summaryrefslogtreecommitdiff
path: root/lib/mesa/src/util/rb_tree.c
blob: a86fa31a80978542064ff6d8db86ce7a369e0f68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/*
 * Copyright © 2017 Jason Ekstrand
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "rb_tree.h"

/** \file rb_tree.c
 *
 * An implementation of a red-black tree
 *
 * This file implements the guts of a red-black tree.  The implementation
 * is mostly based on the one in "Introduction to Algorithms", third
 * edition, by Cormen, Leiserson, Rivest, and Stein.  The primary
 * divergence in our algorithms from those presented in CLRS is that we use
 * NULL for the leaves instead of a sentinel.  This means we have to do a
 * tiny bit more tracking in our implementation of delete but it makes the
 * algorithms far more explicit than stashing stuff in the sentinel.
 */

#include <stdlib.h>
#include <string.h>
#include <assert.h>

static bool
rb_node_is_black(struct rb_node *n)
{
    /* NULL nodes are leaves and therefore black */
    return (n == NULL) || (n->parent & 1);
}

static bool
rb_node_is_red(struct rb_node *n)
{
    return !rb_node_is_black(n);
}

static void
rb_node_set_black(struct rb_node *n)
{
    n->parent |= 1;
}

static void
rb_node_set_red(struct rb_node *n)
{
    n->parent &= ~1ull;
}

static void
rb_node_copy_color(struct rb_node *dst, struct rb_node *src)
{
    dst->parent = (dst->parent & ~1ull) | (src->parent & 1);
}

static void
rb_node_set_parent(struct rb_node *n, struct rb_node *p)
{
    n->parent = (n->parent & 1) | (uintptr_t)p;
}

static struct rb_node *
rb_node_minimum(struct rb_node *node)
{
    while (node->left)
        node = node->left;
    return node;
}

static struct rb_node *
rb_node_maximum(struct rb_node *node)
{
    while (node->right)
        node = node->right;
    return node;
}

void
rb_tree_init(struct rb_tree *T)
{
    T->root = NULL;
}

/**
 * Replace the subtree of T rooted at u with the subtree rooted at v
 *
 * This is called RB-transplant in CLRS.
 *
 * The node to be replaced is assumed to be a non-leaf.
 */
static void
rb_tree_splice(struct rb_tree *T, struct rb_node *u, struct rb_node *v)
{
    assert(u);
    struct rb_node *p = rb_node_parent(u);
    if (p == NULL) {
        assert(T->root == u);
        T->root = v;
    } else if (u == p->left) {
        p->left = v;
    } else {
        assert(u == p->right);
        p->right = v;
    }
    if (v)
        rb_node_set_parent(v, p);
}

static void
rb_tree_rotate_left(struct rb_tree *T, struct rb_node *x)
{
    assert(x && x->right);

    struct rb_node *y = x->right;
    x->right = y->left;
    if (y->left)
        rb_node_set_parent(y->left, x);
    rb_tree_splice(T, x, y);
    y->left = x;
    rb_node_set_parent(x, y);
}

static void
rb_tree_rotate_right(struct rb_tree *T, struct rb_node *y)
{
    assert(y && y->left);

    struct rb_node *x = y->left;
    y->left = x->right;
    if (x->right)
        rb_node_set_parent(x->right, y);
    rb_tree_splice(T, y, x);
    x->right = y;
    rb_node_set_parent(y, x);
}

void
rb_tree_insert_at(struct rb_tree *T, struct rb_node *parent,
                  struct rb_node *node, bool insert_left)
{
    /* This sets null children, parent, and a color of red */
    memset(node, 0, sizeof(*node));

    if (parent == NULL) {
        assert(T->root == NULL);
        T->root = node;
        rb_node_set_black(node);
        return;
    }

    if (insert_left) {
        assert(parent->left == NULL);
        parent->left = node;
    } else {
        assert(parent->right == NULL);
        parent->right = node;
    }
    rb_node_set_parent(node, parent);

    /* Now we do the insertion fixup */
    struct rb_node *z = node;
    while (rb_node_is_red(rb_node_parent(z))) {
        struct rb_node *z_p = rb_node_parent(z);
        assert(z == z_p->left || z == z_p->right);
        struct rb_node *z_p_p = rb_node_parent(z_p);
        assert(z_p_p != NULL);
        if (z_p == z_p_p->left) {
            struct rb_node *y = z_p_p->right;
            if (rb_node_is_red(y)) {
                rb_node_set_black(z_p);
                rb_node_set_black(y);
                rb_node_set_red(z_p_p);
                z = z_p_p;
            } else {
                if (z == z_p->right) {
                    z = z_p;
                    rb_tree_rotate_left(T, z);
                    /* We changed z */
                    z_p = rb_node_parent(z);
                    assert(z == z_p->left || z == z_p->right);
                    z_p_p = rb_node_parent(z_p);
                }
                rb_node_set_black(z_p);
                rb_node_set_red(z_p_p);
                rb_tree_rotate_right(T, z_p_p);
            }
        } else {
            struct rb_node *y = z_p_p->left;
            if (rb_node_is_red(y)) {
                rb_node_set_black(z_p);
                rb_node_set_black(y);
                rb_node_set_red(z_p_p);
                z = z_p_p;
            } else {
                if (z == z_p->left) {
                    z = z_p;
                    rb_tree_rotate_right(T, z);
                    /* We changed z */
                    z_p = rb_node_parent(z);
                    assert(z == z_p->left || z == z_p->right);
                    z_p_p = rb_node_parent(z_p);
                }
                rb_node_set_black(z_p);
                rb_node_set_red(z_p_p);
                rb_tree_rotate_left(T, z_p_p);
            }
        }
    }
    rb_node_set_black(T->root);
}

void
rb_tree_remove(struct rb_tree *T, struct rb_node *z)
{
    /* x_p is always the parent node of X.  We have to track this
     * separately because x may be NULL.
     */
    struct rb_node *x, *x_p;
    struct rb_node *y = z;
    bool y_was_black = rb_node_is_black(y);
    if (z->left == NULL) {
        x = z->right;
        x_p = rb_node_parent(z);
        rb_tree_splice(T, z, x);
    } else if (z->right == NULL) {
        x = z->left;
        x_p = rb_node_parent(z);
        rb_tree_splice(T, z, x);
    } else {
        /* Find the minimum sub-node of z->right */
        y = rb_node_minimum(z->right);
        y_was_black = rb_node_is_black(y);

        x = y->right;
        if (rb_node_parent(y) == z) {
            x_p = y;
        } else {
            x_p = rb_node_parent(y);
            rb_tree_splice(T, y, x);
            y->right = z->right;
            rb_node_set_parent(y->right, y);
        }
        assert(y->left == NULL);
        rb_tree_splice(T, z, y);
        y->left = z->left;
        rb_node_set_parent(y->left, y);
        rb_node_copy_color(y, z);
    }

    assert(x_p == NULL || x == x_p->left || x == x_p->right);

    if (!y_was_black)
        return;

    /* Fixup RB tree after the delete */
    while (x != T->root && rb_node_is_black(x)) {
        if (x == x_p->left) {
            struct rb_node *w = x_p->right;
            if (rb_node_is_red(w)) {
                rb_node_set_black(w);
                rb_node_set_red(x_p);
                rb_tree_rotate_left(T, x_p);
                assert(x == x_p->left);
                w = x_p->right;
            }
            if (rb_node_is_black(w->left) && rb_node_is_black(w->right)) {
                rb_node_set_red(w);
                x = x_p;
            } else {
                if (rb_node_is_black(w->right)) {
                    rb_node_set_black(w->left);
                    rb_node_set_red(w);
                    rb_tree_rotate_right(T, w);
                    w = x_p->right;
                }
                rb_node_copy_color(w, x_p);
                rb_node_set_black(x_p);
                rb_node_set_black(w->right);
                rb_tree_rotate_left(T, x_p);
                x = T->root;
            }
        } else {
            struct rb_node *w = x_p->left;
            if (rb_node_is_red(w)) {
                rb_node_set_black(w);
                rb_node_set_red(x_p);
                rb_tree_rotate_right(T, x_p);
                assert(x == x_p->right);
                w = x_p->left;
            }
            if (rb_node_is_black(w->right) && rb_node_is_black(w->left)) {
                rb_node_set_red(w);
                x = x_p;
            } else {
                if (rb_node_is_black(w->left)) {
                    rb_node_set_black(w->right);
                    rb_node_set_red(w);
                    rb_tree_rotate_left(T, w);
                    w = x_p->left;
                }
                rb_node_copy_color(w, x_p);
                rb_node_set_black(x_p);
                rb_node_set_black(w->left);
                rb_tree_rotate_right(T, x_p);
                x = T->root;
            }
        }
        x_p = rb_node_parent(x);
    }
    if (x)
        rb_node_set_black(x);
}

struct rb_node *
rb_tree_first(struct rb_tree *T)
{
    return T->root ? rb_node_minimum(T->root) : NULL;
}

struct rb_node *
rb_tree_last(struct rb_tree *T)
{
    return T->root ? rb_node_maximum(T->root) : NULL;
}

struct rb_node *
rb_node_next(struct rb_node *node)
{
    if (node->right) {
        /* If we have a right child, then the next thing (compared to this
         * node) is the left-most child of our right child.
         */
        return rb_node_minimum(node->right);
    } else {
        /* If node doesn't have a right child, crawl back up the to the
         * left until we hit a parent to the right.
         */
        struct rb_node *p = rb_node_parent(node);
        while (p && node == p->right) {
            node = p;
            p = rb_node_parent(node);
        }
        assert(p == NULL || node == p->left);
        return p;
    }
}

struct rb_node *
rb_node_prev(struct rb_node *node)
{
    if (node->left) {
        /* If we have a left child, then the previous thing (compared to
         * this node) is the right-most child of our left child.
         */
        return rb_node_maximum(node->left);
    } else {
        /* If node doesn't have a left child, crawl back up the to the
         * right until we hit a parent to the left.
         */
        struct rb_node *p = rb_node_parent(node);
        while (p && node == p->left) {
            node = p;
            p = rb_node_parent(node);
        }
        assert(p == NULL || node == p->right);
        return p;
    }
}

static void
validate_rb_node(struct rb_node *n, int black_depth)
{
    if (n == NULL) {
        assert(black_depth == 0);
        return;
    }

    if (rb_node_is_black(n)) {
        black_depth--;
    } else {
        assert(rb_node_is_black(n->left));
        assert(rb_node_is_black(n->right));
    }

    validate_rb_node(n->left, black_depth);
    validate_rb_node(n->right, black_depth);
}

void
rb_tree_validate(struct rb_tree *T)
{
    if (T->root == NULL)
        return;

    assert(rb_node_is_black(T->root));

    unsigned black_depth = 0;
    for (struct rb_node *n = T->root; n; n = n->left) {
        if (rb_node_is_black(n))
            black_depth++;
    }

    validate_rb_node(T->root, black_depth);
}