1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/blob.h"
#include "util/hash_table.h"
#include "util/u_debug.h"
#include "util/disk_cache.h"
#include "util/mesa-sha1.h"
#include "nir/nir_serialize.h"
#include "anv_private.h"
#include "nir/nir_xfb_info.h"
#include "vulkan/util/vk_util.h"
static bool
anv_shader_bin_serialize(struct vk_pipeline_cache_object *object,
struct blob *blob);
struct vk_pipeline_cache_object *
anv_shader_bin_deserialize(struct vk_device *device,
const void *key_data, size_t key_size,
struct blob_reader *blob);
static void
anv_shader_bin_destroy(struct vk_pipeline_cache_object *object)
{
struct anv_device *device =
container_of(object->device, struct anv_device, vk);
struct anv_shader_bin *shader =
container_of(object, struct anv_shader_bin, base);
anv_state_pool_free(&device->instruction_state_pool, shader->kernel);
vk_pipeline_cache_object_finish(&shader->base);
vk_free(&device->vk.alloc, shader);
}
static const struct vk_pipeline_cache_object_ops anv_shader_bin_ops = {
.serialize = anv_shader_bin_serialize,
.deserialize = anv_shader_bin_deserialize,
.destroy = anv_shader_bin_destroy,
};
const struct vk_pipeline_cache_object_ops *const anv_cache_import_ops[2] = {
&anv_shader_bin_ops,
NULL
};
struct anv_shader_bin *
anv_shader_bin_create(struct anv_device *device,
gl_shader_stage stage,
const void *key_data, uint32_t key_size,
const void *kernel_data, uint32_t kernel_size,
const struct brw_stage_prog_data *prog_data_in,
uint32_t prog_data_size,
const struct brw_compile_stats *stats, uint32_t num_stats,
const nir_xfb_info *xfb_info_in,
const struct anv_pipeline_bind_map *bind_map)
{
VK_MULTIALLOC(ma);
VK_MULTIALLOC_DECL(&ma, struct anv_shader_bin, shader, 1);
VK_MULTIALLOC_DECL_SIZE(&ma, void, obj_key_data, key_size);
VK_MULTIALLOC_DECL_SIZE(&ma, struct brw_stage_prog_data, prog_data,
prog_data_size);
VK_MULTIALLOC_DECL(&ma, struct brw_shader_reloc, prog_data_relocs,
prog_data_in->num_relocs);
VK_MULTIALLOC_DECL(&ma, uint32_t, prog_data_param, prog_data_in->nr_params);
VK_MULTIALLOC_DECL_SIZE(&ma, nir_xfb_info, xfb_info,
xfb_info_in == NULL ? 0 :
nir_xfb_info_size(xfb_info_in->output_count));
VK_MULTIALLOC_DECL(&ma, struct anv_pipeline_binding, surface_to_descriptor,
bind_map->surface_count);
VK_MULTIALLOC_DECL(&ma, struct anv_pipeline_binding, sampler_to_descriptor,
bind_map->sampler_count);
if (!vk_multialloc_alloc(&ma, &device->vk.alloc,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
return NULL;
memcpy(obj_key_data, key_data, key_size);
vk_pipeline_cache_object_init(&device->vk, &shader->base,
&anv_shader_bin_ops, obj_key_data, key_size);
shader->stage = stage;
shader->kernel =
anv_state_pool_alloc(&device->instruction_state_pool, kernel_size, 64);
memcpy(shader->kernel.map, kernel_data, kernel_size);
shader->kernel_size = kernel_size;
uint64_t shader_data_addr = INSTRUCTION_STATE_POOL_MIN_ADDRESS +
shader->kernel.offset +
prog_data_in->const_data_offset;
int rv_count = 0;
struct brw_shader_reloc_value reloc_values[5];
reloc_values[rv_count++] = (struct brw_shader_reloc_value) {
.id = BRW_SHADER_RELOC_CONST_DATA_ADDR_LOW,
.value = shader_data_addr,
};
reloc_values[rv_count++] = (struct brw_shader_reloc_value) {
.id = BRW_SHADER_RELOC_CONST_DATA_ADDR_HIGH,
.value = shader_data_addr >> 32,
};
reloc_values[rv_count++] = (struct brw_shader_reloc_value) {
.id = BRW_SHADER_RELOC_SHADER_START_OFFSET,
.value = shader->kernel.offset,
};
if (brw_shader_stage_is_bindless(stage)) {
const struct brw_bs_prog_data *bs_prog_data =
brw_bs_prog_data_const(prog_data_in);
uint64_t resume_sbt_addr = INSTRUCTION_STATE_POOL_MIN_ADDRESS +
shader->kernel.offset +
bs_prog_data->resume_sbt_offset;
reloc_values[rv_count++] = (struct brw_shader_reloc_value) {
.id = BRW_SHADER_RELOC_RESUME_SBT_ADDR_LOW,
.value = resume_sbt_addr,
};
reloc_values[rv_count++] = (struct brw_shader_reloc_value) {
.id = BRW_SHADER_RELOC_RESUME_SBT_ADDR_HIGH,
.value = resume_sbt_addr >> 32,
};
}
brw_write_shader_relocs(&device->physical->compiler->isa,
shader->kernel.map, prog_data_in,
reloc_values, rv_count);
memcpy(prog_data, prog_data_in, prog_data_size);
typed_memcpy(prog_data_relocs, prog_data_in->relocs,
prog_data_in->num_relocs);
prog_data->relocs = prog_data_relocs;
memset(prog_data_param, 0,
prog_data->nr_params * sizeof(*prog_data_param));
prog_data->param = prog_data_param;
shader->prog_data = prog_data;
shader->prog_data_size = prog_data_size;
assert(num_stats <= ARRAY_SIZE(shader->stats));
typed_memcpy(shader->stats, stats, num_stats);
shader->num_stats = num_stats;
if (xfb_info_in) {
*xfb_info = *xfb_info_in;
typed_memcpy(xfb_info->outputs, xfb_info_in->outputs,
xfb_info_in->output_count);
shader->xfb_info = xfb_info;
} else {
shader->xfb_info = NULL;
}
shader->bind_map = *bind_map;
typed_memcpy(surface_to_descriptor, bind_map->surface_to_descriptor,
bind_map->surface_count);
shader->bind_map.surface_to_descriptor = surface_to_descriptor;
typed_memcpy(sampler_to_descriptor, bind_map->sampler_to_descriptor,
bind_map->sampler_count);
shader->bind_map.sampler_to_descriptor = sampler_to_descriptor;
return shader;
}
static bool
anv_shader_bin_serialize(struct vk_pipeline_cache_object *object,
struct blob *blob)
{
struct anv_shader_bin *shader =
container_of(object, struct anv_shader_bin, base);
blob_write_uint32(blob, shader->stage);
blob_write_uint32(blob, shader->kernel_size);
blob_write_bytes(blob, shader->kernel.map, shader->kernel_size);
blob_write_uint32(blob, shader->prog_data_size);
blob_write_bytes(blob, shader->prog_data, shader->prog_data_size);
blob_write_bytes(blob, shader->prog_data->relocs,
shader->prog_data->num_relocs *
sizeof(shader->prog_data->relocs[0]));
blob_write_uint32(blob, shader->num_stats);
blob_write_bytes(blob, shader->stats,
shader->num_stats * sizeof(shader->stats[0]));
if (shader->xfb_info) {
uint32_t xfb_info_size =
nir_xfb_info_size(shader->xfb_info->output_count);
blob_write_uint32(blob, xfb_info_size);
blob_write_bytes(blob, shader->xfb_info, xfb_info_size);
} else {
blob_write_uint32(blob, 0);
}
blob_write_bytes(blob, shader->bind_map.surface_sha1,
sizeof(shader->bind_map.surface_sha1));
blob_write_bytes(blob, shader->bind_map.sampler_sha1,
sizeof(shader->bind_map.sampler_sha1));
blob_write_bytes(blob, shader->bind_map.push_sha1,
sizeof(shader->bind_map.push_sha1));
blob_write_uint32(blob, shader->bind_map.surface_count);
blob_write_uint32(blob, shader->bind_map.sampler_count);
blob_write_bytes(blob, shader->bind_map.surface_to_descriptor,
shader->bind_map.surface_count *
sizeof(*shader->bind_map.surface_to_descriptor));
blob_write_bytes(blob, shader->bind_map.sampler_to_descriptor,
shader->bind_map.sampler_count *
sizeof(*shader->bind_map.sampler_to_descriptor));
blob_write_bytes(blob, shader->bind_map.push_ranges,
sizeof(shader->bind_map.push_ranges));
return !blob->out_of_memory;
}
struct vk_pipeline_cache_object *
anv_shader_bin_deserialize(struct vk_device *vk_device,
const void *key_data, size_t key_size,
struct blob_reader *blob)
{
struct anv_device *device =
container_of(vk_device, struct anv_device, vk);
gl_shader_stage stage = blob_read_uint32(blob);
uint32_t kernel_size = blob_read_uint32(blob);
const void *kernel_data = blob_read_bytes(blob, kernel_size);
uint32_t prog_data_size = blob_read_uint32(blob);
const void *prog_data_bytes = blob_read_bytes(blob, prog_data_size);
if (blob->overrun)
return NULL;
union brw_any_prog_data prog_data;
memcpy(&prog_data, prog_data_bytes,
MIN2(sizeof(prog_data), prog_data_size));
prog_data.base.relocs =
blob_read_bytes(blob, prog_data.base.num_relocs *
sizeof(prog_data.base.relocs[0]));
uint32_t num_stats = blob_read_uint32(blob);
const struct brw_compile_stats *stats =
blob_read_bytes(blob, num_stats * sizeof(stats[0]));
const nir_xfb_info *xfb_info = NULL;
uint32_t xfb_size = blob_read_uint32(blob);
if (xfb_size)
xfb_info = blob_read_bytes(blob, xfb_size);
struct anv_pipeline_bind_map bind_map;
blob_copy_bytes(blob, bind_map.surface_sha1, sizeof(bind_map.surface_sha1));
blob_copy_bytes(blob, bind_map.sampler_sha1, sizeof(bind_map.sampler_sha1));
blob_copy_bytes(blob, bind_map.push_sha1, sizeof(bind_map.push_sha1));
bind_map.surface_count = blob_read_uint32(blob);
bind_map.sampler_count = blob_read_uint32(blob);
bind_map.surface_to_descriptor = (void *)
blob_read_bytes(blob, bind_map.surface_count *
sizeof(*bind_map.surface_to_descriptor));
bind_map.sampler_to_descriptor = (void *)
blob_read_bytes(blob, bind_map.sampler_count *
sizeof(*bind_map.sampler_to_descriptor));
blob_copy_bytes(blob, bind_map.push_ranges, sizeof(bind_map.push_ranges));
if (blob->overrun)
return NULL;
struct anv_shader_bin *shader =
anv_shader_bin_create(device, stage,
key_data, key_size,
kernel_data, kernel_size,
&prog_data.base, prog_data_size,
stats, num_stats, xfb_info, &bind_map);
if (shader == NULL)
return NULL;
return &shader->base;
}
struct anv_shader_bin *
anv_device_search_for_kernel(struct anv_device *device,
struct vk_pipeline_cache *cache,
const void *key_data, uint32_t key_size,
bool *user_cache_hit)
{
/* Use the default pipeline cache if none is specified */
if (cache == NULL)
cache = device->default_pipeline_cache;
bool cache_hit = false;
struct vk_pipeline_cache_object *object =
vk_pipeline_cache_lookup_object(cache, key_data, key_size,
&anv_shader_bin_ops, &cache_hit);
if (user_cache_hit != NULL) {
*user_cache_hit = object != NULL && cache_hit &&
cache != device->default_pipeline_cache;
}
if (object == NULL)
return NULL;
return container_of(object, struct anv_shader_bin, base);
}
struct anv_shader_bin *
anv_device_upload_kernel(struct anv_device *device,
struct vk_pipeline_cache *cache,
gl_shader_stage stage,
const void *key_data, uint32_t key_size,
const void *kernel_data, uint32_t kernel_size,
const struct brw_stage_prog_data *prog_data,
uint32_t prog_data_size,
const struct brw_compile_stats *stats,
uint32_t num_stats,
const nir_xfb_info *xfb_info,
const struct anv_pipeline_bind_map *bind_map)
{
/* Use the default pipeline cache if none is specified */
if (cache == NULL)
cache = device->default_pipeline_cache;
struct anv_shader_bin *shader =
anv_shader_bin_create(device, stage,
key_data, key_size,
kernel_data, kernel_size,
prog_data, prog_data_size,
stats, num_stats,
xfb_info, bind_map);
if (shader == NULL)
return NULL;
struct vk_pipeline_cache_object *cached =
vk_pipeline_cache_add_object(cache, &shader->base);
return container_of(cached, struct anv_shader_bin, base);
}
#define SHA1_KEY_SIZE 20
struct nir_shader *
anv_device_search_for_nir(struct anv_device *device,
struct vk_pipeline_cache *cache,
const nir_shader_compiler_options *nir_options,
unsigned char sha1_key[SHA1_KEY_SIZE],
void *mem_ctx)
{
if (cache == NULL)
cache = device->default_pipeline_cache;
return vk_pipeline_cache_lookup_nir(cache, sha1_key, SHA1_KEY_SIZE,
nir_options, NULL, mem_ctx);
}
void
anv_device_upload_nir(struct anv_device *device,
struct vk_pipeline_cache *cache,
const struct nir_shader *nir,
unsigned char sha1_key[SHA1_KEY_SIZE])
{
if (cache == NULL)
cache = device->default_pipeline_cache;
vk_pipeline_cache_add_nir(cache, sha1_key, SHA1_KEY_SIZE, nir);
}
|