t *kernel_parameters_start;
	struct pipe_box box;
	struct pipe_transfer *transfer = NULL;

	if (shader->input_size == 0) {
		return;
	}

	if (!shader->kernel_param) {
		/* Add space for the grid dimensions */
		shader->kernel_param = (struct r600_resource *)
			pipe_buffer_create(ctx->screen, 0,
					PIPE_USAGE_IMMUTABLE, input_size);
	}

	u_box_1d(0, input_size, &box);
	num_work_groups_start = ctx->transfer_map(ctx,
			(struct pipe_resource*)shader->kernel_param,
			0, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_DISCARD_RANGE,
			&box, &transfer);
	global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
	local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
	kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);

	/* Copy the work group size */
	memcpy(num_work_groups_start, info->grid, 3 * sizeof(uint));

	/* Copy the global size */
	for (i = 0; i < 3; i++) {
		global_size_start[i] = info->grid[i] * info->block[i];
	}

	/* Copy the local dimensions */
	memcpy(local_size_start, info->block, 3 * sizeof(uint));

	/* Copy the kernel inputs */
	memcpy(kernel_parameters_start, info->input, shader->input_size);

	for (i = 0; i < (input_size / 4); i++) {
		COMPUTE_DBG(rctx->screen, "input %i : %u\n", i,
			((unsigned*)num_work_groups_start)[i]);
	}

	ctx->transfer_unmap(ctx, transfer);

	/* ID=0 and ID=3 are reserved for the parameters.
	 * LLVM will preferably use ID=0, but it does not work for dynamic
	 * indices. */
	evergreen_cs_set_vertex_buffer(rctx, 3, 0,
			(struct pipe_resource*)shader->kernel_param);
	evergreen_cs_set_constant_buffer(rctx, 0, 0, input_size,
			(struct pipe_resource*)shader->kernel_param);
}

static void evergreen_emit_dispatch(struct r600_context *rctx,
				    const struct pipe_grid_info *info)
{
	int i;
	struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
	struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
	unsigned num_waves;
	unsigned num_pipes = rctx->screen->b.info.r600_max_quad_pipes;
	unsigned wave_divisor = (16 * num_pipes);
	int group_size = 1;
	int grid_size = 1;
	unsigned lds_size = shader->local_size / 4 +
		shader->bc.nlds_dw;


	/* Calculate group_size/grid_size */
	for (i = 0; i < 3; i++) {
		group_size *= info->block[i];
	}

	for (i = 0; i < 3; i++)	{
		grid_size *= info->grid[i];
	}

	/* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
	num_waves = (info->block[0] * info->block[1] * info->block[2] +
			wave_divisor - 1) / wave_divisor;

	COMPUTE_DBG(rctx->screen, "Using %u pipes, "
				"%u wavefronts per thread block, "
				"allocating %u dwords lds.\n",
				num_pipes, num_waves, lds_size);

	radeon_set_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);

	radeon_set_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
	radeon_emit(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
	radeon_emit(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
	radeon_emit(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */

	radeon_set_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
								group_size);

	radeon_compute_set_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
	radeon_emit(cs, info->block[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
	radeon_emit(cs, info->block[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
	radeon_emit(cs, info->block[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */

	if (rctx->b.chip_class < CAYMAN) {
		assert(lds_size <= 8192);
	} else {
		/* Cayman appears to have a slightly smaller limit, see the
		 * value of CM_R_0286FC_SPI_LDS_MGMT.NUM_LS_LDS */
		assert(lds_size <= 8160);
	}

	radeon_compute_set_context_reg(cs, R_0288E8_SQ_LDS_ALLOC,
					lds_size | (num_waves << 14));

	/* Dispatch packet */
	radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
	radeon_emit(cs, info->grid[0]);
	radeon_emit(cs, info->grid[1]);
	radeon_emit(cs, info->grid[2]);
	/* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
	radeon_emit(cs, 1);

	if (rctx->is_debug)
		eg_trace_emit(rctx);
}

static void compute_emit_cs(struct r600_context *rctx,
			    const struct pipe_grid_info *info)
{
	struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
	unsigned i;

	/* make sure that the gfx ring is only one active */
	if (radeon_emitted(rctx->b.dma.cs, 0)) {
		rctx->b.dma.flush(rctx, RADEON_FLUSH_ASYNC, NULL);
	}

	/* Initialize all the compute-related registers.
	 *
	 * See evergreen_init_atom_start_compute_cs() in this file for the list
	 * of registers initialized by the start_compute_cs_cmd atom.
	 */
	r600_emit_command_buffer(cs, &rctx->start_compute_cs_cmd);

	/* emit config state */
	if (rctx->b.chip_class == EVERGREEN)
		r600_emit_atom(rctx, &rctx->config_state.atom);

	rctx->b.flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV;
	r600_flush_emit(rctx);

	/* Emit colorbuffers. */
	/* XXX support more than 8 colorbuffers (the offsets are not a multiple of 0x3C for CB8-11) */
	for (i = 0; i < 8 && i < rctx->framebuffer.state.nr_cbufs; i++) {
		struct r600_surface *cb = (struct r600_surface*)rctx->framebuffer.state.cbufs[i];
		unsigned reloc = radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx,
						       (struct r600_resource*)cb->base.texture,
						       RADEON_USAGE_READWRITE,
						       RADEON_PRIO_SHADER_RW_BUFFER);

		radeon_compute_set_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
		radeon_emit(cs, cb->cb_color_base);	/* R_028C60_CB_COLOR0_BASE */
		radeon_emit(cs, cb->cb_color_pitch);	/* R_028C64_CB_COLOR0_PITCH */
		radeon_emit(cs, cb->cb_color_slice);	/* R_028C68_CB_COLOR0_SLICE */
		radeon_emit(cs, cb->cb_color_view);	/* R_028C6C_CB_COLOR0_VIEW */
		radeon_emit(cs, cb->cb_color_info);	/* R_028C70_CB_COLOR0_INFO */
		radeon_emit(cs, cb->cb_color_attrib);	/* R_028C74_CB_COLOR0_ATTRIB */
		radeon_emit(cs, cb->cb_color_dim);		/* R_028C78_CB_COLOR0_DIM */

		radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
		radeon_emit(cs, reloc);

		radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
		radeon_emit(cs, reloc);
	}
	for (; i < 8 ; i++)
		radeon_compute_set_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
					       S_028C70_FORMAT(V_028C70_COLOR_INVALID));
	for (; i < 12; i++)
		radeon_compute_set_context_reg(cs, R_028E50_CB_COLOR8_INFO + (i - 8) * 0x1C,
					       S_028C70_FORMAT(V_028C70_COLOR_INVALID));

	/* Set CB_TARGET_MASK  XXX: Use cb_misc_state */
	radeon_compute_set_context_reg(cs, R_028238_CB_TARGET_MASK,
					rctx->compute_cb_target_mask);


	/* Emit vertex buffer state */
	rctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(rctx->cs_vertex_buffer_state.dirty_mask);
	r600_emit_atom(rctx, &rctx->cs_vertex_buffer_state.atom);

	/* Emit constant buffer state */
	r600_emit_atom(rctx, &rctx->constbuf_state[PIPE_SHADER_COMPUTE].atom);

	/* Emit sampler state */
	r600_emit_atom(rctx, &rctx->samplers[PIPE_SHADER_COMPUTE].states.atom);

	/* Emit sampler view (texture resource) state */
	r600_emit_atom(rctx, &rctx->samplers[PIPE_SHADER_COMPUTE].views.atom);

	/* Emit compute shader state */
	r600_emit_atom(rctx, &rctx->cs_shader_state.atom);

	/* Emit dispatch state and dispatch packet */
	evergreen_emit_dispatch(rctx, info);

	/* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
	 */
	rctx->b.flags |= R600_CONTEXT_INV_CONST_CACHE |
		      R600_CONTEXT_INV_VERTEX_CACHE |
	              R600_CONTEXT_INV_TEX_CACHE;
	r600_flush_emit(rctx);
	rctx->b.flags = 0;

	if (rctx->b.chip_class >= CAYMAN) {
		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
		radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
		/* DEALLOC_STATE prevents the GPU from hanging when a
		 * SURFACE_SYNC packet is emitted some time after a DISPATCH_DIRECT
		 * with any of the CB*_DEST_BASE_ENA or DB_DEST_BASE_ENA bits set.
		 */
		radeon_emit(cs, PKT3C(PKT3_DEALLOC_STATE, 0, 0));
		radeon_emit(cs, 0);
	}

#if 0
	COMPUTE_DBG(rctx->screen, "cdw: %i\n", cs->cdw);
	for (i = 0; i < cs->cdw; i++) {
		COMPUTE_DBG(rctx->screen, "%4i : 0x%08X\n", i, cs->buf[i]);
	}
#endif

}


/**
 * Emit function for r600_cs_shader_state atom
 */
void evergreen_emit_cs_shader(struct r600_context *rctx,
			      struct r600_atom *atom)
{
	struct r600_cs_shader_state *state =
					(struct r600_cs_shader_state*)atom;
	struct r600_pipe_compute *shader = state->shader;
	struct radeon_winsys_cs *cs = rctx->b.gfx.cs;
	uint64_t va;
	struct r600_resource *code_bo;
	unsigned ngpr, nstack;

	code_bo = shader->code_bo;
	va = shader->code_bo->gpu_address + state->pc;
	ngpr = shader->bc.ngpr;
	nstack = shader->bc.nstack;

	radeon_compute_set_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
	radeon_emit(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
	radeon_emit(cs,           /* R_0288D4_SQ_PGM_RESOURCES_LS */
			S_0288D4_NUM_GPRS(ngpr)
			| S_0288D4_STACK_SIZE(nstack));
	radeon_emit(cs, 0);	/* R_0288D8_SQ_PGM_RESOURCES_LS_2 */

	radeon_emit(cs, PKT3C(PKT3_NOP, 0, 0));
	radeon_emit(cs, radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx,
					      code_bo, RADEON_USAGE_READ,
					      RADEON_PRIO_SHADER_BINARY));
}

static void evergreen_launch_grid(struct pipe_context *ctx,
				  const struct pipe_grid_info *info)
{
	struct r600_context *rctx = (struct r600_context *)ctx;
#ifdef HAVE_OPENCL
	struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
	boolean use_kill;

	rctx->cs_shader_state.pc = info->pc;
	/* Get the config information for this kernel. */
	r600_shader_binary_read_config(&shader->binary, &shader->bc,
                                  info->pc, &use_kill);
#endif

	COMPUTE_DBG(rctx->screen, "*** evergreen_launch_grid: pc = %u\n", info->pc);


	evergreen_compute_upload_input(ctx, info);
	compute_emit_cs(rctx, info);
}

static void evergreen_set_compute_resources(struct pipe_context *ctx,
					    unsigned start, unsigned count,
					    struct pipe_surface **surfaces)
{
	struct r600_context *rctx = (struct r600_context *)ctx;
	struct r600_surface **resources = (struct r600_surface **)surfaces;

	COMPUTE_DBG(rctx->screen, "*** evergreen_set_compute_resources: start = %u count = %u\n",
			start, count);

	for (unsigned i = 0; i < count; i++) {
		/* The First four vertex buffers are reserved for parameters and
		 * global buffers. */
		unsigned vtx_id = 4 + i;
		if (resources[i]) {
			struct r600_resource_global *buffer =
				(struct r600_resource_global*)
				resources[i]->base.texture;
			if (resources[i]->base.writable) {
				assert(i+1 < 12);

				evergreen_set_rat(rctx->cs_shader_state.shader, i+1,
				(struct r600_resource *)resources[i]->base.texture,
				buffer->chunk->start_in_dw*4,
				resources[i]->base.texture->width0);
			}

			evergreen_cs_set_vertex_buffer(rctx, vtx_id,
					buffer->chunk->start_in_dw * 4,
					resources[i]->base.texture);
		}
	}
}

static void evergreen_set_global_binding(struct pipe_context *ctx,
					 unsigned first, unsigned n,
					 struct pipe_resource **resources,
					 uint32_t **handles)
{
	struct r600_context *rctx = (struct r600_context *)ctx;
	struct compute_memory_pool *pool = rctx->screen->global_pool;
	struct r600_resource_global **buffers =
		(struct r600_resource_global **)resources;
	unsigned i;

	COMPUTE_DBG(rctx->screen, "*** evergreen_set_global_binding first = %u n = %u\n",
			first, n);

	if (!resources) {
		/* XXX: Unset */
		return;
	}

	/* We mark these items for promotion to the pool if they
	 * aren't already there */
	for (i = first; i < first + n; i++) {
		struct compute_memory_item *item = buffers[i]->chunk;

		if (!is_item_in_pool(item))
			buffers[i]->chunk->status |= ITEM_FOR_PROMOTING;
	}

	if (compute_memory_finalize_pending(pool, ctx) == -1) {
		/* XXX: Unset */
		return;
	}

	for (i = first; i < first + n; i++)
	{
		uint32_t buffer_offset;
		uint32_t handle;
		assert(resources[i]->target == PIPE_BUFFER);
		assert(resources[i]->bind & PIPE_BIND_GLOBAL);

		buffer_offset = util_le32_to_cpu(*(handles[i]));
		handle = buffer_offset + buffers[i]->chunk->start_in_dw * 4;

		*(handles[i]) = util_cpu_to_le32(handle);
	}

	/* globals for writing */
	evergreen_set_rat(rctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
	/* globals for reading */
	evergreen_cs_set_vertex_buffer(rctx, 1, 0,
				(struct pipe_resource*)pool->bo);

	/* constants for reading, LLVM puts them in text segment */
	evergreen_cs_set_vertex_buffer(rctx, 2, 0,
				(struct pipe_resource*)rctx->cs_shader_state.shader->code_bo);
}

/**
 * This function initializes all the compute specific registers that need to
 * be initialized for each compute command stream.  Registers that are common
 * to both compute and 3D will be initialized at the beginning of each compute
 * command stream by the start_cs_cmd atom.  However, since the SET_CONTEXT_REG
 * packet requires that the shader type bit be set, we must initialize all
 * context registers needed for compute in this function.  The registers
 * initialized by the start_cs_cmd atom can be found in evergreen_state.c in the
 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
 * on the GPU family.
 */
void evergreen_init_atom_start_compute_cs(struct r600_context *rctx)
{
	struct r600_command_buffer *cb = &rctx->start_compute_cs_cmd;
	int num_threads;
	int num_stack_entries;

	/* since all required registers are initialized in the
	 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
	 */
	r600_init_command_buffer(cb, 256);
	cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;

	/* This must be first. */
	r600_store_value(cb, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
	r600_store_value(cb, 0x80000000);
	r600_store_value(cb, 0x80000000);

	/* We're setting config registers here. */
	r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0));
	r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));

	switch (rctx->b.family) {
	case CHIP_CEDAR:
	default:
		num_threads = 128;
		num_stack_entries = 256;
		break;
	case CHIP_REDWOOD:
		num_threads = 128;
		num_stack_entries = 256;
		break;
	case CHIP_JUNIPER:
		num_threads = 128;
		num_stack_entries = 512;
		break;
	case CHIP_CYPRESS:
	case CHIP_HEMLOCK:
		num_threads = 128;
		num_stack_entries = 512;
		break;
	case CHIP_PALM:
		num_threads = 128;
		num_stack_entries = 256;
		break;
	case CHIP_SUMO:
		num_threads = 128;
		num_stack_entries = 256;
		break;
	case CHIP_SUMO2:
		num_threads = 128;
		num_stack_entries = 512;
		break;
	case CHIP_BARTS:
		num_threads = 128;
		num_stack_entries = 512;
		break;
	case CHIP_TURKS:
		num_threads = 128;
		num_stack_entries = 256;
		break;
	case CHIP_CAICOS:
		num_threads = 128;
		num_stack_entries = 256;
		break;
	}

	/* Config Registers */
	if (rctx->b.chip_class < CAYMAN)
		evergreen_init_common_regs(rctx, cb, rctx->b.chip_class, rctx->b.family,
					   rctx->screen->b.info.drm_minor);
	else
		cayman_init_common_regs(cb, rctx->b.chip_class, rctx->b.family,
					rctx->screen->b.info.drm_minor);

	/* The primitive type always needs to be POINTLIST for compute. */
	r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
						V_008958_DI_PT_POINTLIST);

	if (rctx->b.chip_class < CAYMAN) {

		/* These registers control which simds can be used by each stage.
		 * The default for these registers is 0xffffffff, which means
		 * all simds are available for each stage.  It's possible we may
		 * want to play around with these in the future, but for now
		 * the default value is fine.
		 *
		 * R_008E20_SQ_STATIC_THREAD_MGMT1
		 * R_008E24_SQ_STATIC_THREAD_MGMT2
		 * R_008E28_SQ_STATIC_THREAD_MGMT3
		 */

		/* XXX: We may need to adjust the thread and stack resource
		 * values for 3D/compute interop */

		r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);

		/* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
		 * Set the number of threads used by the PS/VS/GS/ES stage to
		 * 0.
		 */
		r600_store_value(cb, 0);

		/* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
		 * Set the number of threads used by the CS (aka LS) stage to
		 * the maximum number of threads and set the number of threads
		 * for the HS stage to 0. */
		r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));

		/* R_008C20_SQ_STACK_RESOURCE_MGMT_1
		 * Set the Control Flow stack entries to 0 for PS/VS stages */
		r600_store_value(cb, 0);

		/* R_008C24_SQ_STACK_RESOURCE_MGMT_2
		 * Set the Control Flow stack entries to 0 for GS/ES stages */
		r600_store_value(cb, 0);

		/* R_008C28_SQ_STACK_RESOURCE_MGMT_3
		 * Set the Contol Flow stack entries to 0 for the HS stage, and
		 * set it to the maximum value for the CS (aka LS) stage. */
		r600_store_value(cb,
			S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
	}
	/* Give the compute shader all the available LDS space.
	 * NOTE: This only sets the maximum number of dwords that a compute
	 * shader can allocate.  When a shader is executed, we still need to
	 * allocate the appropriate amount of LDS dwords using the
	 * CM_R_0288E8_SQ_LDS_ALLOC register.
	 */
	if (rctx->b.chip_class < CAYMAN) {
		r600_store_config_reg(cb, R_008E2C_SQ_LDS_RESOURCE_MGMT,
			S_008E2C_NUM_PS_LDS(0x0000) | S_008E2C_NUM_LS_LDS(8192));
	} else {
		r600_store_context_reg(cb, CM_R_0286FC_SPI_LDS_MGMT,
			S_0286FC_NUM_PS_LDS(0) |
			S_0286FC_NUM_LS_LDS(255)); /* 255 * 32 = 8160 dwords */
	}

	/* Context Registers */

	if (rctx->b.chip_class < CAYMAN) {
		/* workaround for hw issues with dyn gpr - must set all limits
		 * to 240 instead of 0, 0x1e == 240 / 8
		 */
		r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
				S_028838_PS_GPRS(0x1e) |
				S_028838_VS_GPRS(0x1e) |
				S_028838_GS_GPRS(0x1e) |
				S_028838_ES_GPRS(0x1e) |
				S_028838_HS_GPRS(0x1e) |
				S_028838_LS_GPRS(0x1e));
	}

	/* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
	r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
		S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));

	r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);

	r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
			       S_0286E8_TID_IN_GROUP_ENA(1) |
			       S_0286E8_TGID_ENA(1) |
			       S_0286E8_DISABLE_INDEX_PACK(1));

	/* The LOOP_CONST registers are an optimizations for loops that allows
	 * you to store the initial counter, increment value, and maximum
	 * counter value in a register so that hardware can calculate the
	 * correct number of iterations for the loop, so that you don't need
	 * to have the loop counter in your shader code.  We don't currently use
	 * this optimization, so we must keep track of the counter in the
	 * shader and use a break instruction to exit loops.  However, the
	 * hardware will still uses this register to determine when to exit a
	 * loop, so we need to initialize the counter to 0, set the increment
	 * value to 1 and the maximum counter value to the 4095 (0xfff) which
	 * is the maximum value allowed.  This gives us a maximum of 4096
	 * iterations for our loops, but hopefully our break instruction will
	 * execute before some time before the 4096th iteration.
	 */
	eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
}

void evergreen_init_compute_state_functions(struct r600_context *rctx)
{
	rctx->b.b.create_compute_state = evergreen_create_compute_state;
	rctx->b.b.delete_compute_state = evergreen_delete_compute_state;
	rctx->b.b.bind_compute_state = evergreen_bind_compute_state;
//	 rctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
	rctx->b.b.set_compute_resources = evergreen_set_compute_resources;
	rctx->b.b.set_global_binding = evergreen_set_global_binding;
	rctx->b.b.launch_grid = evergreen_launch_grid;

}

static void *r600_compute_global_transfer_map(struct pipe_context *ctx,
					      struct pipe_resource *resource,
					      unsigned level,
					      unsigned usage,
					      const struct pipe_box *box,
					      struct pipe_transfer **ptransfer)
{
	struct r600_context *rctx = (struct r600_context*)ctx;
	struct compute_memory_pool *pool = rctx->screen->global_pool;
	struct r600_resource_global* buffer =
		(struct r600_resource_global*)resource;

	struct compute_memory_item *item = buffer->chunk;
	struct pipe_resource *dst = NULL;
	unsigned offset = box->x;

	if (is_item_in_pool(item)) {
		compute_memory_demote_item(pool, item, ctx);
	}
	else {
		if (item->real_buffer == NULL) {
			item->real_buffer =
					r600_compute_buffer_alloc_vram(pool->screen, item->size_in_dw * 4);
		}
	}

	dst = (struct pipe_resource*)item->real_buffer;

	if (usage & PIPE_TRANSFER_READ)
		buffer->chunk->status |= ITEM_MAPPED_FOR_READING;

	COMPUTE_DBG(rctx->screen, "* r600_compute_global_transfer_map()\n"
			"level = %u, usage = %u, box(x = %u, y = %u, z = %u "
			"width = %u, height = %u, depth = %u)\n", level, usage,
			box->x, box->y, box->z, box->width, box->height,
			box->depth);
	COMPUTE_DBG(rctx->screen, "Buffer id = %"PRIi64" offset = "
		"%u (box.x)\n", item->id, box->x);


	assert(resource->target == PIPE_BUFFER);
	assert(resource->bind & PIPE_BIND_GLOBAL);
	assert(box->x >= 0);
	assert(box->y == 0);
	assert(box->z == 0);

	///TODO: do it better, mapping is not possible if the pool is too big
	return pipe_buffer_map_range(ctx, dst,
			offset, box->width, usage, ptransfer);
}

static void r600_compute_global_transfer_unmap(struct pipe_context *ctx,
					       struct pipe_transfer *transfer)
{
	/* struct r600_resource_global are not real resources, they just map
	 * to an offset within the compute memory pool.  The function
	 * r600_compute_global_transfer_map() maps the memory pool
	 * resource rather than the struct r600_resource_global passed to
	 * it as an argument and then initalizes ptransfer->resource with
	 * the memory pool resource (via pipe_buffer_map_range).
	 * When transfer_unmap is called it uses the memory pool's
	 * vtable which calls r600_buffer_transfer_map() rather than
	 * this function.
	 */
	assert (!"This function should not be called");
}

static void r600_compute_global_transfer_flush_region(struct pipe_context *ctx,
						      struct pipe_transfer *transfer,
						      const struct pipe_box *box)
{
	assert(0 && "TODO");
}

static void r600_compute_global_buffer_destroy(struct pipe_screen *screen,
					       struct pipe_resource *res)
{
	struct r600_resource_global* buffer = NULL;
	struct r600_screen* rscreen = NULL;

	assert(res->target == PIPE_BUFFER);
	assert(res->bind & PIPE_BIND_GLOBAL);

	buffer = (struct r600_resource_global*)res;
	rscreen = (struct r600_screen*)screen;

	compute_memory_free(rscreen->global_pool, buffer->chunk->id);

	buffer->chunk = NULL;
	free(res);
}

static const struct u_resource_vtbl r600_global_buffer_vtbl =
{
	u_default_resource_get_handle, /* get_handle */
	r600_compute_global_buffer_destroy, /* resource_destroy */
	r600_compute_global_transfer_map, /* transfer_map */
	r600_compute_global_transfer_flush_region,/* transfer_flush_region */
	r600_compute_global_transfer_unmap, /* transfer_unmap */
};

struct pipe_resource *r600_compute_global_buffer_create(struct pipe_screen *screen,
							const struct pipe_resource *templ)
{
	struct r600_resource_global* result = NULL;
	struct r600_screen* rscreen = NULL;
	int size_in_dw = 0;

	assert(templ->target == PIPE_BUFFER);
	assert(templ->bind & PIPE_BIND_GLOBAL);
	assert(templ->array_size == 1 || templ->array_size == 0);
	assert(templ->depth0 == 1 || templ->depth0 == 0);
	assert(templ->height0 == 1 || templ->height0 == 0);

	result = (struct r600_resource_global*)
	CALLOC(sizeof(struct r600_resource_global), 1);
	rscreen = (struct r600_screen*)screen;

	COMPUTE_DBG(rscreen, "*** r600_compute_global_buffer_create\n");
	COMPUTE_DBG(rscreen, "width = %u array_size = %u\n", templ->width0,
			templ->array_size);

	result->base.b.vtbl = &r600_global_buffer_vtbl;
	result->base.b.b = *templ;
	result->base.b.b.screen = screen;
	pipe_reference_init(&result->base.b.b.reference, 1);

	size_in_dw = (templ->width0+3) / 4;

	result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);

	if (result->chunk == NULL)
	{
		free(result);
		return NULL;
	}

	return &result->base.b.b;
}