1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
/*
* Copyright 2012 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Tom Stellard <thomas.stellard@amd.com>
* Michel Dänzer <michel.daenzer@amd.com>
* Christian König <christian.koenig@amd.com>
*/
/* How linking tessellation shader inputs and outputs works.
*
* Inputs and outputs between shaders are stored in a buffer. This buffer
* lives in LDS (typical case for tessellation), but it can also live
* in memory. Each input or output has a fixed location within a vertex.
* The highest used input or output determines the stride between vertices.
*
* Since tessellation is only enabled in the OpenGL core profile,
* only these semantics are valid for per-vertex data:
*
* Name Location
*
* POSITION 0
* PSIZE 1
* CLIPDIST0..1 2..3
* CULLDIST0..1 (not implemented)
* GENERIC0..31 4..35
*
* For example, a shader only writing GENERIC0 has the output stride of 5.
*
* Only these semantics are valid for per-patch data:
*
* Name Location
*
* TESSOUTER 0
* TESSINNER 1
* PATCH0..29 2..31
*
* That's how independent shaders agree on input and output locations.
* The si_shader_io_get_unique_index function assigns the locations.
*
* Other required information for calculating the input and output addresses
* like the vertex stride, the patch stride, and the offsets where per-vertex
* and per-patch data start, is passed to the shader via user data SGPRs.
* The offsets and strides are calculated at draw time and aren't available
* at compile time.
*
* The same approach should be used for linking ES->GS in the future.
*/
#ifndef SI_SHADER_H
#define SI_SHADER_H
#include <llvm-c/Core.h> /* LLVMModuleRef */
#include "tgsi/tgsi_scan.h"
#include "si_state.h"
struct radeon_shader_binary;
struct radeon_shader_reloc;
#define SI_SGPR_RW_BUFFERS 0 /* rings (& stream-out, VS only) */
#define SI_SGPR_CONST 2
#define SI_SGPR_SAMPLER 4
#define SI_SGPR_RESOURCE 6
#define SI_SGPR_VERTEX_BUFFER 8 /* VS only */
#define SI_SGPR_BASE_VERTEX 10 /* VS only */
#define SI_SGPR_START_INSTANCE 11 /* VS only */
#define SI_SGPR_LS_OUT_LAYOUT 12 /* VS(LS) only */
#define SI_SGPR_TCS_OUT_OFFSETS 8 /* TCS & TES only */
#define SI_SGPR_TCS_OUT_LAYOUT 9 /* TCS & TES only */
#define SI_SGPR_TCS_IN_LAYOUT 10 /* TCS only */
#define SI_SGPR_ALPHA_REF 8 /* PS only */
#define SI_VS_NUM_USER_SGPR 12
#define SI_LS_NUM_USER_SGPR 13
#define SI_TCS_NUM_USER_SGPR 11
#define SI_TES_NUM_USER_SGPR 10
#define SI_GS_NUM_USER_SGPR 8
#define SI_GSCOPY_NUM_USER_SGPR 4
#define SI_PS_NUM_USER_SGPR 9
/* LLVM function parameter indices */
#define SI_PARAM_RW_BUFFERS 0
#define SI_PARAM_CONST 1
#define SI_PARAM_SAMPLER 2
#define SI_PARAM_RESOURCE 3
/* VS only parameters */
#define SI_PARAM_VERTEX_BUFFER 4
#define SI_PARAM_BASE_VERTEX 5
#define SI_PARAM_START_INSTANCE 6
/* the other VS parameters are assigned dynamically */
/* Offsets where TCS outputs and TCS patch outputs live in LDS:
* [0:15] = TCS output patch0 offset / 16, max = NUM_PATCHES * 32 * 32
* [16:31] = TCS output patch0 offset for per-patch / 16, max = NUM_PATCHES*32*32* + 32*32
*/
#define SI_PARAM_TCS_OUT_OFFSETS 4 /* for TCS & TES */
/* Layout of TCS outputs / TES inputs:
* [0:12] = stride between output patches in dwords, num_outputs * num_vertices * 4, max = 32*32*4
* [13:20] = stride between output vertices in dwords = num_inputs * 4, max = 32*4
* [26:31] = gl_PatchVerticesIn, max = 32
*/
#define SI_PARAM_TCS_OUT_LAYOUT 5 /* for TCS & TES */
/* Layout of LS outputs / TCS inputs
* [0:12] = stride between patches in dwords = num_inputs * num_vertices * 4, max = 32*32*4
* [13:20] = stride between vertices in dwords = num_inputs * 4, max = 32*4
*/
#define SI_PARAM_TCS_IN_LAYOUT 6 /* TCS only */
#define SI_PARAM_LS_OUT_LAYOUT 7 /* same value as TCS_IN_LAYOUT, LS only */
/* TCS only parameters. */
#define SI_PARAM_TESS_FACTOR_OFFSET 7
#define SI_PARAM_PATCH_ID 8
#define SI_PARAM_REL_IDS 9
/* GS only parameters */
#define SI_PARAM_GS2VS_OFFSET 4
#define SI_PARAM_GS_WAVE_ID 5
#define SI_PARAM_VTX0_OFFSET 6
#define SI_PARAM_VTX1_OFFSET 7
#define SI_PARAM_PRIMITIVE_ID 8
#define SI_PARAM_VTX2_OFFSET 9
#define SI_PARAM_VTX3_OFFSET 10
#define SI_PARAM_VTX4_OFFSET 11
#define SI_PARAM_VTX5_OFFSET 12
#define SI_PARAM_GS_INSTANCE_ID 13
/* PS only parameters */
#define SI_PARAM_ALPHA_REF 4
#define SI_PARAM_PRIM_MASK 5
#define SI_PARAM_PERSP_SAMPLE 6
#define SI_PARAM_PERSP_CENTER 7
#define SI_PARAM_PERSP_CENTROID 8
#define SI_PARAM_PERSP_PULL_MODEL 9
#define SI_PARAM_LINEAR_SAMPLE 10
#define SI_PARAM_LINEAR_CENTER 11
#define SI_PARAM_LINEAR_CENTROID 12
#define SI_PARAM_LINE_STIPPLE_TEX 13
#define SI_PARAM_POS_X_FLOAT 14
#define SI_PARAM_POS_Y_FLOAT 15
#define SI_PARAM_POS_Z_FLOAT 16
#define SI_PARAM_POS_W_FLOAT 17
#define SI_PARAM_FRONT_FACE 18
#define SI_PARAM_ANCILLARY 19
#define SI_PARAM_SAMPLE_COVERAGE 20
#define SI_PARAM_POS_FIXED_PT 21
#define SI_NUM_PARAMS (SI_PARAM_POS_FIXED_PT + 1)
struct si_shader;
struct si_shader_selector {
struct si_shader *current;
struct tgsi_token *tokens;
struct pipe_stream_output_info so;
struct tgsi_shader_info info;
unsigned num_shaders;
/* PIPE_SHADER_[VERTEX|FRAGMENT|...] */
unsigned type;
unsigned gs_output_prim;
unsigned gs_max_out_vertices;
unsigned gs_num_invocations;
/* masks of "get_unique_index" bits */
uint64_t inputs_read;
uint64_t outputs_written;
uint32_t patch_outputs_written;
uint32_t ps_colors_written;
};
/* Valid shader configurations:
*
* API shaders VS | TCS | TES | GS |pass| PS
* are compiled as: | | | |thru|
* | | | | |
* Only VS & PS: VS | -- | -- | -- | -- | PS
* With GS: ES | -- | -- | GS | VS | PS
* With Tessel.: LS | HS | VS | -- | -- | PS
* With both: LS | HS | ES | GS | VS | PS
*/
union si_shader_key {
struct {
unsigned export_16bpc:8;
unsigned last_cbuf:3;
unsigned color_two_side:1;
unsigned alpha_func:3;
unsigned alpha_to_one:1;
unsigned poly_stipple:1;
unsigned poly_line_smoothing:1;
} ps;
struct {
unsigned instance_divisors[SI_NUM_VERTEX_BUFFERS];
/* Mask of "get_unique_index" bits - which outputs are read
* by the next stage (needed by ES).
* This describes how outputs are laid out in memory. */
uint64_t es_enabled_outputs;
unsigned as_es:1; /* export shader */
unsigned as_ls:1; /* local shader */
unsigned export_prim_id; /* when PS needs it and GS is disabled */
} vs;
struct {
unsigned prim_mode:3;
} tcs; /* tessellation control shader */
struct {
/* Mask of "get_unique_index" bits - which outputs are read
* by the next stage (needed by ES).
* This describes how outputs are laid out in memory. */
uint64_t es_enabled_outputs;
unsigned as_es:1; /* export shader */
unsigned export_prim_id; /* when PS needs it and GS is disabled */
} tes; /* tessellation evaluation shader */
};
struct si_shader {
struct si_shader_selector *selector;
struct si_shader *next_variant;
struct si_shader *gs_copy_shader;
struct si_pm4_state *pm4;
struct r600_resource *bo;
struct r600_resource *scratch_bo;
struct radeon_shader_binary binary;
unsigned num_sgprs;
unsigned num_vgprs;
unsigned lds_size;
unsigned spi_ps_input_ena;
unsigned float_mode;
unsigned scratch_bytes_per_wave;
unsigned spi_shader_col_format;
unsigned spi_shader_z_format;
unsigned db_shader_control;
unsigned cb_shader_mask;
union si_shader_key key;
unsigned nparam;
unsigned vs_output_param_offset[PIPE_MAX_SHADER_OUTPUTS];
unsigned ps_input_param_offset[PIPE_MAX_SHADER_INPUTS];
unsigned ps_input_interpolate[PIPE_MAX_SHADER_INPUTS];
bool uses_instanceid;
unsigned nr_pos_exports;
unsigned nr_param_exports;
bool is_gs_copy_shader;
bool dx10_clamp_mode; /* convert NaNs to 0 */
unsigned ls_rsrc1;
unsigned ls_rsrc2;
};
static inline struct tgsi_shader_info *si_get_vs_info(struct si_context *sctx)
{
if (sctx->gs_shader)
return &sctx->gs_shader->info;
else if (sctx->tes_shader)
return &sctx->tes_shader->info;
else
return &sctx->vs_shader->info;
}
static inline struct si_shader* si_get_vs_state(struct si_context *sctx)
{
if (sctx->gs_shader)
return sctx->gs_shader->current->gs_copy_shader;
else if (sctx->tes_shader)
return sctx->tes_shader->current;
else
return sctx->vs_shader->current;
}
static inline bool si_vs_exports_prim_id(struct si_shader *shader)
{
if (shader->selector->type == PIPE_SHADER_VERTEX)
return shader->key.vs.export_prim_id;
else if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
return shader->key.tes.export_prim_id;
else
return false;
}
/* radeonsi_shader.c */
int si_shader_create(struct si_screen *sscreen, LLVMTargetMachineRef tm,
struct si_shader *shader);
int si_compile_llvm(struct si_screen *sscreen, struct si_shader *shader,
LLVMTargetMachineRef tm, LLVMModuleRef mod);
void si_shader_destroy(struct pipe_context *ctx, struct si_shader *shader);
unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index);
int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader);
int si_shader_binary_read(struct si_screen *sscreen, struct si_shader *shader);
void si_shader_apply_scratch_relocs(struct si_context *sctx,
struct si_shader *shader,
uint64_t scratch_va);
void si_shader_binary_read_config(const struct si_screen *sscreen,
struct si_shader *shader,
unsigned symbol_offset);
#endif
|