summaryrefslogtreecommitdiff
path: root/lib/mesa/src/gallium/drivers/svga/svga_shader.c
blob: 68883a7135d8fa3d26f0c2bc007d147a3192f19e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
/**********************************************************
 * Copyright 2008-2012 VMware, Inc.  All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use, copy,
 * modify, merge, publish, distribute, sublicense, and/or sell copies
 * of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 **********************************************************/

#include "util/u_bitmask.h"
#include "util/u_memory.h"
#include "util/format/u_format.h"
#include "svga_context.h"
#include "svga_cmd.h"
#include "svga_format.h"
#include "svga_shader.h"
#include "svga_resource_texture.h"
#include "VGPU10ShaderTokens.h"


/**
 * This bit isn't really used anywhere.  It only serves to help
 * generate a unique "signature" for the vertex shader output bitmask.
 * Shader input/output signatures are used to resolve shader linking
 * issues.
 */
#define FOG_GENERIC_BIT (((uint64_t) 1) << 63)


/**
 * Use the shader info to generate a bitmask indicating which generic
 * inputs are used by the shader.  A set bit indicates that GENERIC[i]
 * is used.
 */
uint64_t
svga_get_generic_inputs_mask(const struct tgsi_shader_info *info)
{
   unsigned i;
   uint64_t mask = 0x0;

   for (i = 0; i < info->num_inputs; i++) {
      if (info->input_semantic_name[i] == TGSI_SEMANTIC_GENERIC) {
         unsigned j = info->input_semantic_index[i];
         assert(j < sizeof(mask) * 8);
         mask |= ((uint64_t) 1) << j;
      }
   }

   return mask;
}


/**
 * Scan shader info to return a bitmask of written outputs.
 */
uint64_t
svga_get_generic_outputs_mask(const struct tgsi_shader_info *info)
{
   unsigned i;
   uint64_t mask = 0x0;

   for (i = 0; i < info->num_outputs; i++) {
      switch (info->output_semantic_name[i]) {
      case TGSI_SEMANTIC_GENERIC:
         {
            unsigned j = info->output_semantic_index[i];
            assert(j < sizeof(mask) * 8);
            mask |= ((uint64_t) 1) << j;
         }
         break;
      case TGSI_SEMANTIC_FOG:
         mask |= FOG_GENERIC_BIT;
         break;
      }
   }

   return mask;
}



/**
 * Given a mask of used generic variables (as returned by the above functions)
 * fill in a table which maps those indexes to small integers.
 * This table is used by the remap_generic_index() function in
 * svga_tgsi_decl_sm30.c
 * Example: if generics_mask = binary(1010) it means that GENERIC[1] and
 * GENERIC[3] are used.  The remap_table will contain:
 *   table[1] = 0;
 *   table[3] = 1;
 * The remaining table entries will be filled in with the next unused
 * generic index (in this example, 2).
 */
void
svga_remap_generics(uint64_t generics_mask,
                    int8_t remap_table[MAX_GENERIC_VARYING])
{
   /* Note texcoord[0] is reserved so start at 1 */
   unsigned count = 1, i;

   for (i = 0; i < MAX_GENERIC_VARYING; i++) {
      remap_table[i] = -1;
   }

   /* for each bit set in generic_mask */
   while (generics_mask) {
      unsigned index = ffsll(generics_mask) - 1;
      remap_table[index] = count++;
      generics_mask &= ~((uint64_t) 1 << index);
   }
}


/**
 * Use the generic remap table to map a TGSI generic varying variable
 * index to a small integer.  If the remapping table doesn't have a
 * valid value for the given index (the table entry is -1) it means
 * the fragment shader doesn't use that VS output.  Just allocate
 * the next free value in that case.  Alternately, we could cull
 * VS instructions that write to register, or replace the register
 * with a dummy temp register.
 * XXX TODO: we should do one of the later as it would save precious
 * texcoord registers.
 */
int
svga_remap_generic_index(int8_t remap_table[MAX_GENERIC_VARYING],
                         int generic_index)
{
   assert(generic_index < MAX_GENERIC_VARYING);

   if (generic_index >= MAX_GENERIC_VARYING) {
      /* just don't return a random/garbage value */
      generic_index = MAX_GENERIC_VARYING - 1;
   }

   if (remap_table[generic_index] == -1) {
      /* This is a VS output that has no matching PS input.  Find a
       * free index.
       */
      int i, max = 0;
      for (i = 0; i < MAX_GENERIC_VARYING; i++) {
         max = MAX2(max, remap_table[i]);
      }
      remap_table[generic_index] = max + 1;
   }

   return remap_table[generic_index];
}

static const enum pipe_swizzle copy_alpha[PIPE_SWIZZLE_MAX] = {
   PIPE_SWIZZLE_X,
   PIPE_SWIZZLE_Y,
   PIPE_SWIZZLE_Z,
   PIPE_SWIZZLE_W,
   PIPE_SWIZZLE_0,
   PIPE_SWIZZLE_1,
   PIPE_SWIZZLE_NONE
};

static const enum pipe_swizzle set_alpha[PIPE_SWIZZLE_MAX] = {
   PIPE_SWIZZLE_X,
   PIPE_SWIZZLE_Y,
   PIPE_SWIZZLE_Z,
   PIPE_SWIZZLE_1,
   PIPE_SWIZZLE_0,
   PIPE_SWIZZLE_1,
   PIPE_SWIZZLE_NONE
};

static const enum pipe_swizzle set_000X[PIPE_SWIZZLE_MAX] = {
   PIPE_SWIZZLE_0,
   PIPE_SWIZZLE_0,
   PIPE_SWIZZLE_0,
   PIPE_SWIZZLE_X,
   PIPE_SWIZZLE_0,
   PIPE_SWIZZLE_1,
   PIPE_SWIZZLE_NONE
};

static const enum pipe_swizzle set_XXXX[PIPE_SWIZZLE_MAX] = {
   PIPE_SWIZZLE_X,
   PIPE_SWIZZLE_X,
   PIPE_SWIZZLE_X,
   PIPE_SWIZZLE_X,
   PIPE_SWIZZLE_0,
   PIPE_SWIZZLE_1,
   PIPE_SWIZZLE_NONE
};

static const enum pipe_swizzle set_XXX1[PIPE_SWIZZLE_MAX] = {
   PIPE_SWIZZLE_X,
   PIPE_SWIZZLE_X,
   PIPE_SWIZZLE_X,
   PIPE_SWIZZLE_1,
   PIPE_SWIZZLE_0,
   PIPE_SWIZZLE_1,
   PIPE_SWIZZLE_NONE
};

static const enum pipe_swizzle set_XXXY[PIPE_SWIZZLE_MAX] = {
   PIPE_SWIZZLE_X,
   PIPE_SWIZZLE_X,
   PIPE_SWIZZLE_X,
   PIPE_SWIZZLE_Y,
   PIPE_SWIZZLE_0,
   PIPE_SWIZZLE_1,
   PIPE_SWIZZLE_NONE
};

static const enum pipe_swizzle set_YYYY[PIPE_SWIZZLE_MAX] = {
   PIPE_SWIZZLE_Y,
   PIPE_SWIZZLE_Y,
   PIPE_SWIZZLE_Y,
   PIPE_SWIZZLE_Y,
   PIPE_SWIZZLE_0,
   PIPE_SWIZZLE_1,
   PIPE_SWIZZLE_NONE
};


static VGPU10_RESOURCE_RETURN_TYPE
vgpu10_return_type(enum pipe_format format)
{
   if (util_format_is_unorm(format))
      return VGPU10_RETURN_TYPE_UNORM;
   else if (util_format_is_snorm(format))
      return VGPU10_RETURN_TYPE_SNORM;
   else if (util_format_is_pure_uint(format))
      return VGPU10_RETURN_TYPE_UINT;
   else if (util_format_is_pure_sint(format))
      return VGPU10_RETURN_TYPE_SINT;
   else if (util_format_is_float(format))
      return VGPU10_RETURN_TYPE_FLOAT;
   else
      return VGPU10_RETURN_TYPE_MAX;
}


/**
 * A helper function to return TRUE if the specified format
 * is a supported format for sample_c instruction.
 */
static bool
isValidSampleCFormat(enum pipe_format format)
{
   return util_format_is_depth_or_stencil(format);
}


/**
 * Initialize the shader-neutral fields of svga_compile_key from context
 * state.  This is basically the texture-related state.
 */
void
svga_init_shader_key_common(const struct svga_context *svga,
                            enum pipe_shader_type shader_type,
                            const struct svga_shader *shader,
                            struct svga_compile_key *key)
{
   unsigned i, idx = 0;
   unsigned sampler_slots = 0;

   assert(shader_type < ARRAY_SIZE(svga->curr.num_sampler_views));

   /* In case the number of samplers and sampler_views doesn't match,
    * loop over the upper of the two counts.
    */
   key->num_textures = MAX2(svga->curr.num_sampler_views[shader_type],
                            svga->curr.num_samplers[shader_type]);

   key->num_samplers = 0;

   /* Set sampler_state_mapping only if GL43 is supported and
    * the number of samplers exceeds SVGA limit or the sampler state
    * mapping env is set.
    */
   boolean sampler_state_mapping =
      svga_use_sampler_state_mapping(svga, svga->curr.num_samplers[shader_type]);

   key->sampler_state_mapping =
      key->num_textures && sampler_state_mapping ? 1 : 0;

   for (i = 0; i < key->num_textures; i++) {
      struct pipe_sampler_view *view = svga->curr.sampler_views[shader_type][i];
      const struct svga_sampler_state
         *sampler = svga->curr.sampler[shader_type][i];

      if (view) {
         assert(view->texture);

         enum pipe_texture_target target = view->target;
         assert(target < (1 << 4)); /* texture_target:4 */

	 key->tex[i].target = target;
	 key->tex[i].sampler_return_type = vgpu10_return_type(view->format);
	 key->tex[i].sampler_view = 1;

         /* 1D/2D array textures with one slice and cube map array textures
          * with one cube are treated as non-arrays by the SVGA3D device.
          * Set the is_array flag only if we know that we have more than 1
          * element.  This will be used to select shader instruction/resource
          * types during shader translation.
          */
         switch (target) {
         case PIPE_TEXTURE_1D_ARRAY:
         case PIPE_TEXTURE_2D_ARRAY:
            key->tex[i].is_array = view->texture->array_size > 1;
            break;
         case PIPE_TEXTURE_CUBE_ARRAY:
            key->tex[i].is_array = view->texture->array_size > 6;
            break;
         default:
            ; /* nothing / silence compiler warning */
         }

         assert(view->texture->nr_samples < (1 << 5)); /* 5-bit field */
         key->tex[i].num_samples = view->texture->nr_samples;

         const enum pipe_swizzle *swizzle_tab;
         if (target == PIPE_BUFFER) {
            SVGA3dSurfaceFormat svga_format;
            unsigned tf_flags;

            assert(view->texture->target == PIPE_BUFFER);

            /* Apply any special swizzle mask for the view format if needed */

            svga_translate_texture_buffer_view_format(view->format,
                                                      &svga_format, &tf_flags);
            if (tf_flags & TF_000X)
               swizzle_tab = set_000X;
            else if (tf_flags & TF_XXXX)
               swizzle_tab = set_XXXX;
            else if (tf_flags & TF_XXX1)
               swizzle_tab = set_XXX1;
            else if (tf_flags & TF_XXXY)
               swizzle_tab = set_XXXY;
            else
               swizzle_tab = copy_alpha;
         }
         else {
            /* If we have a non-alpha view into an svga3d surface with an
             * alpha channel, then explicitly set the alpha channel to 1
             * when sampling. Note that we need to check the
             * actual device format to cover also imported surface cases.
             */
            swizzle_tab =
               (!util_format_has_alpha(view->format) &&
                svga_texture_device_format_has_alpha(view->texture)) ?
                set_alpha : copy_alpha;

            if (view->texture->format == PIPE_FORMAT_DXT1_RGB ||
                view->texture->format == PIPE_FORMAT_DXT1_SRGB)
               swizzle_tab = set_alpha;

            if (view->format == PIPE_FORMAT_X24S8_UINT ||
                view->format == PIPE_FORMAT_X32_S8X24_UINT)
               swizzle_tab = set_YYYY;

            /* Save the compare function as we need to handle
             * depth compare in the shader.
             */
            key->tex[i].compare_mode = sampler->compare_mode;
            key->tex[i].compare_func = sampler->compare_func;

            /* Set the compare_in_shader bit if the view format
             * is not a supported format for shadow compare.
             * In this case, we'll do the comparison in the shader.
             */
            if ((sampler->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) &&
                !isValidSampleCFormat(view->format)) {
               key->tex[i].compare_in_shader = TRUE;
            }
         }

         key->tex[i].swizzle_r = swizzle_tab[view->swizzle_r];
         key->tex[i].swizzle_g = swizzle_tab[view->swizzle_g];
         key->tex[i].swizzle_b = swizzle_tab[view->swizzle_b];
         key->tex[i].swizzle_a = swizzle_tab[view->swizzle_a];
      }
      else {
	 key->tex[i].sampler_view = 0;
      }

      if (sampler) {
         if (!sampler->normalized_coords) {
            if (view) {
               assert(idx < (1 << 5));  /* width_height_idx:5 bitfield */
               key->tex[i].width_height_idx = idx++;
	    }
            key->tex[i].unnormalized = TRUE;
            ++key->num_unnormalized_coords;

            if (sampler->magfilter == SVGA3D_TEX_FILTER_NEAREST ||
                sampler->minfilter == SVGA3D_TEX_FILTER_NEAREST) {
                key->tex[i].texel_bias = TRUE;
            }
         }

         if (!sampler_state_mapping) {
            /* Use the same index if sampler state mapping is not supported */
            key->tex[i].sampler_index = i;
            key->num_samplers = i + 1;
         }
         else {

            /* The current samplers list can have redundant entries.
             * In order to allow the number of bound samplers within the
             * max limit supported by SVGA, we'll recreate the list with
             * unique sampler state objects only.
             */

            /* Check to see if this sampler is already on the list.
             * If so, set the sampler index of this sampler to the
             * same sampler index.
             */
            for (unsigned j = 0; j <= i; j++) {
               if (svga->curr.sampler[shader_type][j] == sampler) {

                  if (!(sampler_slots & (1 << j))) {

                     /* if this sampler is not added to the new list yet,
                      * set its sampler index to the next sampler index,
                      * increment the sampler count, and mark this
                      * sampler as added to the list.
                      */

                     unsigned next_index =
                        MIN2(key->num_samplers, SVGA3D_DX_MAX_SAMPLERS-1);

                     key->tex[i].sampler_index = next_index;
                     key->num_samplers = next_index + 1;

                     if (sampler->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) {
                        /* reserve one slot for the alternate sampler */
                        key->num_samplers++;
                     }

                     sampler_slots |= (1 << j);
                  }
                  else {
                     key->tex[i].sampler_index = key->tex[j].sampler_index;
                  }
                  break;
               }
            }
         }
      }
   }

   if (svga_have_gl43(svga)) {
      if (shader->info.images_declared || shader->info.hw_atomic_declared ||
          shader->info.shader_buffers_declared) {

         /* Save the uavSpliceIndex which is the index used for the first uav
          * in the draw pipeline. For compute, uavSpliceIndex is always 0.
          */
         if (shader_type != PIPE_SHADER_COMPUTE)
            key->uav_splice_index = svga->state.hw_draw.uavSpliceIndex;

         unsigned uav_splice_index = key->uav_splice_index;

         /* Also get the texture data type to be used in the uav declaration */
         const struct svga_image_view *cur_image_view =
            &svga->curr.image_views[shader_type][0];

         for (unsigned i = 0; i < ARRAY_SIZE(svga->curr.image_views[shader_type]);
              i++, cur_image_view++) {

            struct pipe_resource *resource = cur_image_view->desc.resource;

            if (resource) {
               key->images[i].return_type =
                  svga_get_texture_datatype(cur_image_view->desc.format);

               key->images[i].is_array = resource->array_size > 1;

               /* Save the image resource target in the shader key because
                * for single layer image view, the resource target in the
                * tgsi shader is changed to a different texture target.
                */
               key->images[i].resource_target = resource->target;
               if (resource->target == PIPE_TEXTURE_3D ||
                   resource->target == PIPE_TEXTURE_1D_ARRAY ||
                   resource->target == PIPE_TEXTURE_2D_ARRAY ||
                   resource->target == PIPE_TEXTURE_CUBE ||
                   resource->target == PIPE_TEXTURE_CUBE_ARRAY) {
                  key->images[i].is_single_layer =
                     cur_image_view->desc.u.tex.first_layer ==
                     cur_image_view->desc.u.tex.last_layer;
               }

               key->images[i].uav_index = cur_image_view->uav_index + uav_splice_index;
            }
            else
               key->images[i].uav_index = SVGA3D_INVALID_ID;
         }

         const struct svga_shader_buffer *cur_sbuf =
            &svga->curr.shader_buffers[shader_type][0];

         for (unsigned i = 0; i < ARRAY_SIZE(svga->curr.shader_buffers[shader_type]);
              i++, cur_sbuf++) {

            if (cur_sbuf->resource)
               key->shader_buf_uav_index[i] = cur_sbuf->uav_index + uav_splice_index;
            else
               key->shader_buf_uav_index[i] = SVGA3D_INVALID_ID;
         }

         const struct svga_shader_buffer *cur_buf = &svga->curr.atomic_buffers[0];

         for (unsigned i = 0; i < ARRAY_SIZE(svga->curr.atomic_buffers);
              i++, cur_buf++) {

            if (cur_buf->resource)
               key->atomic_buf_uav_index[i] = cur_buf->uav_index + uav_splice_index;
            else
               key->atomic_buf_uav_index[i] = SVGA3D_INVALID_ID;
         }
      }

      /* Save info about which constant buffers are to be viewed
       * as raw buffers in the shader key.
       */
      if (shader->info.const_buffers_declared &
          svga->state.raw_constbufs[shader_type]) {
         key->raw_buffers = svga->state.raw_constbufs[shader_type];

         /* beginning index for srv for raw buffers */
         key->srv_raw_buf_index = PIPE_MAX_SAMPLERS;
      }
   }

   key->clamp_vertex_color = svga->curr.rast ?
                             svga->curr.rast->templ.clamp_vertex_color : 0;
}


/** Search for a compiled shader variant with the same compile key */
struct svga_shader_variant *
svga_search_shader_key(const struct svga_shader *shader,
                       const struct svga_compile_key *key)
{
   struct svga_shader_variant *variant = shader->variants;

   assert(key);

   for ( ; variant; variant = variant->next) {
      if (svga_compile_keys_equal(key, &variant->key))
         return variant;
   }
   return NULL;
}

/** Search for a shader with the same token key */
struct svga_shader *
svga_search_shader_token_key(struct svga_shader *pshader,
                             const struct svga_token_key *key)
{
   struct svga_shader *shader = pshader;

   assert(key);

   for ( ; shader; shader = shader->next) {
      if (memcmp(key, &shader->token_key, sizeof(struct svga_token_key)) == 0)
         return shader;
   }
   return NULL;
}

/**
 * Helper function to define a gb shader for non-vgpu10 device
 */
static enum pipe_error
define_gb_shader_vgpu9(struct svga_context *svga,
                       struct svga_shader_variant *variant,
                       unsigned codeLen)
{
   struct svga_winsys_screen *sws = svga_screen(svga->pipe.screen)->sws;
   enum pipe_error ret;

   /**
    * Create gb memory for the shader and upload the shader code.
    * Kernel module will allocate an id for the shader and issue
    * the DefineGBShader command.
    */
   variant->gb_shader = sws->shader_create(sws, variant->type,
                                           variant->tokens, codeLen);

   svga->hud.shader_mem_used += codeLen;

   if (!variant->gb_shader)
      return PIPE_ERROR_OUT_OF_MEMORY;

   ret = SVGA3D_BindGBShader(svga->swc, variant->gb_shader);

   return ret;
}

/**
 * Helper function to define a gb shader for vgpu10 device
 */
static enum pipe_error
define_gb_shader_vgpu10(struct svga_context *svga,
                        struct svga_shader_variant *variant,
                        unsigned codeLen)
{
   struct svga_winsys_context *swc = svga->swc;
   enum pipe_error ret;
   unsigned len = codeLen + variant->signatureLen;

   /**
    * Shaders in VGPU10 enabled device reside in the device COTable.
    * SVGA driver will allocate an integer ID for the shader and
    * issue DXDefineShader and DXBindShader commands.
    */
   variant->id = util_bitmask_add(svga->shader_id_bm);
   if (variant->id == UTIL_BITMASK_INVALID_INDEX) {
      return PIPE_ERROR_OUT_OF_MEMORY;
   }

   /* Create gb memory for the shader and upload the shader code */
   variant->gb_shader = swc->shader_create(swc,
                                           variant->id, variant->type,
                                           variant->tokens, codeLen,
                                           variant->signature,
                                           variant->signatureLen);

   svga->hud.shader_mem_used += len;

   if (!variant->gb_shader) {
      /* Free the shader ID */
      assert(variant->id != UTIL_BITMASK_INVALID_INDEX);
      goto fail_no_allocation;
   }

   /**
    * Since we don't want to do any flush within state emission to avoid
    * partial state in a command buffer, it's important to make sure that
    * there is enough room to send both the DXDefineShader & DXBindShader
    * commands in the same command buffer. So let's send both
    * commands in one command reservation. If it fails, we'll undo
    * the shader creation and return an error.
    */
   ret = SVGA3D_vgpu10_DefineAndBindShader(swc, variant->gb_shader,
                                           variant->id, variant->type,
                                           len);

   if (ret != PIPE_OK)
      goto fail;

   return PIPE_OK;

fail:
   swc->shader_destroy(swc, variant->gb_shader);
   variant->gb_shader = NULL;

fail_no_allocation:
   util_bitmask_clear(svga->shader_id_bm, variant->id);
   variant->id = UTIL_BITMASK_INVALID_INDEX;

   return PIPE_ERROR_OUT_OF_MEMORY;
}

/**
 * Issue the SVGA3D commands to define a new shader.
 * \param variant  contains the shader tokens, etc.  The result->id field will
 *                 be set here.
 */
enum pipe_error
svga_define_shader(struct svga_context *svga,
                   struct svga_shader_variant *variant)
{
   unsigned codeLen = variant->nr_tokens * sizeof(variant->tokens[0]);
   enum pipe_error ret;

   SVGA_STATS_TIME_PUSH(svga_sws(svga), SVGA_STATS_TIME_DEFINESHADER);

   variant->id = UTIL_BITMASK_INVALID_INDEX;

   if (svga_have_gb_objects(svga)) {
      if (svga_have_vgpu10(svga))
         ret = define_gb_shader_vgpu10(svga, variant, codeLen);
      else
         ret = define_gb_shader_vgpu9(svga, variant, codeLen);
   }
   else {
      /* Allocate an integer ID for the shader */
      variant->id = util_bitmask_add(svga->shader_id_bm);
      if (variant->id == UTIL_BITMASK_INVALID_INDEX) {
         ret = PIPE_ERROR_OUT_OF_MEMORY;
         goto done;
      }

      /* Issue SVGA3D device command to define the shader */
      ret = SVGA3D_DefineShader(svga->swc,
                                variant->id,
                                variant->type,
                                variant->tokens,
                                codeLen);
      if (ret != PIPE_OK) {
         /* free the ID */
         assert(variant->id != UTIL_BITMASK_INVALID_INDEX);
         util_bitmask_clear(svga->shader_id_bm, variant->id);
         variant->id = UTIL_BITMASK_INVALID_INDEX;
      }
   }

done:
   SVGA_STATS_TIME_POP(svga_sws(svga));
   return ret;
}


/**
 * Issue the SVGA3D commands to set/bind a shader.
 * \param result  the shader to bind.
 */
enum pipe_error
svga_set_shader(struct svga_context *svga,
                SVGA3dShaderType type,
                struct svga_shader_variant *variant)
{
   enum pipe_error ret;
   unsigned id = variant ? variant->id : SVGA3D_INVALID_ID;

   assert(type == SVGA3D_SHADERTYPE_VS ||
          type == SVGA3D_SHADERTYPE_GS ||
          type == SVGA3D_SHADERTYPE_PS ||
          type == SVGA3D_SHADERTYPE_HS ||
          type == SVGA3D_SHADERTYPE_DS ||
          type == SVGA3D_SHADERTYPE_CS);

   if (svga_have_gb_objects(svga)) {
      struct svga_winsys_gb_shader *gbshader =
         variant ? variant->gb_shader : NULL;

      if (svga_have_vgpu10(svga))
         ret = SVGA3D_vgpu10_SetShader(svga->swc, type, gbshader, id);
      else
         ret = SVGA3D_SetGBShader(svga->swc, type, gbshader);
   }
   else {
      ret = SVGA3D_SetShader(svga->swc, type, id);
   }

   return ret;
}


struct svga_shader_variant *
svga_new_shader_variant(struct svga_context *svga, enum pipe_shader_type type)
{
   struct svga_shader_variant *variant;

   switch (type) {
   case PIPE_SHADER_FRAGMENT:
      variant = CALLOC(1, sizeof(struct svga_fs_variant));
      break;
   case PIPE_SHADER_GEOMETRY:
      variant = CALLOC(1, sizeof(struct svga_gs_variant));
      break;
   case PIPE_SHADER_VERTEX:
      variant = CALLOC(1, sizeof(struct svga_vs_variant));
      break;
   case PIPE_SHADER_TESS_EVAL:
      variant = CALLOC(1, sizeof(struct svga_tes_variant));
      break;
   case PIPE_SHADER_TESS_CTRL:
      variant = CALLOC(1, sizeof(struct svga_tcs_variant));
      break;
   case PIPE_SHADER_COMPUTE:
      variant = CALLOC(1, sizeof(struct svga_cs_variant));
      break;
   default:
      return NULL;
   }

   if (variant) {
      variant->type = svga_shader_type(type);
      svga->hud.num_shaders++;
   }
   return variant;
}


void
svga_destroy_shader_variant(struct svga_context *svga,
                            struct svga_shader_variant *variant)
{
   if (svga_have_gb_objects(svga) && variant->gb_shader) {
      if (svga_have_vgpu10(svga)) {
         struct svga_winsys_context *swc = svga->swc;
         swc->shader_destroy(swc, variant->gb_shader);
         SVGA_RETRY(svga, SVGA3D_vgpu10_DestroyShader(svga->swc, variant->id));
         util_bitmask_clear(svga->shader_id_bm, variant->id);
      }
      else {
         struct svga_winsys_screen *sws = svga_screen(svga->pipe.screen)->sws;
         sws->shader_destroy(sws, variant->gb_shader);
      }
      variant->gb_shader = NULL;
   }
   else {
      if (variant->id != UTIL_BITMASK_INVALID_INDEX) {
         SVGA_RETRY(svga, SVGA3D_DestroyShader(svga->swc, variant->id,
                                               variant->type));
         util_bitmask_clear(svga->shader_id_bm, variant->id);
      }
   }

   FREE(variant->signature);
   FREE((unsigned *)variant->tokens);
   FREE(variant);

   svga->hud.num_shaders--;
}

/*
 * Rebind shaders.
 * Called at the beginning of every new command buffer to ensure that
 * shaders are properly paged-in. Instead of sending the SetShader
 * command, this function sends a private allocation command to
 * page in a shader. This avoids emitting redundant state to the device
 * just to page in a resource.
 */
enum pipe_error
svga_rebind_shaders(struct svga_context *svga)
{
   struct svga_winsys_context *swc = svga->swc;
   struct svga_hw_draw_state *hw = &svga->state.hw_draw;
   enum pipe_error ret;

   assert(svga_have_vgpu10(svga));

   /**
    * If the underlying winsys layer does not need resource rebinding,
    * just clear the rebind flags and return.
    */
   if (swc->resource_rebind == NULL) {
      svga->rebind.flags.vs = 0;
      svga->rebind.flags.gs = 0;
      svga->rebind.flags.fs = 0;
      svga->rebind.flags.tcs = 0;
      svga->rebind.flags.tes = 0;

      return PIPE_OK;
   }

   if (svga->rebind.flags.vs && hw->vs && hw->vs->gb_shader) {
      ret = swc->resource_rebind(swc, NULL, hw->vs->gb_shader, SVGA_RELOC_READ);
      if (ret != PIPE_OK)
         return ret;
   }
   svga->rebind.flags.vs = 0;

   if (svga->rebind.flags.gs && hw->gs && hw->gs->gb_shader) {
      ret = swc->resource_rebind(swc, NULL, hw->gs->gb_shader, SVGA_RELOC_READ);
      if (ret != PIPE_OK)
         return ret;
   }
   svga->rebind.flags.gs = 0;

   if (svga->rebind.flags.fs && hw->fs && hw->fs->gb_shader) {
      ret = swc->resource_rebind(swc, NULL, hw->fs->gb_shader, SVGA_RELOC_READ);
      if (ret != PIPE_OK)
         return ret;
   }
   svga->rebind.flags.fs = 0;

   if (svga->rebind.flags.tcs && hw->tcs && hw->tcs->gb_shader) {
      ret = swc->resource_rebind(swc, NULL, hw->tcs->gb_shader, SVGA_RELOC_READ);
      if (ret != PIPE_OK)
         return ret;
   }
   svga->rebind.flags.tcs = 0;

   if (svga->rebind.flags.tes && hw->tes && hw->tes->gb_shader) {
      ret = swc->resource_rebind(swc, NULL, hw->tes->gb_shader, SVGA_RELOC_READ);
      if (ret != PIPE_OK)
         return ret;
   }
   svga->rebind.flags.tes = 0;

   return PIPE_OK;
}