summaryrefslogtreecommitdiff
path: root/lib/mesa/src/intel/vulkan/genX_cmd_draw_generated_indirect.h
blob: ccb1bd7a28a3901faa2687fc934e80c839b8612c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
/*
 * Copyright © 2022 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#ifndef GENX_CMD_GENERATED_INDIRECT_DRAW_H
#define GENX_CMD_GENERATED_INDIRECT_DRAW_H

#include <assert.h>
#include <stdbool.h>

#include "util/macros.h"

#include "common/intel_genX_state.h"

#include "anv_private.h"
#include "anv_generated_indirect_draws.h"

/* This is a maximum number of items a fragment shader can generate due to the
 * viewport size.
 */
#define MAX_GENERATED_DRAW_COUNT (8192 * 8192)

static void
genX(cmd_buffer_emit_generate_draws_pipeline)(struct anv_cmd_buffer *cmd_buffer)
{
   struct anv_batch *batch = &cmd_buffer->generation_batch;
   struct anv_device *device = cmd_buffer->device;
   const struct anv_shader_bin *draw_kernel = device->generated_draw_kernel;
   const struct brw_wm_prog_data *prog_data =
      brw_wm_prog_data_const(draw_kernel->prog_data);

   uint32_t *dw = anv_batch_emitn(batch,
                                  1 + 2 * GENX(VERTEX_ELEMENT_STATE_length),
                                  GENX(3DSTATE_VERTEX_ELEMENTS));
   /* You might think there is some shady stuff going here and you would be
    * right. We're setting up 2 VERTEX_ELEMENT_STATE yet we're only providing
    * 1 (positions) VERTEX_BUFFER_STATE later.
    *
    * Find more about how to set up a 3D pipeline with a fragment shader but
    * without a vertex shader in blorp_emit_vertex_elements() in
    * blorp_genX_exec.h.
    */
   GENX(VERTEX_ELEMENT_STATE_pack)(
      batch, dw + 1, &(struct GENX(VERTEX_ELEMENT_STATE)) {
         .VertexBufferIndex = 1,
         .Valid = true,
         .SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT,
         .SourceElementOffset = 0,
         .Component0Control = VFCOMP_STORE_SRC,
         .Component1Control = VFCOMP_STORE_0,
         .Component2Control = VFCOMP_STORE_0,
         .Component3Control = VFCOMP_STORE_0,
      });
   GENX(VERTEX_ELEMENT_STATE_pack)(
      batch, dw + 3, &(struct GENX(VERTEX_ELEMENT_STATE)) {
         .VertexBufferIndex   = 0,
         .Valid               = true,
         .SourceElementFormat = ISL_FORMAT_R32G32B32_FLOAT,
         .SourceElementOffset = 0,
         .Component0Control   = VFCOMP_STORE_SRC,
         .Component1Control   = VFCOMP_STORE_SRC,
         .Component2Control   = VFCOMP_STORE_SRC,
         .Component3Control   = VFCOMP_STORE_1_FP,
      });

   anv_batch_emit(batch, GENX(3DSTATE_VF_STATISTICS), vf);
   anv_batch_emit(batch, GENX(3DSTATE_VF_SGVS), sgvs) {
      sgvs.InstanceIDEnable = true;
      sgvs.InstanceIDComponentNumber = COMP_1;
      sgvs.InstanceIDElementOffset = 0;
   }
#if GFX_VER >= 11
   anv_batch_emit(batch, GENX(3DSTATE_VF_SGVS_2), sgvs);
#endif
   anv_batch_emit(batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
      vfi.InstancingEnable   = false;
      vfi.VertexElementIndex = 0;
   }
   anv_batch_emit(batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
      vfi.InstancingEnable   = false;
      vfi.VertexElementIndex = 1;
   }

   anv_batch_emit(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
      topo.PrimitiveTopologyType = _3DPRIM_RECTLIST;
   }

   /* Emit URB setup.  We tell it that the VS is active because we want it to
    * allocate space for the VS.  Even though one isn't run, we need VUEs to
    * store the data that VF is going to pass to SOL.
    */
   const unsigned entry_size[4] = { DIV_ROUND_UP(32, 64), 1, 1, 1 };

   genX(emit_l3_config)(batch, device, device->generated_draw_l3_config);

   cmd_buffer->state.current_l3_config = device->generated_draw_l3_config;

   enum intel_urb_deref_block_size deref_block_size;
   genX(emit_urb_setup)(device, batch, device->generated_draw_l3_config,
                        VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
                        entry_size, &deref_block_size);

   anv_batch_emit(batch, GENX(3DSTATE_PS_BLEND), ps_blend) {
      ps_blend.HasWriteableRT = true;
   }

   anv_batch_emit(batch, GENX(3DSTATE_WM_DEPTH_STENCIL), wm);

#if GFX_VER >= 12
   anv_batch_emit(batch, GENX(3DSTATE_DEPTH_BOUNDS), db) {
      db.DepthBoundsTestEnable = false;
      db.DepthBoundsTestMinValue = 0.0;
      db.DepthBoundsTestMaxValue = 1.0;
   }
#endif

   anv_batch_emit(batch, GENX(3DSTATE_MULTISAMPLE), ms);
   anv_batch_emit(batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
      sm.SampleMask = 0x1;
   }

   anv_batch_emit(batch, GENX(3DSTATE_VS), vs);
   anv_batch_emit(batch, GENX(3DSTATE_HS), hs);
   anv_batch_emit(batch, GENX(3DSTATE_TE), te);
   anv_batch_emit(batch, GENX(3DSTATE_DS), DS);

#if GFX_VERx10 >= 125
   if (device->vk.enabled_extensions.NV_mesh_shader ||
       device->vk.enabled_extensions.EXT_mesh_shader) {
      anv_batch_emit(batch, GENX(3DSTATE_MESH_CONTROL), mesh);
      anv_batch_emit(batch, GENX(3DSTATE_TASK_CONTROL), task);
   }
#endif

   anv_batch_emit(batch, GENX(3DSTATE_STREAMOUT), so);

   anv_batch_emit(batch, GENX(3DSTATE_GS), gs);

   anv_batch_emit(batch, GENX(3DSTATE_CLIP), clip) {
      clip.PerspectiveDivideDisable = true;
   }

   anv_batch_emit(batch, GENX(3DSTATE_SF), sf) {
#if GFX_VER >= 12
      sf.DerefBlockSize = deref_block_size;
#endif
   }

   anv_batch_emit(batch, GENX(3DSTATE_RASTER), raster) {
      raster.CullMode = CULLMODE_NONE;
   }

   anv_batch_emit(batch, GENX(3DSTATE_SBE), sbe) {
      sbe.VertexURBEntryReadOffset = 1;
      sbe.NumberofSFOutputAttributes = prog_data->num_varying_inputs;
      sbe.VertexURBEntryReadLength = MAX2((prog_data->num_varying_inputs + 1) / 2, 1);
      sbe.ConstantInterpolationEnable = prog_data->flat_inputs;
      sbe.ForceVertexURBEntryReadLength = true;
      sbe.ForceVertexURBEntryReadOffset = true;
      for (unsigned i = 0; i < 32; i++)
         sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
   }

   anv_batch_emit(batch, GENX(3DSTATE_WM), wm);

   anv_batch_emit(batch, GENX(3DSTATE_PS), ps) {
      intel_set_ps_dispatch_state(&ps, device->info, prog_data,
                                  1 /* rasterization_samples */,
                                  0 /* msaa_flags */);

      ps.VectorMaskEnable       = prog_data->uses_vmask;

      ps.BindingTableEntryCount = GFX_VER == 9 ? 1 : 0;
      ps.PushConstantEnable     = prog_data->base.nr_params > 0 ||
                                  prog_data->base.ubo_ranges[0].length;

      ps.DispatchGRFStartRegisterForConstantSetupData0 =
         brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 0);
      ps.DispatchGRFStartRegisterForConstantSetupData1 =
         brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 1);
      ps.DispatchGRFStartRegisterForConstantSetupData2 =
         brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 2);

      ps.KernelStartPointer0 = draw_kernel->kernel.offset +
         brw_wm_prog_data_prog_offset(prog_data, ps, 0);
      ps.KernelStartPointer1 = draw_kernel->kernel.offset +
         brw_wm_prog_data_prog_offset(prog_data, ps, 1);
      ps.KernelStartPointer2 = draw_kernel->kernel.offset +
         brw_wm_prog_data_prog_offset(prog_data, ps, 2);

      ps.MaximumNumberofThreadsPerPSD = device->info->max_threads_per_psd - 1;
   }

   anv_batch_emit(batch, GENX(3DSTATE_PS_EXTRA), psx) {
      psx.PixelShaderValid = true;
      psx.AttributeEnable = prog_data->num_varying_inputs > 0;
      psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
      psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
      psx.PixelShaderComputesStencil = prog_data->computed_stencil;
   }

   anv_batch_emit(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), cc) {
      struct anv_state cc_state =
         anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4 * GENX(CC_VIEWPORT_length), 32);
      struct GENX(CC_VIEWPORT) cc_viewport = {
         .MinimumDepth = 0.0f,
         .MaximumDepth = 1.0f,
      };
      GENX(CC_VIEWPORT_pack)(NULL, cc_state.map, &cc_viewport);
      cc.CCViewportPointer = cc_state.offset;
   }

#if GFX_VER >= 12
   /* Disable Primitive Replication. */
   anv_batch_emit(batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr);
#endif

   anv_batch_emit(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc);
   anv_batch_emit(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_HS), alloc);
   anv_batch_emit(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_DS), alloc);
   anv_batch_emit(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_GS), alloc);
   anv_batch_emit(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
      alloc.ConstantBufferOffset = 0;
      alloc.ConstantBufferSize   = cmd_buffer->device->info->max_constant_urb_size_kb;
   }

#if GFX_VERx10 == 125
   /* DG2: Wa_22011440098
    * MTL: Wa_18022330953
    *
    * In 3D mode, after programming push constant alloc command immediately
    * program push constant command(ZERO length) without any commit between
    * them.
    *
    * Note that Wa_16011448509 isn't needed here as all address bits are zero.
    */
   anv_batch_emit(batch, GENX(3DSTATE_CONSTANT_ALL), c) {
      /* Update empty push constants for all stages (bitmask = 11111b) */
      c.ShaderUpdateEnable = 0x1f;
      c.MOCS = anv_mocs(cmd_buffer->device, NULL, 0);
   }
#endif

#if GFX_VER == 9
   /* Allocate a binding table for Gfx9 for 2 reason :
    *
    *   1. we need a to emit a 3DSTATE_BINDING_TABLE_POINTERS_PS to make the
    *      HW apply the preceeding 3DSTATE_CONSTANT_PS
    *
    *   2. Emitting an empty 3DSTATE_BINDING_TABLE_POINTERS_PS would cause RT
    *      writes (even though they're empty) to disturb later writes
    *      (probably due to RT cache)
    *
    * Our binding table only has one entry to the null surface.
    */
   uint32_t bt_offset;
   cmd_buffer->generation_bt_state =
      anv_cmd_buffer_alloc_binding_table(cmd_buffer, 1, &bt_offset);
   if (cmd_buffer->generation_bt_state.map == NULL) {
      VkResult result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
      if (result != VK_SUCCESS)
         return;

      /* Re-emit state base addresses so we get the new surface state base
       * address before we start emitting binding tables etc.
       */
      genX(cmd_buffer_emit_state_base_address)(cmd_buffer);

      cmd_buffer->generation_bt_state =
         anv_cmd_buffer_alloc_binding_table(cmd_buffer, 1, &bt_offset);
      assert(cmd_buffer->generation_bt_state.map != NULL);
   }

   uint32_t *bt_map = cmd_buffer->generation_bt_state.map;
   bt_map[0] = anv_bindless_state_for_binding_table(
      cmd_buffer->device->null_surface_state).offset + bt_offset;

   cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
#endif

   cmd_buffer->state.gfx.vb_dirty = BITFIELD_BIT(0);
   cmd_buffer->state.gfx.dirty |= ~(ANV_CMD_DIRTY_INDEX_BUFFER |
                                    ANV_CMD_DIRTY_XFB_ENABLE);
   cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
   cmd_buffer->state.gfx.push_constant_stages = VK_SHADER_STAGE_FRAGMENT_BIT;
   vk_dynamic_graphics_state_dirty_all(&cmd_buffer->vk.dynamic_graphics_state);
}

static void
genX(cmd_buffer_emit_generate_draws_vertex)(struct anv_cmd_buffer *cmd_buffer,
                                            uint32_t draw_count)
{
   struct anv_batch *batch = &cmd_buffer->generation_batch;
   struct anv_state vs_data_state =
      anv_cmd_buffer_alloc_dynamic_state(
         cmd_buffer, 9 * sizeof(uint32_t), 32);

   float x0 = 0.0f, x1 = MIN2(draw_count, 8192);
   float y0 = 0.0f, y1 = DIV_ROUND_UP(draw_count, 8192);
   float z = 0.0f;

   float *vertices = vs_data_state.map;
   vertices[0] = x1; vertices[1] = y1; vertices[2] = z; /* v0 */
   vertices[3] = x0; vertices[4] = y1; vertices[5] = z; /* v1 */
   vertices[6] = x0; vertices[7] = y0; vertices[8] = z; /* v2 */

   uint32_t *dw = anv_batch_emitn(batch,
                                  1 + GENX(VERTEX_BUFFER_STATE_length),
                                  GENX(3DSTATE_VERTEX_BUFFERS));
   GENX(VERTEX_BUFFER_STATE_pack)(batch, dw + 1,
                                  &(struct GENX(VERTEX_BUFFER_STATE)) {
         .VertexBufferIndex     = 0,
         .AddressModifyEnable   = true,
         .BufferStartingAddress = (struct anv_address) {
            .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
            .offset = vs_data_state.offset,
         },
         .BufferPitch           = 3 * sizeof(float),
         .BufferSize            = 9 * sizeof(float),
         .MOCS                  = anv_mocs(cmd_buffer->device, NULL, 0),
#if GFX_VER >= 12
         .L3BypassDisable       = true,
#endif
      });
}

static void
genX(cmd_buffer_emit_generated_push_data)(struct anv_cmd_buffer *cmd_buffer,
                                          struct anv_state push_data_state)
{
   struct anv_batch *batch = &cmd_buffer->generation_batch;
   struct anv_address push_data_addr = anv_state_pool_state_address(
      &cmd_buffer->device->dynamic_state_pool, push_data_state);

   /* Don't use 3DSTATE_CONSTANT_ALL on Gfx12.0 due to Wa_16011448509 */
#if GFX_VERx10 > 120
   const uint32_t num_dwords = GENX(3DSTATE_CONSTANT_ALL_length) +
      GENX(3DSTATE_CONSTANT_ALL_DATA_length);
   uint32_t *dw =
      anv_batch_emitn(batch, num_dwords,
                      GENX(3DSTATE_CONSTANT_ALL),
                      .ShaderUpdateEnable = BITFIELD_BIT(MESA_SHADER_FRAGMENT),
                      .PointerBufferMask = 0x1,
                      .MOCS = anv_mocs(cmd_buffer->device, NULL, 0));

   GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
      batch, dw + GENX(3DSTATE_CONSTANT_ALL_length),
      &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
         .PointerToConstantBuffer = push_data_addr,
         .ConstantBufferReadLength = DIV_ROUND_UP(push_data_state.alloc_size, 32),
      });
#else
   /* The Skylake PRM contains the following restriction:
    *
    *    "The driver must ensure The following case does not occur
    *     without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
    *     buffer 3 read length equal to zero committed followed by a
    *     3DSTATE_CONSTANT_* with buffer 0 read length not equal to
    *     zero committed."
    *
    * To avoid this, we program the highest slot.
    */
   anv_batch_emit(batch, GENX(3DSTATE_CONSTANT_PS), c) {
      c.MOCS = anv_mocs(cmd_buffer->device, NULL, 0);
      c.ConstantBody.ReadLength[3] = DIV_ROUND_UP(push_data_state.alloc_size, 32);
      c.ConstantBody.Buffer[3] = push_data_addr;
   }
#endif
}

static struct anv_generated_indirect_params *
genX(cmd_buffer_emit_generate_draws)(struct anv_cmd_buffer *cmd_buffer,
                                     struct anv_address generated_cmds_addr,
                                     uint32_t generated_cmd_stride,
                                     struct anv_address indirect_data_addr,
                                     uint32_t indirect_data_stride,
                                     struct anv_address draw_id_addr,
                                     uint32_t item_base,
                                     uint32_t item_count,
                                     struct anv_address count_addr,
                                     uint32_t max_count,
                                     bool indexed)
{
   struct anv_batch *batch = &cmd_buffer->generation_batch;

   genX(cmd_buffer_emit_generate_draws_vertex)(cmd_buffer, item_count);

   struct anv_state push_data_state =
      anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
                                         sizeof(struct anv_generated_indirect_params),
                                         ANV_UBO_ALIGNMENT);

   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);

   struct anv_generated_indirect_params *push_data = push_data_state.map;
   *push_data = (struct anv_generated_indirect_params) {
      .draw                      = {
         .draw_id_addr           = anv_address_physical(draw_id_addr),
         .indirect_data_addr     = anv_address_physical(indirect_data_addr),
         .indirect_data_stride   = indirect_data_stride,
         .flags                  = (indexed ? ANV_GENERATED_FLAG_INDEXED : 0) |
                                   (cmd_buffer->state.conditional_render_enabled ?
                                    ANV_GENERATED_FLAG_PREDICATED : 0) |
                                   ((vs_prog_data->uses_firstvertex ||
                                     vs_prog_data->uses_baseinstance) ?
                                    ANV_GENERATED_FLAG_BASE : 0) |
                                   (vs_prog_data->uses_drawid ? ANV_GENERATED_FLAG_DRAWID : 0) |
                                   (anv_mocs(cmd_buffer->device, indirect_data_addr.bo,
                                             ISL_SURF_USAGE_VERTEX_BUFFER_BIT) << 8) |
                                   ((generated_cmd_stride / 4) << 16),
         .draw_base              = item_base,
         /* If count_addr is not NULL, we'll edit it through a the command
          * streamer.
          */
         .draw_count             = anv_address_is_null(count_addr) ? max_count : 0,
         .max_draw_count         = max_count,
         .instance_multiplier    = pipeline->instance_multiplier,
      },
      .indirect_data_addr        = anv_address_physical(indirect_data_addr),
      .generated_cmds_addr       = anv_address_physical(generated_cmds_addr),
      .draw_ids_addr             = anv_address_physical(draw_id_addr),
   };

   if (!anv_address_is_null(count_addr)) {
      /* Copy the draw count into the push constants so that the generation
       * gets the value straight away and doesn't even need to access memory.
       */
      struct mi_builder b;
      mi_builder_init(&b, cmd_buffer->device->info, batch);
      mi_memcpy(&b,
                anv_address_add((struct anv_address) {
                      .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
                      .offset = push_data_state.offset,
                   },
                   offsetof(struct anv_generated_indirect_params, draw.draw_count)),
                count_addr, 4);

      /* Make sure the memcpy landed for the generating draw call to pick up
       * the value.
       */
      anv_batch_emit(batch, GENX(PIPE_CONTROL), pc) {
         pc.CommandStreamerStallEnable = true;
      }
   }

   /* Only emit the data after the memcpy above. */
   genX(cmd_buffer_emit_generated_push_data)(cmd_buffer, push_data_state);

#if GFX_VER == 9
   /* Why are the push constants not flushed without a binding table
    * update??
    */
   anv_batch_emit(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_PS), btp) {
      btp.PointertoPSBindingTable = cmd_buffer->generation_bt_state.offset;
   }
#endif

   anv_batch_emit(batch, GENX(3DPRIMITIVE), prim) {
      prim.VertexAccessType         = SEQUENTIAL;
      prim.PrimitiveTopologyType    = _3DPRIM_RECTLIST;
      prim.VertexCountPerInstance   = 3;
      prim.InstanceCount            = 1;
   }

   return push_data;
}

static void
genX(cmd_buffer_emit_indirect_generated_draws_init)(struct anv_cmd_buffer *cmd_buffer)
{
#if GFX_VER >= 12
   anv_batch_emit(&cmd_buffer->batch, GENX(MI_ARB_CHECK), arb) {
      arb.PreParserDisableMask = true;
      arb.PreParserDisable = true;
   }
#endif

   anv_batch_emit_ensure_space(&cmd_buffer->generation_batch, 4);

   trace_intel_begin_generate_draws(&cmd_buffer->trace);

   anv_batch_emit(&cmd_buffer->batch, GENX(MI_BATCH_BUFFER_START), bbs) {
      bbs.AddressSpaceIndicator = ASI_PPGTT;
      bbs.BatchBufferStartAddress =
         anv_batch_current_address(&cmd_buffer->generation_batch);
   }

   cmd_buffer->generation_return_addr = anv_batch_current_address(&cmd_buffer->batch);

   trace_intel_end_generate_draws(&cmd_buffer->trace);

   genX(cmd_buffer_emit_generate_draws_pipeline)(cmd_buffer);

}

static struct anv_address
genX(cmd_buffer_get_draw_id_addr)(struct anv_cmd_buffer *cmd_buffer,
                                  uint32_t draw_id_count)
{
#if GFX_VER >= 11
   return ANV_NULL_ADDRESS;
#else
   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
   if (!vs_prog_data->uses_drawid)
      return ANV_NULL_ADDRESS;

   struct anv_state draw_id_state =
      anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4 * draw_id_count, 4);
   return anv_state_pool_state_address(&cmd_buffer->device->dynamic_state_pool,
                                       draw_id_state);
#endif
}

static uint32_t
genX(cmd_buffer_get_generated_draw_stride)(struct anv_cmd_buffer *cmd_buffer)
{
   /* With the extended parameters in 3DPRIMITIVE on Gfx11+ we can emit
    * everything. Prior to this, we need to emit a couple of
    * VERTEX_BUFFER_STATE.
    */
#if GFX_VER >= 11
   return 4 * GENX(3DPRIMITIVE_EXTENDED_length);
#else
   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);

   uint32_t len = 0;

   if (vs_prog_data->uses_firstvertex ||
       vs_prog_data->uses_baseinstance ||
       vs_prog_data->uses_drawid) {
      len += 4; /* 3DSTATE_VERTEX_BUFFERS */

      if (vs_prog_data->uses_firstvertex ||
          vs_prog_data->uses_baseinstance)
         len += 4 * GENX(VERTEX_BUFFER_STATE_length);

      if (vs_prog_data->uses_drawid)
         len += 4 * GENX(VERTEX_BUFFER_STATE_length);
   }

   return len + 4 * GENX(3DPRIMITIVE_length);
#endif
}

static void
genX(cmd_buffer_rewrite_forward_end_addr)(struct anv_cmd_buffer *cmd_buffer,
                                          struct anv_generated_indirect_params *params)
{
   /* We don't know the end_addr until we have emitted all the generation
    * draws. Go and edit the address of all the push parameters.
    */
   uint64_t end_addr =
      anv_address_physical(anv_batch_current_address(&cmd_buffer->batch));
   while (params != NULL) {
      params->draw.end_addr = end_addr;
      params = params->prev;
   }
}

static void
genX(cmd_buffer_emit_indirect_generated_draws)(struct anv_cmd_buffer *cmd_buffer,
                                               struct anv_address indirect_data_addr,
                                               uint32_t indirect_data_stride,
                                               struct anv_address count_addr,
                                               uint32_t max_draw_count,
                                               bool indexed)
{
   const bool start_generation_batch =
      anv_address_is_null(cmd_buffer->generation_return_addr);

   genX(flush_pipeline_select_3d)(cmd_buffer);

   struct anv_address draw_id_addr =
      genX(cmd_buffer_get_draw_id_addr)(cmd_buffer, max_draw_count);

#if GFX_VER == 9
   /* Mark the VB-0 as using the entire dynamic state pool area, but only for
    * the draw call starting the generation batch. All the following ones will
    * use the same area.
    */
   if (start_generation_batch) {
      genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(cmd_buffer, 0,
                                                     (struct anv_address) {
                                                        .offset = DYNAMIC_STATE_POOL_MIN_ADDRESS,
                                                     },
                                                     DYNAMIC_STATE_POOL_SIZE);
   }

   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);

   if (vs_prog_data->uses_baseinstance ||
       vs_prog_data->uses_firstvertex) {
      /* We're using the indirect buffer directly to source base instance &
       * first vertex values. Mark the entire area as used.
       */
      genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(cmd_buffer, ANV_SVGS_VB_INDEX,
                                                     indirect_data_addr,
                                                     indirect_data_stride * max_draw_count);
   }

   if (vs_prog_data->uses_drawid) {
      /* Mark the whole draw id buffer as used. */
      genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(cmd_buffer, ANV_SVGS_VB_INDEX,
                                                     draw_id_addr,
                                                     sizeof(uint32_t) * max_draw_count);
   }
#endif

   /* Apply the pipeline flush here so the indirect data is available for the
    * generation shader.
    */
   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);

   if (start_generation_batch)
      genX(cmd_buffer_emit_indirect_generated_draws_init)(cmd_buffer);

   /* In order to have the vertex fetch gather the data we need to have a non
    * 0 stride. It's possible to have a 0 stride given by the application when
    * draw_count is 1, but we need a correct value for the
    * VERTEX_BUFFER_STATE::BufferPitch, so ensure the caller set this
    * correctly :
    *
    * Vulkan spec, vkCmdDrawIndirect:
    *
    *   "If drawCount is less than or equal to one, stride is ignored."
    */
   assert(indirect_data_stride > 0);

   if (cmd_buffer->state.conditional_render_enabled)
      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);

   /* Emit the 3D state in the main batch. */
   genX(cmd_buffer_flush_gfx_state)(cmd_buffer);

   const uint32_t draw_cmd_stride =
      genX(cmd_buffer_get_generated_draw_stride)(cmd_buffer);

   struct anv_generated_indirect_params *last_params = NULL;
   uint32_t item_base = 0;
   while (item_base < max_draw_count) {
      const uint32_t item_count = MIN2(max_draw_count - item_base,
                                       MAX_GENERATED_DRAW_COUNT);
      const uint32_t draw_cmd_size = item_count * draw_cmd_stride;

      /* Ensure we have enough contiguous space for all the draws so that the
       * compute shader can edit all the 3DPRIMITIVEs from a single base
       * address.
       *
       * TODO: we might have to split that if the amount of space is to large (at
       *       1Mb?).
       */
      VkResult result = anv_batch_emit_ensure_space(&cmd_buffer->batch,
                                                    draw_cmd_size);
      if (result != VK_SUCCESS)
         return;

      struct anv_generated_indirect_params *params =
         genX(cmd_buffer_emit_generate_draws)(
            cmd_buffer,
            anv_batch_current_address(&cmd_buffer->batch),
            draw_cmd_stride,
            anv_address_add(indirect_data_addr,
                            item_base * indirect_data_stride),
            indirect_data_stride,
            anv_address_add(draw_id_addr, 4 * item_base),
            item_base,
            item_count,
            count_addr,
            max_draw_count,
            indexed);

      anv_batch_advance(&cmd_buffer->batch, draw_cmd_size);

      item_base += item_count;

      params->prev = last_params;
      last_params = params;
   }

   genX(cmd_buffer_rewrite_forward_end_addr)(cmd_buffer, last_params);

#if GFX_VER == 9
   update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, indexed ? RANDOM : SEQUENTIAL);
#endif
}

static void
genX(cmd_buffer_flush_generated_draws)(struct anv_cmd_buffer *cmd_buffer)
{
   /* No return address setup means we don't have to do anything */
   if (anv_address_is_null(cmd_buffer->generation_return_addr))
      return;

   struct anv_batch *batch = &cmd_buffer->generation_batch;

   /* Wait for all the generation vertex shader to generate the commands. */
   genX(emit_apply_pipe_flushes)(batch,
                                 cmd_buffer->device,
                                 _3D,
#if GFX_VER == 9
                                 ANV_PIPE_VF_CACHE_INVALIDATE_BIT |
#endif
                                 ANV_PIPE_DATA_CACHE_FLUSH_BIT |
                                 ANV_PIPE_CS_STALL_BIT,
                                 NULL /* query_bits */);

#if GFX_VER >= 12
   anv_batch_emit(batch, GENX(MI_ARB_CHECK), arb) {
      arb.PreParserDisableMask = true;
      arb.PreParserDisable = false;
   }
#else
   /* Prior to Gfx12 we cannot disable the CS prefetch but it doesn't matter
    * as the prefetch shouldn't follow the MI_BATCH_BUFFER_START.
    */
#endif

   /* Return to the main batch. */
   anv_batch_emit(batch, GENX(MI_BATCH_BUFFER_START), bbs) {
      bbs.AddressSpaceIndicator = ASI_PPGTT;
      bbs.BatchBufferStartAddress = cmd_buffer->generation_return_addr;
   }

   cmd_buffer->generation_return_addr = ANV_NULL_ADDRESS;
}

#endif /* GENX_CMD_GENERATED_INDIRECT_DRAW_H */