summaryrefslogtreecommitdiff
path: root/lib/mesa/src/util/u_queue.c
blob: f0eb7895594e57d8b2fa560f273a22560c873ef2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
/*
 * Copyright © 2016 Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
 * AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 */

#include "u_queue.h"

#include "c11/threads.h"
#include "util/u_cpu_detect.h"
#include "util/os_time.h"
#include "util/u_string.h"
#include "util/u_thread.h"
#include "u_process.h"

#if defined(__linux__)
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/syscall.h>
#endif


/* Define 256MB */
#define S_256MB (256 * 1024 * 1024)

static void
util_queue_kill_threads(struct util_queue *queue, unsigned keep_num_threads,
                        bool finish_locked);

/****************************************************************************
 * Wait for all queues to assert idle when exit() is called.
 *
 * Otherwise, C++ static variable destructors can be called while threads
 * are using the static variables.
 */

static once_flag atexit_once_flag = ONCE_FLAG_INIT;
static struct list_head queue_list;
static mtx_t exit_mutex = _MTX_INITIALIZER_NP;

static void
atexit_handler(void)
{
   struct util_queue *iter;

   mtx_lock(&exit_mutex);
   /* Wait for all queues to assert idle. */
   LIST_FOR_EACH_ENTRY(iter, &queue_list, head) {
      util_queue_kill_threads(iter, 0, false);
   }
   mtx_unlock(&exit_mutex);
}

static void
global_init(void)
{
   list_inithead(&queue_list);
   atexit(atexit_handler);
}

static void
add_to_atexit_list(struct util_queue *queue)
{
   call_once(&atexit_once_flag, global_init);

   mtx_lock(&exit_mutex);
   list_add(&queue->head, &queue_list);
   mtx_unlock(&exit_mutex);
}

static void
remove_from_atexit_list(struct util_queue *queue)
{
   struct util_queue *iter, *tmp;

   mtx_lock(&exit_mutex);
   LIST_FOR_EACH_ENTRY_SAFE(iter, tmp, &queue_list, head) {
      if (iter == queue) {
         list_del(&iter->head);
         break;
      }
   }
   mtx_unlock(&exit_mutex);
}

/****************************************************************************
 * util_queue_fence
 */

#ifdef UTIL_QUEUE_FENCE_FUTEX
static bool
do_futex_fence_wait(struct util_queue_fence *fence,
                    bool timeout, int64_t abs_timeout)
{
   uint32_t v = p_atomic_read_relaxed(&fence->val);
   struct timespec ts;
   ts.tv_sec = abs_timeout / (1000*1000*1000);
   ts.tv_nsec = abs_timeout % (1000*1000*1000);

   while (v != 0) {
      if (v != 2) {
         v = p_atomic_cmpxchg(&fence->val, 1, 2);
         if (v == 0)
            return true;
      }

      int r = futex_wait(&fence->val, 2, timeout ? &ts : NULL);
      if (timeout && r < 0) {
         if (errno == ETIMEDOUT)
            return false;
      }

      v = p_atomic_read_relaxed(&fence->val);
   }

   return true;
}

void
_util_queue_fence_wait(struct util_queue_fence *fence)
{
   do_futex_fence_wait(fence, false, 0);
}

bool
_util_queue_fence_wait_timeout(struct util_queue_fence *fence,
                               int64_t abs_timeout)
{
   return do_futex_fence_wait(fence, true, abs_timeout);
}

#endif

#ifdef UTIL_QUEUE_FENCE_STANDARD
void
util_queue_fence_signal(struct util_queue_fence *fence)
{
   mtx_lock(&fence->mutex);
   fence->signalled = true;
   cnd_broadcast(&fence->cond);
   mtx_unlock(&fence->mutex);
}

void
_util_queue_fence_wait(struct util_queue_fence *fence)
{
   mtx_lock(&fence->mutex);
   while (!fence->signalled)
      cnd_wait(&fence->cond, &fence->mutex);
   mtx_unlock(&fence->mutex);
}

bool
_util_queue_fence_wait_timeout(struct util_queue_fence *fence,
                               int64_t abs_timeout)
{
   /* This terrible hack is made necessary by the fact that we really want an
    * internal interface consistent with os_time_*, but cnd_timedwait is spec'd
    * to be relative to the TIME_UTC clock.
    */
   int64_t rel = abs_timeout - os_time_get_nano();

   if (rel > 0) {
      struct timespec ts;

#if defined(HAVE_TIMESPEC_GET) || defined(_WIN32)
      timespec_get(&ts, TIME_UTC);
#else
      clock_gettime(CLOCK_REALTIME, &ts);
#endif

      ts.tv_sec += abs_timeout / (1000*1000*1000);
      ts.tv_nsec += abs_timeout % (1000*1000*1000);
      if (ts.tv_nsec >= (1000*1000*1000)) {
         ts.tv_sec++;
         ts.tv_nsec -= (1000*1000*1000);
      }

      mtx_lock(&fence->mutex);
      while (!fence->signalled) {
         if (cnd_timedwait(&fence->cond, &fence->mutex, &ts) != thrd_success)
            break;
      }
      mtx_unlock(&fence->mutex);
   }

   return fence->signalled;
}

void
util_queue_fence_init(struct util_queue_fence *fence)
{
   memset(fence, 0, sizeof(*fence));
   (void) mtx_init(&fence->mutex, mtx_plain);
   cnd_init(&fence->cond);
   fence->signalled = true;
}

void
util_queue_fence_destroy(struct util_queue_fence *fence)
{
   assert(fence->signalled);

   /* Ensure that another thread is not in the middle of
    * util_queue_fence_signal (having set the fence to signalled but still
    * holding the fence mutex).
    *
    * A common contract between threads is that as soon as a fence is signalled
    * by thread A, thread B is allowed to destroy it. Since
    * util_queue_fence_is_signalled does not lock the fence mutex (for
    * performance reasons), we must do so here.
    */
   mtx_lock(&fence->mutex);
   mtx_unlock(&fence->mutex);

   cnd_destroy(&fence->cond);
   mtx_destroy(&fence->mutex);
}
#endif

/****************************************************************************
 * util_queue implementation
 */

struct thread_input {
   struct util_queue *queue;
   int thread_index;
};

static int
util_queue_thread_func(void *input)
{
   struct util_queue *queue = ((struct thread_input*)input)->queue;
   int thread_index = ((struct thread_input*)input)->thread_index;

   free(input);

   if (queue->flags & UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY) {
      /* Don't inherit the thread affinity from the parent thread.
       * Set the full mask.
       */
      uint32_t mask[UTIL_MAX_CPUS / 32];

      memset(mask, 0xff, sizeof(mask));

      /* Ensure util_cpu_caps.num_cpu_mask_bits is initialized: */
      util_cpu_detect();

      util_set_current_thread_affinity(mask, NULL,
                                       util_get_cpu_caps()->num_cpu_mask_bits);
   }

#if defined(__linux__)
   if (queue->flags & UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY) {
      /* The nice() function can only set a maximum of 19. */
      setpriority(PRIO_PROCESS, syscall(SYS_gettid), 19);
   }
#endif

   if (strlen(queue->name) > 0) {
      char name[16];
      snprintf(name, sizeof(name), "%s%i", queue->name, thread_index);
      u_thread_setname(name);
   }

   while (1) {
      struct util_queue_job job;

      mtx_lock(&queue->lock);
      assert(queue->num_queued >= 0 && queue->num_queued <= queue->max_jobs);

      /* wait if the queue is empty */
      while (thread_index < queue->num_threads && queue->num_queued == 0)
         cnd_wait(&queue->has_queued_cond, &queue->lock);

      /* only kill threads that are above "num_threads" */
      if (thread_index >= queue->num_threads) {
         mtx_unlock(&queue->lock);
         break;
      }

      job = queue->jobs[queue->read_idx];
      memset(&queue->jobs[queue->read_idx], 0, sizeof(struct util_queue_job));
      queue->read_idx = (queue->read_idx + 1) % queue->max_jobs;

      queue->num_queued--;
      cnd_signal(&queue->has_space_cond);
      if (job.job)
         queue->total_jobs_size -= job.job_size;
      mtx_unlock(&queue->lock);

      if (job.job) {
         job.execute(job.job, job.global_data, thread_index);
         if (job.fence)
            util_queue_fence_signal(job.fence);
         if (job.cleanup)
            job.cleanup(job.job, job.global_data, thread_index);
      }
   }

   /* signal remaining jobs if all threads are being terminated */
   mtx_lock(&queue->lock);
   if (queue->num_threads == 0) {
      for (unsigned i = queue->read_idx; i != queue->write_idx;
           i = (i + 1) % queue->max_jobs) {
         if (queue->jobs[i].job) {
            if (queue->jobs[i].fence)
               util_queue_fence_signal(queue->jobs[i].fence);
            queue->jobs[i].job = NULL;
         }
      }
      queue->read_idx = queue->write_idx;
      queue->num_queued = 0;
   }
   mtx_unlock(&queue->lock);
   return 0;
}

static bool
util_queue_create_thread(struct util_queue *queue, unsigned index)
{
   struct thread_input *input =
      (struct thread_input *) malloc(sizeof(struct thread_input));
   input->queue = queue;
   input->thread_index = index;

   queue->threads[index] = u_thread_create(util_queue_thread_func, input);

   if (!queue->threads[index]) {
      free(input);
      return false;
   }

   if (queue->flags & UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY) {
#if defined(__linux__) && defined(SCHED_BATCH)
      struct sched_param sched_param = {0};

      /* The nice() function can only set a maximum of 19.
       * SCHED_BATCH gives the scheduler a hint that this is a latency
       * insensitive thread.
       *
       * Note that Linux only allows decreasing the priority. The original
       * priority can't be restored.
       */
      pthread_setschedparam(queue->threads[index], SCHED_BATCH, &sched_param);
#endif
   }
   return true;
}

void
util_queue_adjust_num_threads(struct util_queue *queue, unsigned num_threads)
{
   num_threads = MIN2(num_threads, queue->max_threads);
   num_threads = MAX2(num_threads, 1);

   simple_mtx_lock(&queue->finish_lock);
   unsigned old_num_threads = queue->num_threads;

   if (num_threads == old_num_threads) {
      simple_mtx_unlock(&queue->finish_lock);
      return;
   }

   if (num_threads < old_num_threads) {
      util_queue_kill_threads(queue, num_threads, true);
      simple_mtx_unlock(&queue->finish_lock);
      return;
   }

   /* Create threads.
    *
    * We need to update num_threads first, because threads terminate
    * when thread_index < num_threads.
    */
   queue->num_threads = num_threads;
   for (unsigned i = old_num_threads; i < num_threads; i++) {
      if (!util_queue_create_thread(queue, i))
         break;
   }
   simple_mtx_unlock(&queue->finish_lock);
}

bool
util_queue_init(struct util_queue *queue,
                const char *name,
                unsigned max_jobs,
                unsigned num_threads,
                unsigned flags,
                void *global_data)
{
   unsigned i;

   /* Form the thread name from process_name and name, limited to 13
    * characters. Characters 14-15 are reserved for the thread number.
    * Character 16 should be 0. Final form: "process:name12"
    *
    * If name is too long, it's truncated. If any space is left, the process
    * name fills it.
    */
   const char *process_name = util_get_process_name();
   int process_len = process_name ? strlen(process_name) : 0;
   int name_len = strlen(name);
   const int max_chars = sizeof(queue->name) - 1;

   name_len = MIN2(name_len, max_chars);

   /* See if there is any space left for the process name, reserve 1 for
    * the colon. */
   process_len = MIN2(process_len, max_chars - name_len - 1);
   process_len = MAX2(process_len, 0);

   memset(queue, 0, sizeof(*queue));

   if (process_len) {
      snprintf(queue->name, sizeof(queue->name), "%.*s:%s",
               process_len, process_name, name);
   } else {
      snprintf(queue->name, sizeof(queue->name), "%s", name);
   }

   queue->flags = flags;
   queue->max_threads = num_threads;
   queue->num_threads = (flags & UTIL_QUEUE_INIT_SCALE_THREADS) ? 1 : num_threads;
   queue->max_jobs = max_jobs;
   queue->global_data = global_data;

   (void) mtx_init(&queue->lock, mtx_plain);
   (void) simple_mtx_init(&queue->finish_lock, mtx_plain);

   queue->num_queued = 0;
   cnd_init(&queue->has_queued_cond);
   cnd_init(&queue->has_space_cond);

   queue->jobs = (struct util_queue_job*)
                 calloc(max_jobs, sizeof(struct util_queue_job));
   if (!queue->jobs)
      goto fail;

   queue->threads = (thrd_t*) calloc(queue->max_threads, sizeof(thrd_t));
   if (!queue->threads)
      goto fail;

   /* start threads */
   for (i = 0; i < queue->num_threads; i++) {
      if (!util_queue_create_thread(queue, i)) {
         if (i == 0) {
            /* no threads created, fail */
            goto fail;
         } else {
            /* at least one thread created, so use it */
            queue->num_threads = i;
            break;
         }
      }
   }

   add_to_atexit_list(queue);
   return true;

fail:
   free(queue->threads);

   if (queue->jobs) {
      cnd_destroy(&queue->has_space_cond);
      cnd_destroy(&queue->has_queued_cond);
      mtx_destroy(&queue->lock);
      free(queue->jobs);
   }
   /* also util_queue_is_initialized can be used to check for success */
   memset(queue, 0, sizeof(*queue));
   return false;
}

static void
util_queue_kill_threads(struct util_queue *queue, unsigned keep_num_threads,
                        bool finish_locked)
{
   unsigned i;

   /* Signal all threads to terminate. */
   if (!finish_locked)
      simple_mtx_lock(&queue->finish_lock);

   if (keep_num_threads >= queue->num_threads) {
      simple_mtx_unlock(&queue->finish_lock);
      return;
   }

   mtx_lock(&queue->lock);
   unsigned old_num_threads = queue->num_threads;
   /* Setting num_threads is what causes the threads to terminate.
    * Then cnd_broadcast wakes them up and they will exit their function.
    */
   queue->num_threads = keep_num_threads;
   cnd_broadcast(&queue->has_queued_cond);
   mtx_unlock(&queue->lock);

   for (i = keep_num_threads; i < old_num_threads; i++)
      thrd_join(queue->threads[i], NULL);

   if (!finish_locked)
      simple_mtx_unlock(&queue->finish_lock);
}

static void
util_queue_finish_execute(void *data, void *gdata, int num_thread)
{
   util_barrier *barrier = data;
   util_barrier_wait(barrier);
}

void
util_queue_destroy(struct util_queue *queue)
{
   util_queue_kill_threads(queue, 0, false);

   /* This makes it safe to call on a queue that failedutil_queue_init. */
   if (queue->head.next != NULL)
      remove_from_atexit_list(queue);

   cnd_destroy(&queue->has_space_cond);
   cnd_destroy(&queue->has_queued_cond);
   simple_mtx_destroy(&queue->finish_lock);
   mtx_destroy(&queue->lock);
   free(queue->jobs);
   free(queue->threads);
}

void
util_queue_add_job(struct util_queue *queue,
                   void *job,
                   struct util_queue_fence *fence,
                   util_queue_execute_func execute,
                   util_queue_execute_func cleanup,
                   const size_t job_size)
{
   struct util_queue_job *ptr;

   mtx_lock(&queue->lock);
   if (queue->num_threads == 0) {
      mtx_unlock(&queue->lock);
      /* well no good option here, but any leaks will be
       * short-lived as things are shutting down..
       */
      return;
   }

   if (fence)
      util_queue_fence_reset(fence);

   assert(queue->num_queued >= 0 && queue->num_queued <= queue->max_jobs);


   if (queue->num_queued == queue->max_jobs) {
      if ((queue->flags & UTIL_QUEUE_INIT_SCALE_THREADS) &&
          execute != util_queue_finish_execute &&
          queue->num_threads < queue->max_threads) {
         util_queue_adjust_num_threads(queue, queue->num_threads + 1);
      }

      if (queue->flags & UTIL_QUEUE_INIT_RESIZE_IF_FULL &&
          queue->total_jobs_size + job_size < S_256MB) {
         /* If the queue is full, make it larger to avoid waiting for a free
          * slot.
          */
         unsigned new_max_jobs = queue->max_jobs + 8;
         struct util_queue_job *jobs =
            (struct util_queue_job*)calloc(new_max_jobs,
                                           sizeof(struct util_queue_job));
         assert(jobs);

         /* Copy all queued jobs into the new list. */
         unsigned num_jobs = 0;
         unsigned i = queue->read_idx;

         do {
            jobs[num_jobs++] = queue->jobs[i];
            i = (i + 1) % queue->max_jobs;
         } while (i != queue->write_idx);

         assert(num_jobs == queue->num_queued);

         free(queue->jobs);
         queue->jobs = jobs;
         queue->read_idx = 0;
         queue->write_idx = num_jobs;
         queue->max_jobs = new_max_jobs;
      } else {
         /* Wait until there is a free slot. */
         while (queue->num_queued == queue->max_jobs)
            cnd_wait(&queue->has_space_cond, &queue->lock);
      }
   }

   ptr = &queue->jobs[queue->write_idx];
   assert(ptr->job == NULL);
   ptr->job = job;
   ptr->global_data = queue->global_data;
   ptr->fence = fence;
   ptr->execute = execute;
   ptr->cleanup = cleanup;
   ptr->job_size = job_size;

   queue->write_idx = (queue->write_idx + 1) % queue->max_jobs;
   queue->total_jobs_size += ptr->job_size;

   queue->num_queued++;
   cnd_signal(&queue->has_queued_cond);
   mtx_unlock(&queue->lock);
}

/**
 * Remove a queued job. If the job hasn't started execution, it's removed from
 * the queue. If the job has started execution, the function waits for it to
 * complete.
 *
 * In all cases, the fence is signalled when the function returns.
 *
 * The function can be used when destroying an object associated with the job
 * when you don't care about the job completion state.
 */
void
util_queue_drop_job(struct util_queue *queue, struct util_queue_fence *fence)
{
   bool removed = false;

   if (util_queue_fence_is_signalled(fence))
      return;

   mtx_lock(&queue->lock);
   for (unsigned i = queue->read_idx; i != queue->write_idx;
        i = (i + 1) % queue->max_jobs) {
      if (queue->jobs[i].fence == fence) {
         if (queue->jobs[i].cleanup)
            queue->jobs[i].cleanup(queue->jobs[i].job, queue->global_data, -1);

         /* Just clear it. The threads will treat as a no-op job. */
         memset(&queue->jobs[i], 0, sizeof(queue->jobs[i]));
         removed = true;
         break;
      }
   }
   mtx_unlock(&queue->lock);

   if (removed)
      util_queue_fence_signal(fence);
   else
      util_queue_fence_wait(fence);
}

/**
 * Wait until all previously added jobs have completed.
 */
void
util_queue_finish(struct util_queue *queue)
{
   util_barrier barrier;
   struct util_queue_fence *fences;

   /* If 2 threads were adding jobs for 2 different barries at the same time,
    * a deadlock would happen, because 1 barrier requires that all threads
    * wait for it exclusively.
    */
   simple_mtx_lock(&queue->finish_lock);

   /* The number of threads can be changed to 0, e.g. by the atexit handler. */
   if (!queue->num_threads) {
      simple_mtx_unlock(&queue->finish_lock);
      return;
   }

   fences = malloc(queue->num_threads * sizeof(*fences));
   util_barrier_init(&barrier, queue->num_threads);

   for (unsigned i = 0; i < queue->num_threads; ++i) {
      util_queue_fence_init(&fences[i]);
      util_queue_add_job(queue, &barrier, &fences[i],
                         util_queue_finish_execute, NULL, 0);
   }

   for (unsigned i = 0; i < queue->num_threads; ++i) {
      util_queue_fence_wait(&fences[i]);
      util_queue_fence_destroy(&fences[i]);
   }
   simple_mtx_unlock(&queue->finish_lock);

   util_barrier_destroy(&barrier);

   free(fences);
}

int64_t
util_queue_get_thread_time_nano(struct util_queue *queue, unsigned thread_index)
{
   /* Allow some flexibility by not raising an error. */
   if (thread_index >= queue->num_threads)
      return 0;

   return util_thread_get_time_nano(queue->threads[thread_index]);
}