1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
/*
* Copyright (C) 2020 Collabora Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "compiler.h"
#include "bi_builder.h"
/* Not all 8-bit and 16-bit instructions support all swizzles on all sources.
* These passes, intended to run after NIR->BIR but before scheduling/RA, lower
* away swizzles that cannot be represented. In the future, we should try to
* recombine swizzles where we can as an optimization.
*/
static bool
bi_swizzle_replicates_8(enum bi_swizzle swz)
{
switch (swz) {
case BI_SWIZZLE_B0000:
case BI_SWIZZLE_B1111:
case BI_SWIZZLE_B2222:
case BI_SWIZZLE_B3333:
return true;
default:
return false;
}
}
static void
lower_swizzle(bi_context *ctx, bi_instr *ins, unsigned src)
{
/* TODO: Use the opcode table and be a lot more methodical about this... */
switch (ins->op) {
/* Some instructions used with 16-bit data never have swizzles */
case BI_OPCODE_CSEL_V2F16:
case BI_OPCODE_CSEL_V2I16:
case BI_OPCODE_CSEL_V2S16:
case BI_OPCODE_CSEL_V2U16:
/* Despite ostensibly being 32-bit instructions, CLPER does not
* inherently interpret the data, so it can be used for v2f16
* derivatives, which might require swizzle lowering */
case BI_OPCODE_CLPER_I32:
case BI_OPCODE_CLPER_OLD_I32:
/* Similarly, CSEL.i32 consumes a boolean as a 32-bit argument. If the
* boolean is implemented as a 16-bit integer, the swizzle is needed
* for correct operation if the instruction producing the 16-bit
* boolean does not replicate to both halves of the containing 32-bit
* register. As such, we may need to lower a swizzle.
*
* This is a silly hack. Ideally, code gen would be smart enough to
* avoid this case (by replicating). In practice, silly hardware design
* decisions force our hand here.
*/
case BI_OPCODE_MUX_I32:
case BI_OPCODE_CSEL_I32:
break;
case BI_OPCODE_IADD_V2S16:
case BI_OPCODE_IADD_V2U16:
case BI_OPCODE_ISUB_V2S16:
case BI_OPCODE_ISUB_V2U16:
if (src == 0 && ins->src[src].swizzle != BI_SWIZZLE_H10)
break;
else
return;
case BI_OPCODE_LSHIFT_AND_V2I16:
case BI_OPCODE_LSHIFT_OR_V2I16:
case BI_OPCODE_LSHIFT_XOR_V2I16:
case BI_OPCODE_RSHIFT_AND_V2I16:
case BI_OPCODE_RSHIFT_OR_V2I16:
case BI_OPCODE_RSHIFT_XOR_V2I16:
if (src == 2)
return;
else
break;
/* For some reason MUX.v2i16 allows swaps but not replication */
case BI_OPCODE_MUX_V2I16:
if (ins->src[src].swizzle == BI_SWIZZLE_H10)
return;
else
break;
/* No swizzles supported */
case BI_OPCODE_HADD_V4U8:
case BI_OPCODE_HADD_V4S8:
case BI_OPCODE_CLZ_V4U8:
case BI_OPCODE_IDP_V4I8:
case BI_OPCODE_IABS_V4S8:
case BI_OPCODE_ICMP_V4I8:
case BI_OPCODE_ICMP_V4U8:
case BI_OPCODE_MUX_V4I8:
case BI_OPCODE_IADD_IMM_V4I8:
break;
case BI_OPCODE_LSHIFT_AND_V4I8:
case BI_OPCODE_LSHIFT_OR_V4I8:
case BI_OPCODE_LSHIFT_XOR_V4I8:
case BI_OPCODE_RSHIFT_AND_V4I8:
case BI_OPCODE_RSHIFT_OR_V4I8:
case BI_OPCODE_RSHIFT_XOR_V4I8:
/* Last source allows identity or replication */
if (src == 2 && bi_swizzle_replicates_8(ins->src[src].swizzle))
return;
/* Others do not allow swizzles */
break;
/* We don't want to deal with reswizzling logic in modifier prop. Move
* the swizzle outside, it's easier for clamp propagation. */
case BI_OPCODE_FCLAMP_V2F16:
{
bi_builder b = bi_init_builder(ctx, bi_after_instr(ins));
bi_index dest = ins->dest[0];
bi_index tmp = bi_temp(ctx);
bi_index swizzled_src = bi_replace_index(ins->src[0], tmp);
ins->src[0].swizzle = BI_SWIZZLE_H01;
ins->dest[0] = tmp;
bi_swz_v2i16_to(&b, dest, swizzled_src);
return;
}
default:
return;
}
/* First, try to apply a given swizzle to a constant to clear the
* runtime swizzle. This is less heavy-handed than ignoring the
* swizzle for scalar destinations, since it maintains
* replication of the destination.
*/
if (ins->src[src].type == BI_INDEX_CONSTANT) {
ins->src[src].value = bi_apply_swizzle(ins->src[src].value,
ins->src[src].swizzle);
ins->src[src].swizzle = BI_SWIZZLE_H01;
return;
}
/* Even if the source does not replicate, if the consuming instruction
* produces a 16-bit scalar, we can ignore the other component.
*/
if (ins->dest[0].swizzle == BI_SWIZZLE_H00 &&
ins->src[src].swizzle == BI_SWIZZLE_H00)
{
ins->src[src].swizzle = BI_SWIZZLE_H01;
return;
}
/* Lower it away */
bi_builder b = bi_init_builder(ctx, bi_before_instr(ins));
bool is_8 = (bi_opcode_props[ins->op].size == BI_SIZE_8);
bi_index orig = ins->src[src];
bi_index stripped = bi_replace_index(bi_null(), orig);
stripped.swizzle = ins->src[src].swizzle;
bi_index swz = is_8 ? bi_swz_v4i8(&b, stripped) : bi_swz_v2i16(&b, stripped);
bi_replace_src(ins, src, swz);
ins->src[src].swizzle = BI_SWIZZLE_H01;
}
static bool
bi_swizzle_replicates_16(enum bi_swizzle swz)
{
switch (swz) {
case BI_SWIZZLE_H00:
case BI_SWIZZLE_H11:
return true;
default:
/* If a swizzle replicates every 8-bits, it also replicates
* every 16-bits, so allow 8-bit replicating swizzles.
*/
return bi_swizzle_replicates_8(swz);
}
}
static bool
bi_instr_replicates(bi_instr *I, BITSET_WORD *replicates_16)
{
switch (I->op) {
/* Instructions that construct vectors have replicated output if their
* sources are identical. Check this case first.
*/
case BI_OPCODE_MKVEC_V2I16:
case BI_OPCODE_V2F16_TO_V2S16:
case BI_OPCODE_V2F16_TO_V2U16:
case BI_OPCODE_V2F32_TO_V2F16:
case BI_OPCODE_V2S16_TO_V2F16:
case BI_OPCODE_V2S8_TO_V2F16:
case BI_OPCODE_V2S8_TO_V2S16:
case BI_OPCODE_V2U16_TO_V2F16:
case BI_OPCODE_V2U8_TO_V2F16:
case BI_OPCODE_V2U8_TO_V2U16:
return bi_is_value_equiv(I->src[0], I->src[1]);
/* 16-bit transcendentals are defined to output zero in their
* upper half, so they do not replicate
*/
case BI_OPCODE_FRCP_F16:
case BI_OPCODE_FRSQ_F16:
return false;
/* Not sure, be conservative, we don't use these.. */
case BI_OPCODE_VN_ASST1_F16:
case BI_OPCODE_FPCLASS_F16:
case BI_OPCODE_FPOW_SC_DET_F16:
return false;
default:
break;
}
/* Replication analysis only makes sense for ALU instructions */
if (bi_opcode_props[I->op].message != BIFROST_MESSAGE_NONE)
return false;
/* We only analyze 16-bit instructions for 16-bit replication. We could
* maybe do better.
*/
if (bi_opcode_props[I->op].size != BI_SIZE_16)
return false;
bi_foreach_src(I, s) {
if (bi_is_null(I->src[s]))
continue;
/* Replicated swizzles */
if (bi_swizzle_replicates_16(I->src[s].swizzle))
continue;
/* Replicated values */
if (bi_is_ssa(I->src[s]) &&
BITSET_TEST(replicates_16, I->src[s].value))
continue;
/* Replicated constants */
if (I->src[s].type == BI_INDEX_CONSTANT &&
(I->src[s].value & 0xFFFF) == (I->src[s].value >> 16))
continue;
return false;
}
return true;
}
void
bi_lower_swizzle(bi_context *ctx)
{
bi_foreach_instr_global_safe(ctx, ins) {
bi_foreach_src(ins, s) {
if (bi_is_null(ins->src[s])) continue;
if (ins->src[s].swizzle == BI_SWIZZLE_H01) continue;
lower_swizzle(ctx, ins, s);
}
}
/* Now that we've lowered swizzles, clean up the mess */
BITSET_WORD *replicates_16 = calloc(sizeof(bi_index), ctx->ssa_alloc);
bi_foreach_instr_global(ctx, ins) {
if (ins->nr_dests && bi_instr_replicates(ins, replicates_16))
BITSET_SET(replicates_16, ins->dest[0].value);
if (ins->op == BI_OPCODE_SWZ_V2I16 && bi_is_ssa(ins->src[0]) &&
BITSET_TEST(replicates_16, ins->src[0].value)) {
ins->op = BI_OPCODE_MOV_I32;
ins->src[0].swizzle = BI_SWIZZLE_H01;
}
/* The above passes rely on replicating destinations. For
* Valhall, we will want to optimize this. For now, default
* to Bifrost compatible behaviour.
*/
if (ins->nr_dests)
ins->dest[0].swizzle = BI_SWIZZLE_H01;
}
free(replicates_16);
}
|