1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
|
/*
* Copyright 2012 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "ac_nir.h"
#include "ac_rtld.h"
#include "nir.h"
#include "nir_builder.h"
#include "nir_serialize.h"
#include "nir/nir_helpers.h"
#include "ralloc.h"
#include "si_pipe.h"
#include "si_shader_internal.h"
#include "sid.h"
#include "tgsi/tgsi_from_mesa.h"
#include "tgsi/tgsi_strings.h"
#include "util/u_memory.h"
#include "util/mesa-sha1.h"
static const char scratch_rsrc_dword0_symbol[] = "SCRATCH_RSRC_DWORD0";
static const char scratch_rsrc_dword1_symbol[] = "SCRATCH_RSRC_DWORD1";
static void si_dump_shader_key(const struct si_shader *shader, FILE *f);
/* Get the number of all interpolated inputs */
unsigned si_get_ps_num_interp(struct si_shader *ps)
{
struct si_shader_info *info = &ps->selector->info;
unsigned num_colors = !!(info->colors_read & 0x0f) + !!(info->colors_read & 0xf0);
unsigned num_interp =
ps->selector->info.num_inputs + (ps->key.ps.part.prolog.color_two_side ? num_colors : 0);
assert(num_interp <= 32);
return MIN2(num_interp, 32);
}
/** Whether the shader runs as a combination of multiple API shaders */
bool si_is_multi_part_shader(struct si_shader *shader)
{
if (shader->selector->screen->info.gfx_level <= GFX8 ||
shader->selector->stage > MESA_SHADER_GEOMETRY)
return false;
return shader->key.ge.as_ls || shader->key.ge.as_es ||
shader->selector->stage == MESA_SHADER_TESS_CTRL ||
shader->selector->stage == MESA_SHADER_GEOMETRY;
}
/** Whether the shader runs on a merged HW stage (LSHS or ESGS) */
bool si_is_merged_shader(struct si_shader *shader)
{
if (shader->selector->stage > MESA_SHADER_GEOMETRY)
return false;
return shader->key.ge.as_ngg || si_is_multi_part_shader(shader);
}
/**
* Returns a unique index for a per-patch semantic name and index. The index
* must be less than 32, so that a 32-bit bitmask of used inputs or outputs
* can be calculated.
*/
unsigned si_shader_io_get_unique_index_patch(unsigned semantic)
{
switch (semantic) {
case VARYING_SLOT_TESS_LEVEL_OUTER:
return 0;
case VARYING_SLOT_TESS_LEVEL_INNER:
return 1;
default:
if (semantic >= VARYING_SLOT_PATCH0 && semantic < VARYING_SLOT_PATCH0 + 30)
return 2 + (semantic - VARYING_SLOT_PATCH0);
assert(!"invalid semantic");
return 0;
}
}
/**
* Returns a unique index for a semantic name and index. The index must be
* less than 64, so that a 64-bit bitmask of used inputs or outputs can be
* calculated.
*/
unsigned si_shader_io_get_unique_index(unsigned semantic, bool is_varying)
{
switch (semantic) {
case VARYING_SLOT_POS:
return 0;
default:
/* Since some shader stages use the highest used IO index
* to determine the size to allocate for inputs/outputs
* (in LDS, tess and GS rings). GENERIC should be placed right
* after POSITION to make that size as small as possible.
*/
if (semantic >= VARYING_SLOT_VAR0 && semantic <= VARYING_SLOT_VAR31)
return 1 + (semantic - VARYING_SLOT_VAR0); /* 1..32 */
/* Put 16-bit GLES varyings after 32-bit varyings. They can use the same indices as
* legacy desktop GL varyings because they are mutually exclusive.
*/
if (semantic >= VARYING_SLOT_VAR0_16BIT && semantic <= VARYING_SLOT_VAR15_16BIT)
return 33 + (semantic - VARYING_SLOT_VAR0_16BIT); /* 33..48 */
assert(!"invalid generic index");
return 0;
/* Legacy desktop GL varyings. */
case VARYING_SLOT_FOGC:
return 33;
case VARYING_SLOT_COL0:
return 34;
case VARYING_SLOT_COL1:
return 35;
case VARYING_SLOT_BFC0:
/* If it's a varying, COLOR and BCOLOR alias. */
if (is_varying)
return 34;
else
return 36;
case VARYING_SLOT_BFC1:
if (is_varying)
return 35;
else
return 37;
case VARYING_SLOT_TEX0:
case VARYING_SLOT_TEX1:
case VARYING_SLOT_TEX2:
case VARYING_SLOT_TEX3:
case VARYING_SLOT_TEX4:
case VARYING_SLOT_TEX5:
case VARYING_SLOT_TEX6:
case VARYING_SLOT_TEX7:
return 38 + (semantic - VARYING_SLOT_TEX0);
case VARYING_SLOT_CLIP_VERTEX:
return 46;
/* Varyings present in both GLES and desktop GL must start at 49 after 16-bit varyings. */
case VARYING_SLOT_CLIP_DIST0:
return 49;
case VARYING_SLOT_CLIP_DIST1:
return 50;
case VARYING_SLOT_PSIZ:
return 51;
/* These can't be written by LS, HS, and ES. */
case VARYING_SLOT_LAYER:
return 52;
case VARYING_SLOT_VIEWPORT:
return 53;
case VARYING_SLOT_PRIMITIVE_ID:
return 54;
}
}
static void si_dump_streamout(struct pipe_stream_output_info *so)
{
unsigned i;
if (so->num_outputs) {
fprintf(stderr, "STREAMOUT\n");
fprintf(stderr, " STRIDES: {");
for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++)
fprintf(stderr, "%u%s", so->stride[i], i < 3 ? ", " : "");
fprintf(stderr, "}\n");
}
for (i = 0; i < so->num_outputs; i++) {
unsigned mask = ((1 << so->output[i].num_components) - 1) << so->output[i].start_component;
fprintf(stderr, " %i: STREAM%u: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
i, so->output[i].stream, so->output[i].output_buffer,
so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
so->output[i].register_index, mask & 1 ? "x" : "", mask & 2 ? "y" : "",
mask & 4 ? "z" : "", mask & 8 ? "w" : "");
}
}
static void declare_streamout_params(struct si_shader_context *ctx,
struct pipe_stream_output_info *so)
{
if (ctx->screen->use_ngg_streamout) {
if (ctx->stage == MESA_SHADER_TESS_EVAL)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
return;
}
/* Streamout SGPRs. */
if (so->num_outputs) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.streamout_config);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.streamout_write_index);
} else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
}
/* A streamout buffer offset is loaded if the stride is non-zero. */
for (int i = 0; i < 4; i++) {
if (!so->stride[i])
continue;
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.streamout_offset[i]);
}
}
unsigned si_get_max_workgroup_size(const struct si_shader *shader)
{
switch (shader->selector->stage) {
case MESA_SHADER_VERTEX:
case MESA_SHADER_TESS_EVAL:
return shader->key.ge.as_ngg ? 128 : 0;
case MESA_SHADER_TESS_CTRL:
/* Return this so that LLVM doesn't remove s_barrier
* instructions on chips where we use s_barrier. */
return shader->selector->screen->info.gfx_level >= GFX7 ? 128 : 0;
case MESA_SHADER_GEOMETRY:
return shader->selector->screen->info.gfx_level >= GFX9 ? 128 : 0;
case MESA_SHADER_COMPUTE:
break; /* see below */
default:
return 0;
}
/* Compile a variable block size using the maximum variable size. */
if (shader->selector->info.base.workgroup_size_variable)
return SI_MAX_VARIABLE_THREADS_PER_BLOCK;
uint16_t *local_size = shader->selector->info.base.workgroup_size;
unsigned max_work_group_size = (uint32_t)local_size[0] *
(uint32_t)local_size[1] *
(uint32_t)local_size[2];
assert(max_work_group_size);
return max_work_group_size;
}
static void declare_const_and_shader_buffers(struct si_shader_context *ctx, bool assign_params)
{
enum ac_arg_type const_shader_buf_type;
if (ctx->shader->selector->info.base.num_ubos == 1 &&
ctx->shader->selector->info.base.num_ssbos == 0)
const_shader_buf_type = AC_ARG_CONST_FLOAT_PTR;
else
const_shader_buf_type = AC_ARG_CONST_DESC_PTR;
ac_add_arg(
&ctx->args, AC_ARG_SGPR, 1, const_shader_buf_type,
assign_params ? &ctx->const_and_shader_buffers : &ctx->other_const_and_shader_buffers);
}
static void declare_samplers_and_images(struct si_shader_context *ctx, bool assign_params)
{
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR,
assign_params ? &ctx->samplers_and_images : &ctx->other_samplers_and_images);
}
static void declare_per_stage_desc_pointers(struct si_shader_context *ctx, bool assign_params)
{
declare_const_and_shader_buffers(ctx, assign_params);
declare_samplers_and_images(ctx, assign_params);
}
static void declare_global_desc_pointers(struct si_shader_context *ctx)
{
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->internal_bindings);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR,
&ctx->bindless_samplers_and_images);
}
static void declare_vb_descriptor_input_sgprs(struct si_shader_context *ctx)
{
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->args.vertex_buffers);
unsigned num_vbos_in_user_sgprs = ctx->shader->selector->info.num_vbos_in_user_sgprs;
if (num_vbos_in_user_sgprs) {
unsigned user_sgprs = ctx->args.num_sgprs_used;
if (si_is_merged_shader(ctx->shader))
user_sgprs -= 8;
assert(user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST);
/* Declare unused SGPRs to align VB descriptors to 4 SGPRs (hw requirement). */
for (unsigned i = user_sgprs; i < SI_SGPR_VS_VB_DESCRIPTOR_FIRST; i++)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
assert(num_vbos_in_user_sgprs <= ARRAY_SIZE(ctx->vb_descriptors));
for (unsigned i = 0; i < num_vbos_in_user_sgprs; i++)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 4, AC_ARG_INT, &ctx->vb_descriptors[i]);
}
}
static void declare_vs_input_vgprs(struct si_shader_context *ctx, unsigned *num_prolog_vgprs)
{
struct si_shader *shader = ctx->shader;
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vertex_id);
if (shader->key.ge.as_ls) {
if (ctx->screen->info.gfx_level >= GFX11) {
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
} else if (ctx->screen->info.gfx_level >= GFX10) {
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vs_rel_patch_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
} else {
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vs_rel_patch_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* unused */
}
} else if (ctx->screen->info.gfx_level >= GFX10) {
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT,
&ctx->args.vs_prim_id); /* user vgpr or PrimID (legacy) */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
} else {
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vs_prim_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* unused */
}
if (!shader->is_gs_copy_shader) {
/* Vertex load indices. */
if (shader->selector->info.num_inputs) {
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->vertex_index0);
for (unsigned i = 1; i < shader->selector->info.num_inputs; i++)
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL);
}
*num_prolog_vgprs += shader->selector->info.num_inputs;
}
}
static void declare_vs_blit_inputs(struct si_shader_context *ctx, unsigned vs_blit_property)
{
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_blit_inputs); /* i16 x1, y1 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* i16 x1, y1 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* depth */
if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color0 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color1 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color2 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color3 */
} else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.x1 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.y1 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.x2 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.y2 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.z */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.w */
}
}
static void declare_tes_input_vgprs(struct si_shader_context *ctx)
{
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.tes_u);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.tes_v);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tes_rel_patch_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tes_patch_id);
}
enum
{
/* Convenient merged shader definitions. */
SI_SHADER_MERGED_VERTEX_TESSCTRL = MESA_ALL_SHADER_STAGES,
SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
};
void si_add_arg_checked(struct ac_shader_args *args, enum ac_arg_regfile file, unsigned registers,
enum ac_arg_type type, struct ac_arg *arg, unsigned idx)
{
assert(args->arg_count == idx);
ac_add_arg(args, file, registers, type, arg);
}
void si_init_shader_args(struct si_shader_context *ctx, bool ngg_cull_shader)
{
struct si_shader *shader = ctx->shader;
unsigned i, num_returns, num_return_sgprs;
unsigned num_prolog_vgprs = 0;
unsigned stage = ctx->stage;
memset(&ctx->args, 0, sizeof(ctx->args));
/* Set MERGED shaders. */
if (ctx->screen->info.gfx_level >= GFX9 && stage <= MESA_SHADER_GEOMETRY) {
if (shader->key.ge.as_ls || stage == MESA_SHADER_TESS_CTRL)
stage = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
else if (shader->key.ge.as_es || shader->key.ge.as_ngg || stage == MESA_SHADER_GEOMETRY)
stage = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
}
switch (stage) {
case MESA_SHADER_VERTEX:
declare_global_desc_pointers(ctx);
if (shader->selector->info.base.vs.blit_sgprs_amd) {
declare_vs_blit_inputs(ctx, shader->selector->info.base.vs.blit_sgprs_amd);
/* VGPRs */
declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
break;
}
declare_per_stage_desc_pointers(ctx, true);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
if (ctx->shader->is_gs_copy_shader) {
declare_streamout_params(ctx, &ctx->so);
/* VGPRs */
declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
break;
}
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.base_vertex);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.draw_id);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.start_instance);
declare_vb_descriptor_input_sgprs(ctx);
if (shader->key.ge.as_es) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.es2gs_offset);
} else if (shader->key.ge.as_ls) {
/* no extra parameters */
} else {
declare_streamout_params(ctx, &ctx->so);
}
/* VGPRs */
declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
break;
case MESA_SHADER_TESS_CTRL: /* GFX6-GFX8 */
declare_global_desc_pointers(ctx);
declare_per_stage_desc_pointers(ctx, true);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_offsets);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tcs_factor_offset);
/* VGPRs */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_patch_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_rel_ids);
/* param_tcs_offchip_offset and param_tcs_factor_offset are
* placed after the user SGPRs.
*/
for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
ac_add_return(&ctx->args, AC_ARG_SGPR);
for (i = 0; i < 11; i++)
ac_add_return(&ctx->args, AC_ARG_VGPR);
break;
case SI_SHADER_MERGED_VERTEX_TESSCTRL:
/* Merged stages have 8 system SGPRs at the beginning. */
/* Gfx9-10: SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
/* Gfx11+: SPI_SHADER_PGM_LO/HI_HS */
declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_TESS_CTRL);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.merged_wave_info);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tcs_factor_offset);
if (ctx->screen->info.gfx_level >= GFX11)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tcs_wave_id);
else
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.scratch_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
declare_global_desc_pointers(ctx);
declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_VERTEX);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.base_vertex);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.draw_id);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.start_instance);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_offsets);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout);
if (ctx->stage == MESA_SHADER_VERTEX)
declare_vb_descriptor_input_sgprs(ctx);
/* VGPRs (first TCS, then VS) */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_patch_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_rel_ids);
if (ctx->stage == MESA_SHADER_VERTEX) {
declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
/* LS return values are inputs to the TCS main shader part. */
for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
ac_add_return(&ctx->args, AC_ARG_SGPR);
for (i = 0; i < 2; i++)
ac_add_return(&ctx->args, AC_ARG_VGPR);
/* VS outputs passed via VGPRs to TCS. */
if (shader->key.ge.opt.same_patch_vertices) {
unsigned num_outputs = util_last_bit64(shader->selector->info.outputs_written);
for (i = 0; i < num_outputs * 4; i++)
ac_add_return(&ctx->args, AC_ARG_VGPR);
}
} else {
/* TCS inputs are passed via VGPRs from VS. */
if (shader->key.ge.opt.same_patch_vertices) {
unsigned num_inputs = util_last_bit64(shader->previous_stage_sel->info.outputs_written);
for (i = 0; i < num_inputs * 4; i++)
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL);
}
/* TCS return values are inputs to the TCS epilog.
*
* param_tcs_offchip_offset, param_tcs_factor_offset,
* param_tcs_offchip_layout, and internal_bindings
* should be passed to the epilog.
*/
for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
ac_add_return(&ctx->args, AC_ARG_SGPR);
for (i = 0; i < 11; i++)
ac_add_return(&ctx->args, AC_ARG_VGPR);
}
break;
case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
/* Merged stages have 8 system SGPRs at the beginning. */
/* Gfx9-10: SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
/* Gfx11+: SPI_SHADER_PGM_LO/HI_GS */
declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_GEOMETRY);
if (ctx->shader->key.ge.as_ngg)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs_tg_info);
else
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs2vs_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.merged_wave_info);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
if (ctx->screen->info.gfx_level >= GFX11)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs_attr_offset);
else
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.scratch_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
declare_global_desc_pointers(ctx);
if (ctx->stage != MESA_SHADER_VERTEX || !shader->selector->info.base.vs.blit_sgprs_amd) {
declare_per_stage_desc_pointers(
ctx, (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL));
}
if (ctx->stage == MESA_SHADER_VERTEX && shader->selector->info.base.vs.blit_sgprs_amd) {
declare_vs_blit_inputs(ctx, shader->selector->info.base.vs.blit_sgprs_amd);
} else {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
if (ctx->stage == MESA_SHADER_VERTEX) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.base_vertex);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.draw_id);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.start_instance);
} else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tes_offchip_addr);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
} else {
/* GS */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
}
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->small_prim_cull_info);
if (ctx->screen->info.gfx_level >= GFX11)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->gs_attr_address);
else
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
if (ctx->stage == MESA_SHADER_VERTEX)
declare_vb_descriptor_input_sgprs(ctx);
}
/* VGPRs (first GS, then VS/TES) */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[0]);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[1]);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_prim_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_invocation_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[2]);
if (ctx->stage == MESA_SHADER_VERTEX) {
declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
} else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
declare_tes_input_vgprs(ctx);
}
if ((ctx->shader->key.ge.as_es || ngg_cull_shader) &&
(ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL)) {
unsigned num_user_sgprs, num_vgprs;
if (ctx->stage == MESA_SHADER_VERTEX && ngg_cull_shader) {
/* For the NGG cull shader, add 1 SGPR to hold
* the vertex buffer pointer.
*/
num_user_sgprs = GFX9_GS_NUM_USER_SGPR + 1;
if (shader->selector->info.num_vbos_in_user_sgprs) {
assert(num_user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST);
num_user_sgprs =
SI_SGPR_VS_VB_DESCRIPTOR_FIRST + shader->selector->info.num_vbos_in_user_sgprs * 4;
}
} else {
num_user_sgprs = GFX9_GS_NUM_USER_SGPR;
}
/* The NGG cull shader has to return all 9 VGPRs.
*
* The normal merged ESGS shader only has to return the 5 VGPRs
* for the GS stage.
*/
num_vgprs = ngg_cull_shader ? 9 : 5;
/* ES return values are inputs to GS. */
for (i = 0; i < 8 + num_user_sgprs; i++)
ac_add_return(&ctx->args, AC_ARG_SGPR);
for (i = 0; i < num_vgprs; i++)
ac_add_return(&ctx->args, AC_ARG_VGPR);
}
break;
case MESA_SHADER_TESS_EVAL:
declare_global_desc_pointers(ctx);
declare_per_stage_desc_pointers(ctx, true);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tes_offchip_addr);
if (shader->key.ge.as_es) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.es2gs_offset);
} else {
declare_streamout_params(ctx, &ctx->so);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
}
/* VGPRs */
declare_tes_input_vgprs(ctx);
break;
case MESA_SHADER_GEOMETRY:
declare_global_desc_pointers(ctx);
declare_per_stage_desc_pointers(ctx, true);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs2vs_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs_wave_id);
/* VGPRs */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[0]);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[1]);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_prim_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[2]);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[3]);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[4]);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[5]);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_invocation_id);
break;
case MESA_SHADER_FRAGMENT:
declare_global_desc_pointers(ctx);
declare_per_stage_desc_pointers(ctx, true);
si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL, SI_PARAM_ALPHA_REF);
si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.prim_mask,
SI_PARAM_PRIM_MASK);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_sample,
SI_PARAM_PERSP_SAMPLE);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_center,
SI_PARAM_PERSP_CENTER);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_centroid,
SI_PARAM_PERSP_CENTROID);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_INT, NULL, SI_PARAM_PERSP_PULL_MODEL);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_sample,
SI_PARAM_LINEAR_SAMPLE);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_center,
SI_PARAM_LINEAR_CENTER);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_centroid,
SI_PARAM_LINEAR_CENTROID);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL, SI_PARAM_LINE_STIPPLE_TEX);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[0],
SI_PARAM_POS_X_FLOAT);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[1],
SI_PARAM_POS_Y_FLOAT);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[2],
SI_PARAM_POS_Z_FLOAT);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[3],
SI_PARAM_POS_W_FLOAT);
shader->info.face_vgpr_index = ctx->args.num_vgprs_used;
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.front_face,
SI_PARAM_FRONT_FACE);
shader->info.ancillary_vgpr_index = ctx->args.num_vgprs_used;
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.ancillary,
SI_PARAM_ANCILLARY);
shader->info.sample_coverage_vgpr_index = ctx->args.num_vgprs_used;
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.sample_coverage,
SI_PARAM_SAMPLE_COVERAGE);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->pos_fixed_pt,
SI_PARAM_POS_FIXED_PT);
/* Color inputs from the prolog. */
if (shader->selector->info.colors_read) {
unsigned num_color_elements = util_bitcount(shader->selector->info.colors_read);
for (i = 0; i < num_color_elements; i++)
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL);
num_prolog_vgprs += num_color_elements;
}
/* Outputs for the epilog. */
num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
num_returns = num_return_sgprs + util_bitcount(shader->selector->info.colors_written) * 4 +
shader->selector->info.writes_z + shader->selector->info.writes_stencil +
shader->selector->info.writes_samplemask + 1 /* SampleMaskIn */;
for (i = 0; i < num_return_sgprs; i++)
ac_add_return(&ctx->args, AC_ARG_SGPR);
for (; i < num_returns; i++)
ac_add_return(&ctx->args, AC_ARG_VGPR);
break;
case MESA_SHADER_COMPUTE:
declare_global_desc_pointers(ctx);
declare_per_stage_desc_pointers(ctx, true);
if (shader->selector->info.uses_grid_size)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 3, AC_ARG_INT, &ctx->args.num_work_groups);
if (shader->selector->info.uses_variable_block_size)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->block_size);
unsigned cs_user_data_dwords =
shader->selector->info.base.cs.user_data_components_amd;
if (cs_user_data_dwords) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, cs_user_data_dwords, AC_ARG_INT, &ctx->cs_user_data);
}
/* Some descriptors can be in user SGPRs. */
/* Shader buffers in user SGPRs. */
for (unsigned i = 0; i < shader->selector->cs_num_shaderbufs_in_user_sgprs; i++) {
while (ctx->args.num_sgprs_used % 4 != 0)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 4, AC_ARG_INT, &ctx->cs_shaderbuf[i]);
}
/* Images in user SGPRs. */
for (unsigned i = 0; i < shader->selector->cs_num_images_in_user_sgprs; i++) {
unsigned num_sgprs = BITSET_TEST(shader->selector->info.base.image_buffers, i) ? 4 : 8;
while (ctx->args.num_sgprs_used % num_sgprs != 0)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
ac_add_arg(&ctx->args, AC_ARG_SGPR, num_sgprs, AC_ARG_INT, &ctx->cs_image[i]);
}
/* Hardware SGPRs. */
for (i = 0; i < 3; i++) {
if (shader->selector->info.uses_block_id[i]) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.workgroup_ids[i]);
}
}
if (shader->selector->info.uses_subgroup_info)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tg_size);
/* Hardware VGPRs. */
/* Thread IDs are packed in VGPR0, 10 bits per component or stored in 3 separate VGPRs */
if (ctx->screen->info.gfx_level >= GFX11 ||
(!ctx->screen->info.has_graphics && ctx->screen->info.family >= CHIP_ALDEBARAN))
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.local_invocation_ids);
else
ac_add_arg(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_INT, &ctx->args.local_invocation_ids);
break;
default:
assert(0 && "unimplemented shader");
return;
}
shader->info.num_input_sgprs = ctx->args.num_sgprs_used;
shader->info.num_input_vgprs = ctx->args.num_vgprs_used;
assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
shader->info.num_input_vgprs -= num_prolog_vgprs;
}
/* For the UMR disassembler. */
#define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
#define DEBUGGER_NUM_MARKERS 5
static unsigned get_lds_granularity(struct si_screen *screen, gl_shader_stage stage)
{
return screen->info.gfx_level >= GFX11 && stage == MESA_SHADER_FRAGMENT ? 1024 :
screen->info.gfx_level >= GFX7 ? 512 : 256;
}
bool si_shader_binary_open(struct si_screen *screen, struct si_shader *shader,
struct ac_rtld_binary *rtld)
{
const struct si_shader_selector *sel = shader->selector;
const char *part_elfs[5];
size_t part_sizes[5];
unsigned num_parts = 0;
#define add_part(shader_or_part) \
if (shader_or_part) { \
part_elfs[num_parts] = (shader_or_part)->binary.elf_buffer; \
part_sizes[num_parts] = (shader_or_part)->binary.elf_size; \
num_parts++; \
}
add_part(shader->prolog);
add_part(shader->previous_stage);
add_part(shader);
add_part(shader->epilog);
#undef add_part
struct ac_rtld_symbol lds_symbols[2];
unsigned num_lds_symbols = 0;
if (sel && screen->info.gfx_level >= GFX9 && !shader->is_gs_copy_shader &&
(sel->stage == MESA_SHADER_GEOMETRY ||
(sel->stage <= MESA_SHADER_GEOMETRY && shader->key.ge.as_ngg))) {
struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
sym->name = "esgs_ring";
sym->size = shader->gs_info.esgs_ring_size * 4;
sym->align = 64 * 1024;
}
if (sel->stage == MESA_SHADER_GEOMETRY && shader->key.ge.as_ngg) {
struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
sym->name = "ngg_emit";
sym->size = shader->ngg.ngg_emit_size * 4;
sym->align = 4;
}
bool ok = ac_rtld_open(
rtld, (struct ac_rtld_open_info){.info = &screen->info,
.options =
{
.halt_at_entry = screen->options.halt_shaders,
},
.shader_type = sel->stage,
.wave_size = shader->wave_size,
.num_parts = num_parts,
.elf_ptrs = part_elfs,
.elf_sizes = part_sizes,
.num_shared_lds_symbols = num_lds_symbols,
.shared_lds_symbols = lds_symbols});
if (rtld->lds_size > 0) {
unsigned alloc_granularity = get_lds_granularity(screen, sel->stage);
shader->config.lds_size = DIV_ROUND_UP(rtld->lds_size, alloc_granularity);
}
return ok;
}
static unsigned si_get_shader_binary_size(struct si_screen *screen, struct si_shader *shader)
{
struct ac_rtld_binary rtld;
si_shader_binary_open(screen, shader, &rtld);
uint64_t size = rtld.exec_size;
ac_rtld_close(&rtld);
return size;
}
bool si_get_external_symbol(enum amd_gfx_level gfx_level, void *data, const char *name,
uint64_t *value)
{
uint64_t *scratch_va = data;
if (!strcmp(scratch_rsrc_dword0_symbol, name)) {
*value = (uint32_t)*scratch_va;
return true;
}
if (!strcmp(scratch_rsrc_dword1_symbol, name)) {
/* Enable scratch coalescing. */
*value = S_008F04_BASE_ADDRESS_HI(*scratch_va >> 32);
if (gfx_level >= GFX11)
*value |= S_008F04_SWIZZLE_ENABLE_GFX11(1);
else
*value |= S_008F04_SWIZZLE_ENABLE_GFX6(1);
return true;
}
return false;
}
bool si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader,
uint64_t scratch_va)
{
struct ac_rtld_binary binary;
if (!si_shader_binary_open(sscreen, shader, &binary))
return false;
si_resource_reference(&shader->bo, NULL);
shader->bo = si_aligned_buffer_create(
&sscreen->b,
(sscreen->info.cpdma_prefetch_writes_memory ? 0 : SI_RESOURCE_FLAG_READ_ONLY) |
SI_RESOURCE_FLAG_DRIVER_INTERNAL | SI_RESOURCE_FLAG_32BIT,
PIPE_USAGE_IMMUTABLE, align(binary.rx_size, SI_CPDMA_ALIGNMENT), 256);
if (!shader->bo)
return false;
/* Upload. */
struct ac_rtld_upload_info u = {};
u.binary = &binary;
u.get_external_symbol = si_get_external_symbol;
u.cb_data = &scratch_va;
u.rx_va = shader->bo->gpu_address;
u.rx_ptr = sscreen->ws->buffer_map(sscreen->ws,
shader->bo->buf, NULL,
PIPE_MAP_READ_WRITE | PIPE_MAP_UNSYNCHRONIZED | RADEON_MAP_TEMPORARY);
if (!u.rx_ptr)
return false;
int size = ac_rtld_upload(&u);
if (sscreen->debug_flags & DBG(SQTT)) {
/* Remember the uploaded code */
shader->binary.uploaded_code_size = size;
shader->binary.uploaded_code = malloc(size);
memcpy(shader->binary.uploaded_code, u.rx_ptr, size);
}
sscreen->ws->buffer_unmap(sscreen->ws, shader->bo->buf);
ac_rtld_close(&binary);
shader->gpu_address = u.rx_va;
return size >= 0;
}
static void si_shader_dump_disassembly(struct si_screen *screen,
const struct si_shader_binary *binary,
gl_shader_stage stage, unsigned wave_size,
struct util_debug_callback *debug, const char *name,
FILE *file)
{
struct ac_rtld_binary rtld_binary;
if (!ac_rtld_open(&rtld_binary, (struct ac_rtld_open_info){
.info = &screen->info,
.shader_type = stage,
.wave_size = wave_size,
.num_parts = 1,
.elf_ptrs = &binary->elf_buffer,
.elf_sizes = &binary->elf_size}))
return;
const char *disasm;
size_t nbytes;
if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm, &nbytes))
goto out;
if (nbytes > INT_MAX)
goto out;
if (debug && debug->debug_message) {
/* Very long debug messages are cut off, so send the
* disassembly one line at a time. This causes more
* overhead, but on the plus side it simplifies
* parsing of resulting logs.
*/
util_debug_message(debug, SHADER_INFO, "Shader Disassembly Begin");
uint64_t line = 0;
while (line < nbytes) {
int count = nbytes - line;
const char *nl = memchr(disasm + line, '\n', nbytes - line);
if (nl)
count = nl - (disasm + line);
if (count) {
util_debug_message(debug, SHADER_INFO, "%.*s", count, disasm + line);
}
line += count + 1;
}
util_debug_message(debug, SHADER_INFO, "Shader Disassembly End");
}
if (file) {
fprintf(file, "Shader %s disassembly:\n", name);
fprintf(file, "%*s", (int)nbytes, disasm);
}
out:
ac_rtld_close(&rtld_binary);
}
static void si_calculate_max_simd_waves(struct si_shader *shader)
{
struct si_screen *sscreen = shader->selector->screen;
struct ac_shader_config *conf = &shader->config;
unsigned num_inputs = shader->selector->info.num_inputs;
unsigned lds_increment = get_lds_granularity(sscreen, shader->selector->stage);
unsigned lds_per_wave = 0;
unsigned max_simd_waves;
max_simd_waves = sscreen->info.max_wave64_per_simd;
/* Compute LDS usage for PS. */
switch (shader->selector->stage) {
case MESA_SHADER_FRAGMENT:
/* The minimum usage per wave is (num_inputs * 48). The maximum
* usage is (num_inputs * 48 * 16).
* We can get anything in between and it varies between waves.
*
* The 48 bytes per input for a single primitive is equal to
* 4 bytes/component * 4 components/input * 3 points.
*
* Other stages don't know the size at compile time or don't
* allocate LDS per wave, but instead they do it per thread group.
*/
lds_per_wave = conf->lds_size * lds_increment + align(num_inputs * 48, lds_increment);
break;
case MESA_SHADER_COMPUTE: {
unsigned max_workgroup_size = si_get_max_workgroup_size(shader);
lds_per_wave = (conf->lds_size * lds_increment) /
DIV_ROUND_UP(max_workgroup_size, shader->wave_size);
}
break;
default:;
}
/* Compute the per-SIMD wave counts. */
if (conf->num_sgprs) {
max_simd_waves =
MIN2(max_simd_waves, sscreen->info.num_physical_sgprs_per_simd / conf->num_sgprs);
}
if (conf->num_vgprs) {
/* GFX 10.3 internally:
* - aligns VGPRS to 16 for Wave32 and 8 for Wave64
* - aligns LDS to 1024
*
* For shader-db stats, set num_vgprs that the hw actually uses.
*/
unsigned num_vgprs = conf->num_vgprs;
if (sscreen->info.family == CHIP_GFX1100 || sscreen->info.family == CHIP_GFX1101) {
num_vgprs = util_align_npot(num_vgprs, shader->wave_size == 32 ? 24 : 12);
} else if (sscreen->info.gfx_level == GFX10_3) {
num_vgprs = align(num_vgprs, shader->wave_size == 32 ? 16 : 8);
} else {
num_vgprs = align(num_vgprs, shader->wave_size == 32 ? 8 : 4);
}
/* Always print wave limits as Wave64, so that we can compare
* Wave32 and Wave64 with shader-db fairly. */
unsigned max_vgprs = sscreen->info.num_physical_wave64_vgprs_per_simd;
max_simd_waves = MIN2(max_simd_waves, max_vgprs / num_vgprs);
}
unsigned max_lds_per_simd = sscreen->info.lds_size_per_workgroup / 4;
if (lds_per_wave)
max_simd_waves = MIN2(max_simd_waves, max_lds_per_simd / lds_per_wave);
shader->info.max_simd_waves = max_simd_waves;
}
void si_shader_dump_stats_for_shader_db(struct si_screen *screen, struct si_shader *shader,
struct util_debug_callback *debug)
{
const struct ac_shader_config *conf = &shader->config;
static const char *stages[] = {"VS", "TCS", "TES", "GS", "PS", "CS"};
if (screen->options.debug_disassembly)
si_shader_dump_disassembly(screen, &shader->binary, shader->selector->stage,
shader->wave_size, debug, "main", NULL);
util_debug_message(debug, SHADER_INFO,
"Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
"LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
"Spilled VGPRs: %d PrivMem VGPRs: %d DivergentLoop: %d, InlineUniforms: %d, "
"ParamExports: %u, (%s, W%u)",
conf->num_sgprs, conf->num_vgprs, si_get_shader_binary_size(screen, shader),
conf->lds_size, conf->scratch_bytes_per_wave, shader->info.max_simd_waves,
conf->spilled_sgprs, conf->spilled_vgprs, shader->info.private_mem_vgprs,
shader->selector->info.has_divergent_loop,
shader->selector->info.base.num_inlinable_uniforms,
shader->info.nr_param_exports,
stages[shader->selector->stage], shader->wave_size);
}
static void si_shader_dump_stats(struct si_screen *sscreen, struct si_shader *shader, FILE *file,
bool check_debug_option)
{
const struct ac_shader_config *conf = &shader->config;
if (!check_debug_option || si_can_dump_shader(sscreen, shader->selector->stage)) {
if (shader->selector->stage == MESA_SHADER_FRAGMENT) {
fprintf(file,
"*** SHADER CONFIG ***\n"
"SPI_PS_INPUT_ADDR = 0x%04x\n"
"SPI_PS_INPUT_ENA = 0x%04x\n",
conf->spi_ps_input_addr, conf->spi_ps_input_ena);
}
fprintf(file,
"*** SHADER STATS ***\n"
"SGPRS: %d\n"
"VGPRS: %d\n"
"Spilled SGPRs: %d\n"
"Spilled VGPRs: %d\n"
"Private memory VGPRs: %d\n"
"Code Size: %d bytes\n"
"LDS: %d bytes\n"
"Scratch: %d bytes per wave\n"
"Max Waves: %d\n"
"********************\n\n\n",
conf->num_sgprs, conf->num_vgprs, conf->spilled_sgprs, conf->spilled_vgprs,
shader->info.private_mem_vgprs, si_get_shader_binary_size(sscreen, shader),
conf->lds_size * get_lds_granularity(sscreen, shader->selector->stage),
conf->scratch_bytes_per_wave, shader->info.max_simd_waves);
}
}
const char *si_get_shader_name(const struct si_shader *shader)
{
switch (shader->selector->stage) {
case MESA_SHADER_VERTEX:
if (shader->key.ge.as_es)
return "Vertex Shader as ES";
else if (shader->key.ge.as_ls)
return "Vertex Shader as LS";
else if (shader->key.ge.as_ngg)
return "Vertex Shader as ESGS";
else
return "Vertex Shader as VS";
case MESA_SHADER_TESS_CTRL:
return "Tessellation Control Shader";
case MESA_SHADER_TESS_EVAL:
if (shader->key.ge.as_es)
return "Tessellation Evaluation Shader as ES";
else if (shader->key.ge.as_ngg)
return "Tessellation Evaluation Shader as ESGS";
else
return "Tessellation Evaluation Shader as VS";
case MESA_SHADER_GEOMETRY:
if (shader->is_gs_copy_shader)
return "GS Copy Shader as VS";
else
return "Geometry Shader";
case MESA_SHADER_FRAGMENT:
return "Pixel Shader";
case MESA_SHADER_COMPUTE:
return "Compute Shader";
default:
return "Unknown Shader";
}
}
void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
struct util_debug_callback *debug, FILE *file, bool check_debug_option)
{
gl_shader_stage stage = shader->selector->stage;
if (!check_debug_option || si_can_dump_shader(sscreen, stage))
si_dump_shader_key(shader, file);
if (!check_debug_option && shader->binary.llvm_ir_string) {
if (shader->previous_stage && shader->previous_stage->binary.llvm_ir_string) {
fprintf(file, "\n%s - previous stage - LLVM IR:\n\n", si_get_shader_name(shader));
fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
}
fprintf(file, "\n%s - main shader part - LLVM IR:\n\n", si_get_shader_name(shader));
fprintf(file, "%s\n", shader->binary.llvm_ir_string);
}
if (!check_debug_option ||
(si_can_dump_shader(sscreen, stage) && !(sscreen->debug_flags & DBG(NO_ASM)))) {
fprintf(file, "\n%s:\n", si_get_shader_name(shader));
if (shader->prolog)
si_shader_dump_disassembly(sscreen, &shader->prolog->binary, stage, shader->wave_size, debug,
"prolog", file);
if (shader->previous_stage)
si_shader_dump_disassembly(sscreen, &shader->previous_stage->binary, stage,
shader->wave_size, debug, "previous stage", file);
si_shader_dump_disassembly(sscreen, &shader->binary, stage, shader->wave_size, debug, "main",
file);
if (shader->epilog)
si_shader_dump_disassembly(sscreen, &shader->epilog->binary, stage, shader->wave_size, debug,
"epilog", file);
fprintf(file, "\n");
}
si_shader_dump_stats(sscreen, shader, file, check_debug_option);
}
static void si_dump_shader_key_vs(const union si_shader_key *key,
const struct si_vs_prolog_bits *prolog, const char *prefix,
FILE *f)
{
fprintf(f, " %s.instance_divisor_is_one = %u\n", prefix, prolog->instance_divisor_is_one);
fprintf(f, " %s.instance_divisor_is_fetched = %u\n", prefix,
prolog->instance_divisor_is_fetched);
fprintf(f, " %s.ls_vgpr_fix = %u\n", prefix, prolog->ls_vgpr_fix);
fprintf(f, " mono.vs.fetch_opencode = %x\n", key->ge.mono.vs_fetch_opencode);
fprintf(f, " mono.vs.fix_fetch = {");
for (int i = 0; i < SI_MAX_ATTRIBS; i++) {
union si_vs_fix_fetch fix = key->ge.mono.vs_fix_fetch[i];
if (i)
fprintf(f, ", ");
if (!fix.bits)
fprintf(f, "0");
else
fprintf(f, "%u.%u.%u.%u", fix.u.reverse, fix.u.log_size, fix.u.num_channels_m1,
fix.u.format);
}
fprintf(f, "}\n");
}
static void si_dump_shader_key(const struct si_shader *shader, FILE *f)
{
const union si_shader_key *key = &shader->key;
gl_shader_stage stage = shader->selector->stage;
fprintf(f, "SHADER KEY\n");
fprintf(f, " source_sha1 = {");
_mesa_sha1_print(f, shader->selector->info.base.source_sha1);
fprintf(f, "}\n");
switch (stage) {
case MESA_SHADER_VERTEX:
si_dump_shader_key_vs(key, &key->ge.part.vs.prolog, "part.vs.prolog", f);
fprintf(f, " as_es = %u\n", key->ge.as_es);
fprintf(f, " as_ls = %u\n", key->ge.as_ls);
fprintf(f, " as_ngg = %u\n", key->ge.as_ngg);
fprintf(f, " mono.u.vs_export_prim_id = %u\n", key->ge.mono.u.vs_export_prim_id);
break;
case MESA_SHADER_TESS_CTRL:
if (shader->selector->screen->info.gfx_level >= GFX9) {
si_dump_shader_key_vs(key, &key->ge.part.tcs.ls_prolog, "part.tcs.ls_prolog", f);
}
fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->ge.part.tcs.epilog.prim_mode);
fprintf(f, " opt.prefer_mono = %u\n", key->ge.opt.prefer_mono);
fprintf(f, " opt.same_patch_vertices = %u\n", key->ge.opt.same_patch_vertices);
break;
case MESA_SHADER_TESS_EVAL:
fprintf(f, " as_es = %u\n", key->ge.as_es);
fprintf(f, " as_ngg = %u\n", key->ge.as_ngg);
fprintf(f, " mono.u.vs_export_prim_id = %u\n", key->ge.mono.u.vs_export_prim_id);
break;
case MESA_SHADER_GEOMETRY:
if (shader->is_gs_copy_shader)
break;
if (shader->selector->screen->info.gfx_level >= GFX9 &&
key->ge.part.gs.es->stage == MESA_SHADER_VERTEX) {
si_dump_shader_key_vs(key, &key->ge.part.gs.vs_prolog, "part.gs.vs_prolog", f);
}
fprintf(f, " mono.u.gs_tri_strip_adj_fix = %u\n", key->ge.mono.u.gs_tri_strip_adj_fix);
fprintf(f, " as_ngg = %u\n", key->ge.as_ngg);
break;
case MESA_SHADER_COMPUTE:
break;
case MESA_SHADER_FRAGMENT:
fprintf(f, " prolog.color_two_side = %u\n", key->ps.part.prolog.color_two_side);
fprintf(f, " prolog.flatshade_colors = %u\n", key->ps.part.prolog.flatshade_colors);
fprintf(f, " prolog.poly_stipple = %u\n", key->ps.part.prolog.poly_stipple);
fprintf(f, " prolog.force_persp_sample_interp = %u\n",
key->ps.part.prolog.force_persp_sample_interp);
fprintf(f, " prolog.force_linear_sample_interp = %u\n",
key->ps.part.prolog.force_linear_sample_interp);
fprintf(f, " prolog.force_persp_center_interp = %u\n",
key->ps.part.prolog.force_persp_center_interp);
fprintf(f, " prolog.force_linear_center_interp = %u\n",
key->ps.part.prolog.force_linear_center_interp);
fprintf(f, " prolog.bc_optimize_for_persp = %u\n",
key->ps.part.prolog.bc_optimize_for_persp);
fprintf(f, " prolog.bc_optimize_for_linear = %u\n",
key->ps.part.prolog.bc_optimize_for_linear);
fprintf(f, " prolog.samplemask_log_ps_iter = %u\n",
key->ps.part.prolog.samplemask_log_ps_iter);
fprintf(f, " epilog.spi_shader_col_format = 0x%x\n",
key->ps.part.epilog.spi_shader_col_format);
fprintf(f, " epilog.color_is_int8 = 0x%X\n", key->ps.part.epilog.color_is_int8);
fprintf(f, " epilog.color_is_int10 = 0x%X\n", key->ps.part.epilog.color_is_int10);
fprintf(f, " epilog.last_cbuf = %u\n", key->ps.part.epilog.last_cbuf);
fprintf(f, " epilog.alpha_func = %u\n", key->ps.part.epilog.alpha_func);
fprintf(f, " epilog.alpha_to_one = %u\n", key->ps.part.epilog.alpha_to_one);
fprintf(f, " epilog.alpha_to_coverage_via_mrtz = %u\n", key->ps.part.epilog.alpha_to_coverage_via_mrtz);
fprintf(f, " epilog.clamp_color = %u\n", key->ps.part.epilog.clamp_color);
fprintf(f, " epilog.dual_src_blend_swizzle = %u\n", key->ps.part.epilog.dual_src_blend_swizzle);
fprintf(f, " mono.poly_line_smoothing = %u\n", key->ps.mono.poly_line_smoothing);
fprintf(f, " mono.point_smoothing = %u\n", key->ps.mono.point_smoothing);
fprintf(f, " mono.interpolate_at_sample_force_center = %u\n",
key->ps.mono.interpolate_at_sample_force_center);
fprintf(f, " mono.fbfetch_msaa = %u\n", key->ps.mono.fbfetch_msaa);
fprintf(f, " mono.fbfetch_is_1D = %u\n", key->ps.mono.fbfetch_is_1D);
fprintf(f, " mono.fbfetch_layered = %u\n", key->ps.mono.fbfetch_layered);
break;
default:
assert(0);
}
if ((stage == MESA_SHADER_GEOMETRY || stage == MESA_SHADER_TESS_EVAL ||
stage == MESA_SHADER_VERTEX) &&
!key->ge.as_es && !key->ge.as_ls) {
fprintf(f, " opt.kill_outputs = 0x%" PRIx64 "\n", key->ge.opt.kill_outputs);
fprintf(f, " opt.kill_pointsize = 0x%x\n", key->ge.opt.kill_pointsize);
fprintf(f, " opt.kill_clip_distances = 0x%x\n", key->ge.opt.kill_clip_distances);
fprintf(f, " opt.ngg_culling = 0x%x\n", key->ge.opt.ngg_culling);
fprintf(f, " opt.remove_streamout = 0x%x\n", key->ge.opt.remove_streamout);
}
if (stage <= MESA_SHADER_GEOMETRY)
fprintf(f, " opt.prefer_mono = %u\n", key->ge.opt.prefer_mono);
else
fprintf(f, " opt.prefer_mono = %u\n", key->ps.opt.prefer_mono);
if (stage <= MESA_SHADER_GEOMETRY) {
if (key->ge.opt.inline_uniforms) {
fprintf(f, " opt.inline_uniforms = %u (0x%x, 0x%x, 0x%x, 0x%x)\n",
key->ge.opt.inline_uniforms,
key->ge.opt.inlined_uniform_values[0],
key->ge.opt.inlined_uniform_values[1],
key->ge.opt.inlined_uniform_values[2],
key->ge.opt.inlined_uniform_values[3]);
} else {
fprintf(f, " opt.inline_uniforms = 0\n");
}
} else {
if (key->ps.opt.inline_uniforms) {
fprintf(f, " opt.inline_uniforms = %u (0x%x, 0x%x, 0x%x, 0x%x)\n",
key->ps.opt.inline_uniforms,
key->ps.opt.inlined_uniform_values[0],
key->ps.opt.inlined_uniform_values[1],
key->ps.opt.inlined_uniform_values[2],
key->ps.opt.inlined_uniform_values[3]);
} else {
fprintf(f, " opt.inline_uniforms = 0\n");
}
}
}
bool si_vs_needs_prolog(const struct si_shader_selector *sel,
const struct si_vs_prolog_bits *prolog_key,
const union si_shader_key *key, bool ngg_cull_shader,
bool is_gs)
{
assert(sel->stage == MESA_SHADER_VERTEX);
/* VGPR initialization fixup for Vega10 and Raven is always done in the
* VS prolog. */
return sel->info.vs_needs_prolog || prolog_key->ls_vgpr_fix ||
/* The 2nd VS prolog loads input VGPRs from LDS */
(key->ge.opt.ngg_culling && !ngg_cull_shader && !is_gs);
}
/**
* Compute the VS prolog key, which contains all the information needed to
* build the VS prolog function, and set shader->info bits where needed.
*
* \param info Shader info of the vertex shader.
* \param num_input_sgprs Number of input SGPRs for the vertex shader.
* \param has_old_ Whether the preceding shader part is the NGG cull shader.
* \param prolog_key Key of the VS prolog
* \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS.
* \param key Output shader part key.
*/
void si_get_vs_prolog_key(const struct si_shader_info *info, unsigned num_input_sgprs,
bool ngg_cull_shader, const struct si_vs_prolog_bits *prolog_key,
struct si_shader *shader_out, union si_shader_part_key *key)
{
memset(key, 0, sizeof(*key));
key->vs_prolog.states = *prolog_key;
key->vs_prolog.wave32 = shader_out->wave_size == 32;
key->vs_prolog.num_input_sgprs = num_input_sgprs;
key->vs_prolog.num_inputs = info->num_inputs;
key->vs_prolog.as_ls = shader_out->key.ge.as_ls;
key->vs_prolog.as_es = shader_out->key.ge.as_es;
key->vs_prolog.as_ngg = shader_out->key.ge.as_ngg;
if (shader_out->selector->stage != MESA_SHADER_GEOMETRY &&
!ngg_cull_shader && shader_out->key.ge.opt.ngg_culling)
key->vs_prolog.load_vgprs_after_culling = 1;
if (shader_out->selector->stage == MESA_SHADER_TESS_CTRL) {
key->vs_prolog.as_ls = 1;
key->vs_prolog.num_merged_next_stage_vgprs = 2;
} else if (shader_out->selector->stage == MESA_SHADER_GEOMETRY) {
key->vs_prolog.as_es = 1;
key->vs_prolog.num_merged_next_stage_vgprs = 5;
} else if (shader_out->key.ge.as_ngg) {
key->vs_prolog.num_merged_next_stage_vgprs = 5;
}
/* Only one of these combinations can be set. as_ngg can be set with as_es. */
assert(key->vs_prolog.as_ls + key->vs_prolog.as_ngg +
(key->vs_prolog.as_es && !key->vs_prolog.as_ngg) <= 1);
/* Enable loading the InstanceID VGPR. */
uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
if ((key->vs_prolog.states.instance_divisor_is_one |
key->vs_prolog.states.instance_divisor_is_fetched) &
input_mask)
shader_out->info.uses_instanceid = true;
}
/* TODO: convert to nir_shader_instructions_pass */
static bool si_nir_kill_outputs(nir_shader *nir, const union si_shader_key *key)
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
assert(impl);
if (nir->info.stage > MESA_SHADER_GEOMETRY ||
(!key->ge.opt.kill_outputs &&
!key->ge.opt.kill_pointsize &&
!key->ge.opt.kill_clip_distances)) {
nir_metadata_preserve(impl, nir_metadata_all);
return false;
}
bool progress = false;
nir_builder b;
nir_builder_init(&b, impl);
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_store_output)
continue;
/* No indirect indexing allowed. */
ASSERTED nir_src offset = *nir_get_io_offset_src(intr);
assert(nir_src_is_const(offset) && nir_src_as_uint(offset) == 0);
assert(intr->num_components == 1); /* only scalar stores expected */
nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
if (nir_slot_is_varying(sem.location) &&
key->ge.opt.kill_outputs &
(1ull << si_shader_io_get_unique_index(sem.location, true))) {
nir_remove_varying(intr);
progress = true;
}
if (key->ge.opt.kill_pointsize && sem.location == VARYING_SLOT_PSIZ) {
nir_remove_sysval_output(intr);
progress = true;
}
/* TODO: We should only kill specific clip planes as required by kill_clip_distance,
* not whole gl_ClipVertex. Lower ClipVertex in NIR.
*/
if ((key->ge.opt.kill_clip_distances & SI_USER_CLIP_PLANE_MASK) == SI_USER_CLIP_PLANE_MASK &&
sem.location == VARYING_SLOT_CLIP_VERTEX) {
nir_remove_sysval_output(intr);
progress = true;
}
if (key->ge.opt.kill_clip_distances &&
(sem.location == VARYING_SLOT_CLIP_DIST0 ||
sem.location == VARYING_SLOT_CLIP_DIST1)) {
assert(nir_intrinsic_src_type(intr) == nir_type_float32);
unsigned index = (sem.location - VARYING_SLOT_CLIP_DIST0) * 4 +
nir_intrinsic_component(intr);
if ((key->ge.opt.kill_clip_distances >> index) & 0x1) {
nir_remove_sysval_output(intr);
progress = true;
}
}
}
}
if (progress) {
nir_metadata_preserve(impl, nir_metadata_dominance |
nir_metadata_block_index);
} else {
nir_metadata_preserve(impl, nir_metadata_all);
}
return progress;
}
static unsigned si_map_io_driver_location(unsigned semantic)
{
if ((semantic >= VARYING_SLOT_PATCH0 && semantic < VARYING_SLOT_TESS_MAX) ||
semantic == VARYING_SLOT_TESS_LEVEL_INNER ||
semantic == VARYING_SLOT_TESS_LEVEL_OUTER)
return si_shader_io_get_unique_index_patch(semantic);
return si_shader_io_get_unique_index(semantic, false);
}
static bool si_lower_io_to_mem(struct si_shader *shader, nir_shader *nir,
uint64_t tcs_vgpr_only_inputs)
{
struct si_shader_selector *sel = shader->selector;
const union si_shader_key *key = &shader->key;
if (nir->info.stage == MESA_SHADER_VERTEX) {
if (key->ge.as_ls) {
NIR_PASS_V(nir, ac_nir_lower_ls_outputs_to_mem, si_map_io_driver_location,
key->ge.opt.same_patch_vertices, tcs_vgpr_only_inputs);
return true;
} else if (key->ge.as_es) {
NIR_PASS_V(nir, ac_nir_lower_es_outputs_to_mem, si_map_io_driver_location,
sel->screen->info.gfx_level, sel->info.esgs_itemsize);
return true;
}
} else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
NIR_PASS_V(nir, ac_nir_lower_hs_inputs_to_mem, si_map_io_driver_location,
key->ge.opt.same_patch_vertices);
NIR_PASS_V(nir, ac_nir_lower_hs_outputs_to_mem, si_map_io_driver_location,
sel->screen->info.gfx_level,
false, /* does not matter as we disabled final tess factor write */
~0ULL, ~0ULL, /* no TES inputs filter */
util_last_bit64(sel->info.outputs_written),
util_last_bit64(sel->info.patch_outputs_written),
shader->wave_size,
/* ALL TCS inputs are passed by register. */
key->ge.opt.same_patch_vertices &&
!(sel->info.base.inputs_read & ~sel->info.tcs_vgpr_only_inputs),
sel->info.tessfactors_are_def_in_all_invocs, false);
return true;
} else if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
NIR_PASS_V(nir, ac_nir_lower_tes_inputs_to_mem, si_map_io_driver_location);
if (key->ge.as_es) {
NIR_PASS_V(nir, ac_nir_lower_es_outputs_to_mem, si_map_io_driver_location,
sel->screen->info.gfx_level, sel->info.esgs_itemsize);
}
return true;
} else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
NIR_PASS_V(nir, ac_nir_lower_gs_inputs_to_mem, si_map_io_driver_location,
sel->screen->info.gfx_level, key->ge.mono.u.gs_tri_strip_adj_fix);
return true;
}
return false;
}
struct nir_shader *si_deserialize_shader(struct si_shader_selector *sel)
{
struct pipe_screen *screen = &sel->screen->b;
const void *options = screen->get_compiler_options(screen, PIPE_SHADER_IR_NIR,
pipe_shader_type_from_mesa(sel->stage));
struct blob_reader blob_reader;
blob_reader_init(&blob_reader, sel->nir_binary, sel->nir_size);
return nir_deserialize(NULL, options, &blob_reader);
}
struct nir_shader *si_get_nir_shader(struct si_shader *shader, bool *free_nir,
uint64_t tcs_vgpr_only_inputs)
{
struct si_shader_selector *sel = shader->selector;
const union si_shader_key *key = &shader->key;
nir_shader *nir;
*free_nir = false;
if (sel->nir) {
nir = sel->nir;
} else if (sel->nir_binary) {
nir = si_deserialize_shader(sel);
*free_nir = true;
} else {
return NULL;
}
bool progress = false;
const char *original_name = NULL;
if (unlikely(should_print_nir(nir))) {
/* Modify the shader's name so that each variant gets its own name. */
original_name = ralloc_strdup(nir, nir->info.name);
ralloc_asprintf_append((char **)&nir->info.name, "-%08x", _mesa_hash_data(key, sizeof(*key)));
/* Dummy pass to get the starting point. */
printf("nir_dummy_pass\n");
nir_print_shader(nir, stdout);
}
/* Kill outputs according to the shader key. */
if (sel->stage <= MESA_SHADER_GEOMETRY)
NIR_PASS(progress, nir, si_nir_kill_outputs, key);
if (nir->info.uses_resource_info_query)
NIR_PASS(progress, nir, ac_nir_lower_resinfo, sel->screen->info.gfx_level);
bool inline_uniforms = false;
uint32_t *inlined_uniform_values;
si_get_inline_uniform_state((union si_shader_key*)key, sel->pipe_shader_type,
&inline_uniforms, &inlined_uniform_values);
if (inline_uniforms) {
assert(*free_nir);
/* Most places use shader information from the default variant, not
* the optimized variant. These are the things that the driver looks at
* in optimized variants and the list of things that we need to do.
*
* The driver takes into account these things if they suddenly disappear
* from the shader code:
* - Register usage and code size decrease (obvious)
* - Eliminated PS system values are disabled by LLVM
* (FragCoord, FrontFace, barycentrics)
* - VS/TES/GS outputs feeding PS are eliminated if outputs are undef.
* The storage for eliminated outputs is also not allocated.
* - VS/TCS/TES/GS/PS input loads are eliminated (VS relies on DCE in LLVM)
* - TCS output stores are eliminated
*
* TODO: These are things the driver ignores in the final shader code
* and relies on the default shader info.
* - Other system values are not eliminated
* - PS.NUM_INTERP = bitcount64(inputs_read), renumber inputs
* to remove holes
* - uses_discard - if it changed to false
* - writes_memory - if it changed to false
* - VS->TCS, VS->GS, TES->GS output stores for the former stage are not
* eliminated
* - Eliminated VS/TCS/TES outputs are still allocated. (except when feeding PS)
* GS outputs are eliminated except for the temporary LDS.
* Clip distances, gl_PointSize, and PS outputs are eliminated based
* on current states, so we don't care about the shader code.
*
* TODO: Merged shaders don't inline uniforms for the first stage.
* VS-GS: only GS inlines uniforms; VS-TCS: only TCS; TES-GS: only GS.
* (key == NULL for the first stage here)
*
* TODO: Compute shaders don't support inlinable uniforms, because they
* don't have shader variants.
*
* TODO: The driver uses a linear search to find a shader variant. This
* can be really slow if we get too many variants due to uniform inlining.
*/
NIR_PASS_V(nir, nir_inline_uniforms,
nir->info.num_inlinable_uniforms,
inlined_uniform_values,
nir->info.inlinable_uniform_dw_offsets);
progress = true;
}
if (sel->stage == MESA_SHADER_FRAGMENT && key->ps.mono.poly_line_smoothing)
NIR_PASS(progress, nir, nir_lower_poly_line_smooth, SI_NUM_SMOOTH_AA_SAMPLES);
if (sel->stage == MESA_SHADER_FRAGMENT && key->ps.mono.point_smoothing)
NIR_PASS(progress, nir, nir_lower_point_smooth);
if (progress)
si_nir_opts(sel->screen, nir, true);
/* Lower large variables that are always constant with load_constant intrinsics, which
* get turned into PC-relative loads from a data section next to the shader.
*
* Loop unrolling caused by uniform inlining can help eliminate indirect indexing, so
* this should be done after that.
*
* The pass crashes if there are dead temps of lowered IO interface types, so remove
* them first.
*/
bool progress2 = false;
NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
NIR_PASS(progress2, nir, nir_opt_large_constants, glsl_get_natural_size_align_bytes, 16);
/* Loop unrolling caused by uniform inlining can help eliminate indirect indexing, so
* this should be done after that.
*/
progress2 |= ac_nir_lower_indirect_derefs(nir, sel->screen->info.gfx_level);
bool opt_offsets = si_lower_io_to_mem(shader, nir, tcs_vgpr_only_inputs);
if (progress2 || opt_offsets)
si_nir_opts(sel->screen, nir, false);
if (opt_offsets) {
static const nir_opt_offsets_options offset_options = {
.uniform_max = 0,
.buffer_max = ~0,
.shared_max = ~0,
};
NIR_PASS_V(nir, nir_opt_offsets, &offset_options);
}
if (progress || progress2 || opt_offsets)
si_nir_late_opts(nir);
NIR_PASS_V(nir, nir_divergence_analysis);
/* This helps LLVM form VMEM clauses and thus get more GPU cache hits.
* 200 is tuned for Viewperf. It should be done last.
*/
NIR_PASS_V(nir, nir_group_loads, nir_group_same_resource_only, 200);
if (unlikely(original_name)) {
ralloc_free((void*)nir->info.name);
nir->info.name = original_name;
}
return nir;
}
void si_update_shader_binary_info(struct si_shader *shader, nir_shader *nir)
{
struct si_shader_info info;
si_nir_scan_shader(shader->selector->screen, nir, &info);
shader->info.uses_vmem_load_other |= info.uses_vmem_load_other;
shader->info.uses_vmem_sampler_or_bvh |= info.uses_vmem_sampler_or_bvh;
}
static void si_nir_assign_param_offsets(nir_shader *nir, const struct si_shader_info *info,
int8_t slot_remap[NUM_TOTAL_VARYING_SLOTS],
uint8_t *num_param_exports, uint64_t *output_param_mask,
uint8_t vs_output_param_offset[NUM_TOTAL_VARYING_SLOTS])
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
assert(impl);
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_store_output)
continue;
/* No indirect indexing allowed. */
ASSERTED nir_src offset = *nir_get_io_offset_src(intr);
assert(nir_src_is_const(offset) && nir_src_as_uint(offset) == 0);
assert(intr->num_components == 1); /* only scalar stores expected */
nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
/* Assign the param index if it's unassigned. */
if (nir_slot_is_varying(sem.location) && !sem.no_varying &&
(sem.gs_streams & 0x3) == 0 &&
vs_output_param_offset[sem.location] == AC_EXP_PARAM_DEFAULT_VAL_0000) {
/* The semantic and the base should be the same as in si_shader_info. */
assert(sem.location == info->output_semantic[nir_intrinsic_base(intr)]);
/* It must not be remapped (duplicated). */
assert(slot_remap[sem.location] == -1);
vs_output_param_offset[sem.location] = (*num_param_exports)++;
*output_param_mask |= BITFIELD64_BIT(nir_intrinsic_base(intr));
}
}
}
/* Duplicated outputs are redirected here. */
for (unsigned i = 0; i < NUM_TOTAL_VARYING_SLOTS; i++) {
if (slot_remap[i] >= 0)
vs_output_param_offset[i] = vs_output_param_offset[slot_remap[i]];
}
}
bool si_compile_shader(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct util_debug_callback *debug)
{
struct si_shader_selector *sel = shader->selector;
bool free_nir;
struct nir_shader *nir = si_get_nir_shader(shader, &free_nir, 0);
/* Assign param export indices. */
if ((sel->stage == MESA_SHADER_VERTEX ||
sel->stage == MESA_SHADER_TESS_EVAL ||
(sel->stage == MESA_SHADER_GEOMETRY && shader->key.ge.as_ngg)) &&
!shader->key.ge.as_ls && !shader->key.ge.as_es) {
/* Initialize this first. */
shader->info.nr_param_exports = 0;
shader->info.vs_output_param_mask = 0;
STATIC_ASSERT(sizeof(shader->info.vs_output_param_offset[0]) == 1);
memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_DEFAULT_VAL_0000,
sizeof(shader->info.vs_output_param_offset));
/* A slot remapping table for duplicated outputs, so that 1 vertex shader output can be
* mapped to multiple fragment shader inputs.
*/
int8_t slot_remap[NUM_TOTAL_VARYING_SLOTS];
memset(slot_remap, -1, NUM_TOTAL_VARYING_SLOTS);
/* This sets DEFAULT_VAL for constant outputs in vs_output_param_offset. */
/* TODO: This doesn't affect GS. */
NIR_PASS_V(nir, ac_nir_optimize_outputs, false, slot_remap,
shader->info.vs_output_param_offset);
/* Assign the non-constant outputs. */
/* TODO: Use this for the GS copy shader too. */
si_nir_assign_param_offsets(nir, &sel->info, slot_remap, &shader->info.nr_param_exports,
&shader->info.vs_output_param_mask,
shader->info.vs_output_param_offset);
if (shader->key.ge.mono.u.vs_export_prim_id) {
shader->info.vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = shader->info.nr_param_exports++;
shader->info.vs_output_param_mask |= BITFIELD64_BIT(sel->info.num_outputs);
}
}
struct pipe_stream_output_info so = {};
if (si_shader_uses_streamout(shader))
nir_gather_stream_output_info(nir, &so);
/* Dump NIR before doing NIR->LLVM conversion in case the
* conversion fails. */
if (si_can_dump_shader(sscreen, sel->stage) &&
!(sscreen->debug_flags & DBG(NO_NIR))) {
nir_print_shader(nir, stderr);
si_dump_streamout(&so);
}
/* Initialize vs_output_ps_input_cntl to default. */
for (unsigned i = 0; i < ARRAY_SIZE(shader->info.vs_output_ps_input_cntl); i++)
shader->info.vs_output_ps_input_cntl[i] = SI_PS_INPUT_CNTL_UNUSED;
shader->info.vs_output_ps_input_cntl[VARYING_SLOT_COL0] = SI_PS_INPUT_CNTL_UNUSED_COLOR0;
si_update_shader_binary_info(shader, nir);
shader->info.uses_instanceid = sel->info.uses_instanceid;
shader->info.private_mem_vgprs = DIV_ROUND_UP(nir->scratch_size, 4);
/* Set the FP ALU behavior. */
/* By default, we disable denormals for FP32 and enable them for FP16 and FP64
* for performance and correctness reasons. FP32 denormals can't be enabled because
* they break output modifiers and v_mad_f32 and are very slow on GFX6-7.
*
* float_controls_execution_mode defines the set of valid behaviors. Contradicting flags
* can be set simultaneously, which means we are allowed to choose, but not really because
* some options cause GLCTS failures.
*/
unsigned float_mode = V_00B028_FP_16_64_DENORMS;
if (!(nir->info.float_controls_execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) &&
nir->info.float_controls_execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
float_mode |= V_00B028_FP_32_ROUND_TOWARDS_ZERO;
if (!(nir->info.float_controls_execution_mode & (FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64)) &&
nir->info.float_controls_execution_mode & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
float_mode |= V_00B028_FP_16_64_ROUND_TOWARDS_ZERO;
if (!(nir->info.float_controls_execution_mode & (FLOAT_CONTROLS_DENORM_PRESERVE_FP16 |
FLOAT_CONTROLS_DENORM_PRESERVE_FP64)) &&
nir->info.float_controls_execution_mode & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64))
float_mode &= ~V_00B028_FP_16_64_DENORMS;
/* TODO: ACO could compile non-monolithic shaders here (starting
* with PS and NGG VS), but monolithic shaders should be compiled
* by LLVM due to more complicated compilation.
*/
if (!si_llvm_compile_shader(sscreen, compiler, shader, &so, debug, nir, free_nir))
return false;
shader->config.float_mode = float_mode;
/* The GS copy shader is compiled next. */
if (sel->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) {
shader->gs_copy_shader = si_generate_gs_copy_shader(sscreen, compiler, sel, &so, debug);
if (!shader->gs_copy_shader) {
fprintf(stderr, "radeonsi: can't create GS copy shader\n");
return false;
}
}
/* Compute vs_output_ps_input_cntl. */
if ((sel->stage == MESA_SHADER_VERTEX ||
sel->stage == MESA_SHADER_TESS_EVAL ||
sel->stage == MESA_SHADER_GEOMETRY) &&
!shader->key.ge.as_ls && !shader->key.ge.as_es) {
ubyte *vs_output_param_offset = shader->info.vs_output_param_offset;
if (sel->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg)
vs_output_param_offset = shader->gs_copy_shader->info.vs_output_param_offset;
/* We must use the original shader info before the removal of duplicated shader outputs. */
/* VS and TES should also set primitive ID output if it's used. */
unsigned num_outputs_with_prim_id = sel->info.num_outputs +
shader->key.ge.mono.u.vs_export_prim_id;
for (unsigned i = 0; i < num_outputs_with_prim_id; i++) {
unsigned semantic = sel->info.output_semantic[i];
unsigned offset = vs_output_param_offset[semantic];
unsigned ps_input_cntl;
if (offset <= AC_EXP_PARAM_OFFSET_31) {
/* The input is loaded from parameter memory. */
ps_input_cntl = S_028644_OFFSET(offset);
} else {
/* The input is a DEFAULT_VAL constant. */
assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
/* OFFSET=0x20 means that DEFAULT_VAL is used. */
ps_input_cntl = S_028644_OFFSET(0x20) |
S_028644_DEFAULT_VAL(offset);
}
shader->info.vs_output_ps_input_cntl[semantic] = ps_input_cntl;
}
}
/* Validate SGPR and VGPR usage for compute to detect compiler bugs. */
if (sel->stage == MESA_SHADER_COMPUTE) {
unsigned max_vgprs =
sscreen->info.num_physical_wave64_vgprs_per_simd * (shader->wave_size == 32 ? 2 : 1);
unsigned max_sgprs = sscreen->info.num_physical_sgprs_per_simd;
unsigned max_sgprs_per_wave = 128;
unsigned simds_per_tg = 4; /* assuming WGP mode on gfx10 */
unsigned threads_per_tg = si_get_max_workgroup_size(shader);
unsigned waves_per_tg = DIV_ROUND_UP(threads_per_tg, shader->wave_size);
unsigned waves_per_simd = DIV_ROUND_UP(waves_per_tg, simds_per_tg);
max_vgprs = max_vgprs / waves_per_simd;
max_sgprs = MIN2(max_sgprs / waves_per_simd, max_sgprs_per_wave);
if (shader->config.num_sgprs > max_sgprs || shader->config.num_vgprs > max_vgprs) {
fprintf(stderr,
"LLVM failed to compile a shader correctly: "
"SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
shader->config.num_sgprs, shader->config.num_vgprs, max_sgprs, max_vgprs);
/* Just terminate the process, because dependent
* shaders can hang due to bad input data, but use
* the env var to allow shader-db to work.
*/
if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
abort();
}
}
/* Add the scratch offset to input SGPRs. */
if (sel->screen->info.gfx_level < GFX11 &&
shader->config.scratch_bytes_per_wave && !si_is_merged_shader(shader))
shader->info.num_input_sgprs += 1; /* scratch byte offset */
/* Calculate the number of fragment input VGPRs. */
if (sel->stage == MESA_SHADER_FRAGMENT) {
shader->info.num_input_vgprs = ac_get_fs_input_vgpr_cnt(
&shader->config, &shader->info.face_vgpr_index, &shader->info.ancillary_vgpr_index,
&shader->info.sample_coverage_vgpr_index);
}
si_calculate_max_simd_waves(shader);
si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
return true;
}
/**
* Create, compile and return a shader part (prolog or epilog).
*
* \param sscreen screen
* \param list list of shader parts of the same category
* \param type shader type
* \param key shader part key
* \param prolog whether the part being requested is a prolog
* \param tm LLVM target machine
* \param debug debug callback
* \param build the callback responsible for building the main function
* \return non-NULL on success
*/
static struct si_shader_part *
si_get_shader_part(struct si_screen *sscreen, struct si_shader_part **list,
gl_shader_stage stage, bool prolog, union si_shader_part_key *key,
struct ac_llvm_compiler *compiler, struct util_debug_callback *debug,
void (*build)(struct si_shader_context *, union si_shader_part_key *),
const char *name)
{
struct si_shader_part *result;
simple_mtx_lock(&sscreen->shader_parts_mutex);
/* Find existing. */
for (result = *list; result; result = result->next) {
if (memcmp(&result->key, key, sizeof(*key)) == 0) {
simple_mtx_unlock(&sscreen->shader_parts_mutex);
return result;
}
}
/* Compile a new one. */
result = CALLOC_STRUCT(si_shader_part);
result->key = *key;
struct si_shader_selector sel = {};
sel.screen = sscreen;
struct si_shader shader = {};
shader.selector = &sel;
bool wave32 = false;
switch (stage) {
case MESA_SHADER_VERTEX:
shader.key.ge.as_ls = key->vs_prolog.as_ls;
shader.key.ge.as_es = key->vs_prolog.as_es;
shader.key.ge.as_ngg = key->vs_prolog.as_ngg;
wave32 = key->vs_prolog.wave32;
break;
case MESA_SHADER_TESS_CTRL:
assert(!prolog);
shader.key.ge.part.tcs.epilog = key->tcs_epilog.states;
wave32 = key->tcs_epilog.wave32;
break;
case MESA_SHADER_FRAGMENT:
if (prolog) {
shader.key.ps.part.prolog = key->ps_prolog.states;
wave32 = key->ps_prolog.wave32;
} else {
shader.key.ps.part.epilog = key->ps_epilog.states;
wave32 = key->ps_epilog.wave32;
}
break;
default:
unreachable("bad shader part");
}
struct si_shader_context ctx;
si_llvm_context_init(&ctx, sscreen, compiler, wave32 ? 32 : 64);
ctx.shader = &shader;
ctx.stage = stage;
build(&ctx, key);
/* Compile. */
si_llvm_optimize_module(&ctx);
if (!si_compile_llvm(sscreen, &result->binary, &result->config, compiler, &ctx.ac, debug,
ctx.stage, name, false)) {
FREE(result);
result = NULL;
goto out;
}
result->next = *list;
*list = result;
out:
si_llvm_dispose(&ctx);
simple_mtx_unlock(&sscreen->shader_parts_mutex);
return result;
}
static bool si_get_vs_prolog(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct util_debug_callback *debug,
struct si_shader *main_part, const struct si_vs_prolog_bits *key)
{
struct si_shader_selector *vs = main_part->selector;
if (!si_vs_needs_prolog(vs, key, &shader->key, false,
shader->selector->stage == MESA_SHADER_GEOMETRY))
return true;
/* Get the prolog. */
union si_shader_part_key prolog_key;
si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs, false, key, shader,
&prolog_key);
shader->prolog =
si_get_shader_part(sscreen, &sscreen->vs_prologs, MESA_SHADER_VERTEX, true, &prolog_key,
compiler, debug, si_llvm_build_vs_prolog, "Vertex Shader Prolog");
return shader->prolog != NULL;
}
/**
* Select and compile (or reuse) vertex shader parts (prolog & epilog).
*/
static bool si_shader_select_vs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct util_debug_callback *debug)
{
return si_get_vs_prolog(sscreen, compiler, shader, debug, shader, &shader->key.ge.part.vs.prolog);
}
void si_get_tcs_epilog_key(struct si_shader *shader, union si_shader_part_key *key)
{
memset(key, 0, sizeof(*key));
key->tcs_epilog.wave32 = shader->wave_size == 32;
key->tcs_epilog.states = shader->key.ge.part.tcs.epilog;
/* If output patches are wholly in one wave, we don't need a barrier. */
key->tcs_epilog.noop_s_barrier =
shader->wave_size % shader->selector->info.base.tess.tcs_vertices_out == 0;
}
/**
* Select and compile (or reuse) TCS parts (epilog).
*/
static bool si_shader_select_tcs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct util_debug_callback *debug)
{
if (sscreen->info.gfx_level >= GFX9) {
struct si_shader *ls_main_part = shader->key.ge.part.tcs.ls->main_shader_part_ls;
if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
&shader->key.ge.part.tcs.ls_prolog))
return false;
shader->previous_stage = ls_main_part;
}
/* Get the epilog. */
union si_shader_part_key epilog_key;
si_get_tcs_epilog_key(shader, &epilog_key);
shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs, MESA_SHADER_TESS_CTRL, false,
&epilog_key, compiler, debug, si_llvm_build_tcs_epilog,
"Tessellation Control Shader Epilog");
return shader->epilog != NULL;
}
/**
* Select and compile (or reuse) GS parts (prolog).
*/
static bool si_shader_select_gs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct util_debug_callback *debug)
{
if (sscreen->info.gfx_level >= GFX9) {
struct si_shader *es_main_part;
if (shader->key.ge.as_ngg)
es_main_part = shader->key.ge.part.gs.es->main_shader_part_ngg_es;
else
es_main_part = shader->key.ge.part.gs.es->main_shader_part_es;
if (shader->key.ge.part.gs.es->stage == MESA_SHADER_VERTEX &&
!si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
&shader->key.ge.part.gs.vs_prolog))
return false;
shader->previous_stage = es_main_part;
}
return true;
}
/**
* Compute the PS prolog key, which contains all the information needed to
* build the PS prolog function, and set related bits in shader->config.
*/
void si_get_ps_prolog_key(struct si_shader *shader, union si_shader_part_key *key,
bool separate_prolog)
{
struct si_shader_info *info = &shader->selector->info;
memset(key, 0, sizeof(*key));
key->ps_prolog.states = shader->key.ps.part.prolog;
key->ps_prolog.wave32 = shader->wave_size == 32;
key->ps_prolog.colors_read = info->colors_read;
key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
key->ps_prolog.wqm =
info->base.fs.needs_quad_helper_invocations &&
(key->ps_prolog.colors_read || key->ps_prolog.states.force_persp_sample_interp ||
key->ps_prolog.states.force_linear_sample_interp ||
key->ps_prolog.states.force_persp_center_interp ||
key->ps_prolog.states.force_linear_center_interp ||
key->ps_prolog.states.bc_optimize_for_persp || key->ps_prolog.states.bc_optimize_for_linear);
key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
key->ps_prolog.sample_coverage_vgpr_index = shader->info.sample_coverage_vgpr_index;
if (shader->key.ps.part.prolog.poly_stipple)
shader->info.uses_vmem_load_other = true;
if (info->colors_read) {
ubyte *color = shader->selector->info.color_attr_index;
if (shader->key.ps.part.prolog.color_two_side) {
/* BCOLORs are stored after the last input. */
key->ps_prolog.num_interp_inputs = info->num_inputs;
key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
if (separate_prolog)
shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
}
for (unsigned i = 0; i < 2; i++) {
unsigned interp = info->color_interpolate[i];
unsigned location = info->color_interpolate_loc[i];
if (!(info->colors_read & (0xf << i * 4)))
continue;
key->ps_prolog.color_attr_index[i] = color[i];
if (shader->key.ps.part.prolog.flatshade_colors && interp == INTERP_MODE_COLOR)
interp = INTERP_MODE_FLAT;
switch (interp) {
case INTERP_MODE_FLAT:
key->ps_prolog.color_interp_vgpr_index[i] = -1;
break;
case INTERP_MODE_SMOOTH:
case INTERP_MODE_COLOR:
/* Force the interpolation location for colors here. */
if (shader->key.ps.part.prolog.force_persp_sample_interp)
location = TGSI_INTERPOLATE_LOC_SAMPLE;
if (shader->key.ps.part.prolog.force_persp_center_interp)
location = TGSI_INTERPOLATE_LOC_CENTER;
switch (location) {
case TGSI_INTERPOLATE_LOC_SAMPLE:
key->ps_prolog.color_interp_vgpr_index[i] = 0;
if (separate_prolog) {
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
}
break;
case TGSI_INTERPOLATE_LOC_CENTER:
key->ps_prolog.color_interp_vgpr_index[i] = 2;
if (separate_prolog) {
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
}
break;
case TGSI_INTERPOLATE_LOC_CENTROID:
key->ps_prolog.color_interp_vgpr_index[i] = 4;
if (separate_prolog) {
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTROID_ENA(1);
}
break;
default:
assert(0);
}
break;
case INTERP_MODE_NOPERSPECTIVE:
/* Force the interpolation location for colors here. */
if (shader->key.ps.part.prolog.force_linear_sample_interp)
location = TGSI_INTERPOLATE_LOC_SAMPLE;
if (shader->key.ps.part.prolog.force_linear_center_interp)
location = TGSI_INTERPOLATE_LOC_CENTER;
/* The VGPR assignment for non-monolithic shaders
* works because InitialPSInputAddr is set on the
* main shader and PERSP_PULL_MODEL is never used.
*/
switch (location) {
case TGSI_INTERPOLATE_LOC_SAMPLE:
key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 6 : 9;
if (separate_prolog) {
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
}
break;
case TGSI_INTERPOLATE_LOC_CENTER:
key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 8 : 11;
if (separate_prolog) {
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
}
break;
case TGSI_INTERPOLATE_LOC_CENTROID:
key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 10 : 13;
if (separate_prolog) {
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTROID_ENA(1);
}
break;
default:
assert(0);
}
break;
default:
assert(0);
}
}
}
}
/**
* Check whether a PS prolog is required based on the key.
*/
bool si_need_ps_prolog(const union si_shader_part_key *key)
{
return key->ps_prolog.colors_read || key->ps_prolog.states.force_persp_sample_interp ||
key->ps_prolog.states.force_linear_sample_interp ||
key->ps_prolog.states.force_persp_center_interp ||
key->ps_prolog.states.force_linear_center_interp ||
key->ps_prolog.states.bc_optimize_for_persp ||
key->ps_prolog.states.bc_optimize_for_linear || key->ps_prolog.states.poly_stipple ||
key->ps_prolog.states.samplemask_log_ps_iter;
}
/**
* Compute the PS epilog key, which contains all the information needed to
* build the PS epilog function.
*/
void si_get_ps_epilog_key(struct si_shader *shader, union si_shader_part_key *key)
{
struct si_shader_info *info = &shader->selector->info;
memset(key, 0, sizeof(*key));
key->ps_epilog.wave32 = shader->wave_size == 32;
key->ps_epilog.uses_discard = si_shader_uses_discard(shader);
key->ps_epilog.colors_written = info->colors_written;
key->ps_epilog.color_types = info->output_color_types;
key->ps_epilog.writes_z = info->writes_z;
key->ps_epilog.writes_stencil = info->writes_stencil;
key->ps_epilog.writes_samplemask = info->writes_samplemask;
key->ps_epilog.states = shader->key.ps.part.epilog;
}
/**
* Select and compile (or reuse) pixel shader parts (prolog & epilog).
*/
static bool si_shader_select_ps_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct util_debug_callback *debug)
{
union si_shader_part_key prolog_key;
union si_shader_part_key epilog_key;
/* Get the prolog. */
si_get_ps_prolog_key(shader, &prolog_key, true);
/* The prolog is a no-op if these aren't set. */
if (si_need_ps_prolog(&prolog_key)) {
shader->prolog =
si_get_shader_part(sscreen, &sscreen->ps_prologs, MESA_SHADER_FRAGMENT, true, &prolog_key,
compiler, debug, si_llvm_build_ps_prolog, "Fragment Shader Prolog");
if (!shader->prolog)
return false;
}
/* Get the epilog. */
si_get_ps_epilog_key(shader, &epilog_key);
shader->epilog =
si_get_shader_part(sscreen, &sscreen->ps_epilogs, MESA_SHADER_FRAGMENT, false, &epilog_key,
compiler, debug, si_llvm_build_ps_epilog, "Fragment Shader Epilog");
if (!shader->epilog)
return false;
/* Enable POS_FIXED_PT if polygon stippling is enabled. */
if (shader->key.ps.part.prolog.poly_stipple) {
shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
}
/* Set up the enable bits for per-sample shading if needed. */
if (shader->key.ps.part.prolog.force_persp_sample_interp &&
(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
}
if (shader->key.ps.part.prolog.force_linear_sample_interp &&
(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
}
if (shader->key.ps.part.prolog.force_persp_center_interp &&
(G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
}
if (shader->key.ps.part.prolog.force_linear_center_interp &&
(G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
}
/* POW_W_FLOAT requires that one of the perspective weights is enabled. */
if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
!(shader->config.spi_ps_input_ena & 0xf)) {
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
}
/* At least one pair of interpolation weights must be enabled. */
if (!(shader->config.spi_ps_input_ena & 0x7f)) {
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
}
/* Samplemask fixup requires the sample ID. */
if (shader->key.ps.part.prolog.samplemask_log_ps_iter) {
shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
}
return true;
}
void si_multiwave_lds_size_workaround(struct si_screen *sscreen, unsigned *lds_size)
{
/* If tessellation is all offchip and on-chip GS isn't used, this
* workaround is not needed.
*/
return;
/* SPI barrier management bug:
* Make sure we have at least 4k of LDS in use to avoid the bug.
* It applies to workgroup sizes of more than one wavefront.
*/
if (sscreen->info.family == CHIP_BONAIRE || sscreen->info.family == CHIP_KABINI)
*lds_size = MAX2(*lds_size, 8);
}
void si_fix_resource_usage(struct si_screen *sscreen, struct si_shader *shader)
{
unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
if (shader->selector->stage == MESA_SHADER_COMPUTE &&
si_get_max_workgroup_size(shader) > shader->wave_size) {
si_multiwave_lds_size_workaround(sscreen, &shader->config.lds_size);
}
}
bool si_create_shader_variant(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct util_debug_callback *debug)
{
struct si_shader_selector *sel = shader->selector;
struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
/* LS, ES, VS are compiled on demand if the main part hasn't been
* compiled for that stage.
*
* GS are compiled on demand if the main part hasn't been compiled
* for the chosen NGG-ness.
*
* Vertex shaders are compiled on demand when a vertex fetch
* workaround must be applied.
*/
if (shader->is_monolithic) {
/* Monolithic shader (compiled as a whole, has many variants,
* may take a long time to compile).
*/
if (!si_compile_shader(sscreen, compiler, shader, debug))
return false;
} else {
/* The shader consists of several parts:
*
* - the middle part is the user shader, it has 1 variant only
* and it was compiled during the creation of the shader
* selector
* - the prolog part is inserted at the beginning
* - the epilog part is inserted at the end
*
* The prolog and epilog have many (but simple) variants.
*
* Starting with gfx9, geometry and tessellation control
* shaders also contain the prolog and user shader parts of
* the previous shader stage.
*/
if (!mainp)
return false;
/* Copy the compiled shader data over. */
shader->is_binary_shared = true;
shader->binary = mainp->binary;
shader->config = mainp->config;
shader->info = mainp->info;
/* Select prologs and/or epilogs. */
switch (sel->stage) {
case MESA_SHADER_VERTEX:
if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
return false;
break;
case MESA_SHADER_TESS_CTRL:
if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
return false;
break;
case MESA_SHADER_TESS_EVAL:
break;
case MESA_SHADER_GEOMETRY:
if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
return false;
/* Clone the GS copy shader for the shader variant.
* We can't just copy the pointer because we change the pm4 state and
* si_shader_selector::gs_copy_shader must be immutable because it's shared
* by multiple contexts.
*/
if (!shader->key.ge.as_ngg) {
assert(sel->main_shader_part == mainp);
assert(sel->main_shader_part->gs_copy_shader);
assert(sel->main_shader_part->gs_copy_shader->bo);
assert(!sel->main_shader_part->gs_copy_shader->previous_stage_sel);
assert(!sel->main_shader_part->gs_copy_shader->scratch_bo);
shader->gs_copy_shader = CALLOC_STRUCT(si_shader);
memcpy(shader->gs_copy_shader, sel->main_shader_part->gs_copy_shader,
sizeof(*shader->gs_copy_shader));
/* Increase the reference count. */
pipe_reference(NULL, &shader->gs_copy_shader->bo->b.b.reference);
/* Initialize some fields differently. */
shader->gs_copy_shader->shader_log = NULL;
shader->gs_copy_shader->is_binary_shared = true;
util_queue_fence_init(&shader->gs_copy_shader->ready);
}
break;
case MESA_SHADER_FRAGMENT:
if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
return false;
/* Make sure we have at least as many VGPRs as there
* are allocated inputs.
*/
shader->config.num_vgprs = MAX2(shader->config.num_vgprs, shader->info.num_input_vgprs);
break;
default:;
}
assert(shader->wave_size == mainp->wave_size);
assert(!shader->previous_stage || shader->wave_size == shader->previous_stage->wave_size);
/* Update SGPR and VGPR counts. */
if (shader->prolog) {
shader->config.num_sgprs =
MAX2(shader->config.num_sgprs, shader->prolog->config.num_sgprs);
shader->config.num_vgprs =
MAX2(shader->config.num_vgprs, shader->prolog->config.num_vgprs);
}
if (shader->previous_stage) {
shader->config.num_sgprs =
MAX2(shader->config.num_sgprs, shader->previous_stage->config.num_sgprs);
shader->config.num_vgprs =
MAX2(shader->config.num_vgprs, shader->previous_stage->config.num_vgprs);
shader->config.spilled_sgprs =
MAX2(shader->config.spilled_sgprs, shader->previous_stage->config.spilled_sgprs);
shader->config.spilled_vgprs =
MAX2(shader->config.spilled_vgprs, shader->previous_stage->config.spilled_vgprs);
shader->info.private_mem_vgprs =
MAX2(shader->info.private_mem_vgprs, shader->previous_stage->info.private_mem_vgprs);
shader->config.scratch_bytes_per_wave =
MAX2(shader->config.scratch_bytes_per_wave,
shader->previous_stage->config.scratch_bytes_per_wave);
shader->info.uses_instanceid |= shader->previous_stage->info.uses_instanceid;
shader->info.uses_vmem_load_other |= shader->previous_stage->info.uses_vmem_load_other;
shader->info.uses_vmem_sampler_or_bvh |= shader->previous_stage->info.uses_vmem_sampler_or_bvh;
}
if (shader->epilog) {
shader->config.num_sgprs =
MAX2(shader->config.num_sgprs, shader->epilog->config.num_sgprs);
shader->config.num_vgprs =
MAX2(shader->config.num_vgprs, shader->epilog->config.num_vgprs);
}
si_calculate_max_simd_waves(shader);
}
if (sel->stage <= MESA_SHADER_GEOMETRY && shader->key.ge.as_ngg) {
assert(!shader->key.ge.as_es && !shader->key.ge.as_ls);
if (!gfx10_ngg_calculate_subgroup_info(shader)) {
fprintf(stderr, "Failed to compute subgroup info\n");
return false;
}
} else if (sscreen->info.gfx_level >= GFX9 && sel->stage == MESA_SHADER_GEOMETRY) {
gfx9_get_gs_info(shader->previous_stage_sel, sel, &shader->gs_info);
}
shader->uses_vs_state_provoking_vertex =
sscreen->use_ngg &&
/* Used to convert triangle strips from GS to triangles. */
((sel->stage == MESA_SHADER_GEOMETRY &&
util_rast_prim_is_triangles(sel->info.base.gs.output_primitive)) ||
(sel->stage == MESA_SHADER_VERTEX &&
/* Used to export PrimitiveID from the correct vertex. */
shader->key.ge.mono.u.vs_export_prim_id));
shader->uses_gs_state_outprim = sscreen->use_ngg &&
/* Only used by streamout in vertex shaders. */
sel->stage == MESA_SHADER_VERTEX &&
si_shader_uses_streamout(shader);
if (sel->stage == MESA_SHADER_VERTEX) {
shader->uses_base_instance = sel->info.uses_base_instance ||
shader->key.ge.part.vs.prolog.instance_divisor_is_one ||
shader->key.ge.part.vs.prolog.instance_divisor_is_fetched;
} else if (sel->stage == MESA_SHADER_TESS_CTRL) {
shader->uses_base_instance = shader->previous_stage_sel &&
(shader->previous_stage_sel->info.uses_base_instance ||
shader->key.ge.part.tcs.ls_prolog.instance_divisor_is_one ||
shader->key.ge.part.tcs.ls_prolog.instance_divisor_is_fetched);
} else if (sel->stage == MESA_SHADER_GEOMETRY) {
shader->uses_base_instance = shader->previous_stage_sel &&
(shader->previous_stage_sel->info.uses_base_instance ||
shader->key.ge.part.gs.vs_prolog.instance_divisor_is_one ||
shader->key.ge.part.gs.vs_prolog.instance_divisor_is_fetched);
}
si_fix_resource_usage(sscreen, shader);
/* Upload. */
bool ok = si_shader_binary_upload(sscreen, shader, 0);
si_shader_dump(sscreen, shader, debug, stderr, true);
if (!ok)
fprintf(stderr, "LLVM failed to upload shader\n");
return ok;
}
void si_shader_binary_clean(struct si_shader_binary *binary)
{
free((void *)binary->elf_buffer);
binary->elf_buffer = NULL;
free(binary->llvm_ir_string);
binary->llvm_ir_string = NULL;
free(binary->uploaded_code);
binary->uploaded_code = NULL;
binary->uploaded_code_size = 0;
}
void si_shader_destroy(struct si_shader *shader)
{
if (shader->scratch_bo)
si_resource_reference(&shader->scratch_bo, NULL);
si_resource_reference(&shader->bo, NULL);
if (!shader->is_binary_shared)
si_shader_binary_clean(&shader->binary);
free(shader->shader_log);
}
|