1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
|
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
void
genX(cmd_buffer_enable_pma_fix)(struct anv_cmd_buffer *cmd_buffer, bool enable)
{
if (cmd_buffer->state.pma_fix_enabled == enable)
return;
cmd_buffer->state.pma_fix_enabled = enable;
/* According to the Broadwell PIPE_CONTROL documentation, software should
* emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
* prior to the LRI. If stencil buffer writes are enabled, then a Render
* Cache Flush is also necessary.
*
* The Skylake docs say to use a depth stall rather than a command
* streamer stall. However, the hardware seems to violently disagree.
* A full command streamer stall seems to be needed in both cases.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DepthCacheFlushEnable = true;
pc.CommandStreamerStallEnable = true;
pc.RenderTargetCacheFlushEnable = true;
#if GFX_VER >= 12
pc.TileCacheFlushEnable = true;
#endif
#if INTEL_NEEDS_WA_1409600907
/* Wa_1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
* be set with any PIPE_CONTROL with Depth Flush Enable bit set.
*/
pc.DepthStallEnable = true;
#endif
}
#if GFX_VER == 9
uint32_t cache_mode;
anv_pack_struct(&cache_mode, GENX(CACHE_MODE_0),
.STCPMAOptimizationEnable = enable,
.STCPMAOptimizationEnableMask = true);
anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = GENX(CACHE_MODE_0_num);
lri.DataDWord = cache_mode;
}
#endif /* GFX_VER == 9 */
/* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
* Flush bits is often necessary. We do it regardless because it's easier.
* The render cache flush is also necessary if stencil writes are enabled.
*
* Again, the Skylake docs give a different set of flushes but the BDW
* flushes seem to work just as well.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DepthStallEnable = true;
pc.DepthCacheFlushEnable = true;
pc.RenderTargetCacheFlushEnable = true;
#if GFX_VER >= 12
pc.TileCacheFlushEnable = true;
#endif
}
}
UNUSED static bool
want_stencil_pma_fix(struct anv_cmd_buffer *cmd_buffer,
const struct vk_depth_stencil_state *ds)
{
if (GFX_VER > 9)
return false;
assert(GFX_VER == 9);
/* From the Skylake PRM Vol. 2c CACHE_MODE_1::STC PMA Optimization Enable:
*
* Clearing this bit will force the STC cache to wait for pending
* retirement of pixels at the HZ-read stage and do the STC-test for
* Non-promoted, R-computed and Computed depth modes instead of
* postponing the STC-test to RCPFE.
*
* STC_TEST_EN = 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE &&
* 3DSTATE_WM_DEPTH_STENCIL::StencilTestEnable
*
* STC_WRITE_EN = 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE &&
* (3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
* 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE)
*
* COMP_STC_EN = STC_TEST_EN &&
* 3DSTATE_PS_EXTRA::PixelShaderComputesStencil
*
* SW parses the pipeline states to generate the following logical
* signal indicating if PMA FIX can be enabled.
*
* STC_PMA_OPT =
* 3DSTATE_WM::ForceThreadDispatch != 1 &&
* !(3DSTATE_RASTER::ForceSampleCount != NUMRASTSAMPLES_0) &&
* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
* 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
* !(3DSTATE_WM::EDSC_Mode == 2) &&
* 3DSTATE_PS_EXTRA::PixelShaderValid &&
* !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
* 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
* 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
* 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
* (COMP_STC_EN || STC_WRITE_EN) &&
* ((3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
* 3DSTATE_WM::ForceKillPix == ON ||
* 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
* 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
* 3DSTATE_PS_BLEND::AlphaTestEnable ||
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable) ||
* (3DSTATE_PS_EXTRA::Pixel Shader Computed Depth mode != PSCDEPTH_OFF))
*/
/* These are always true:
* 3DSTATE_WM::ForceThreadDispatch != 1 &&
* !(3DSTATE_RASTER::ForceSampleCount != NUMRASTSAMPLES_0)
*/
/* We only enable the PMA fix if we know for certain that HiZ is enabled.
* If we don't know whether HiZ is enabled or not, we disable the PMA fix
* and there is no harm.
*
* (3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL) &&
* 3DSTATE_DEPTH_BUFFER::HIZ Enable
*/
if (!cmd_buffer->state.hiz_enabled)
return false;
/* We can't possibly know if HiZ is enabled without the depth attachment */
ASSERTED const struct anv_image_view *d_iview =
cmd_buffer->state.gfx.depth_att.iview;
assert(d_iview && d_iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
/* 3DSTATE_PS_EXTRA::PixelShaderValid */
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT))
return false;
/* !(3DSTATE_WM::EDSC_Mode == 2) */
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
if (wm_prog_data->early_fragment_tests)
return false;
/* We never use anv_pipeline for HiZ ops so this is trivially true:
* !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
* 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
* 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
* 3DSTATE_WM_HZ_OP::StencilBufferClear)
*/
/* 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE &&
* 3DSTATE_WM_DEPTH_STENCIL::StencilTestEnable
*/
const bool stc_test_en = ds->stencil.test_enable;
/* 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE &&
* (3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
* 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE)
*/
const bool stc_write_en = ds->stencil.write_enable;
/* STC_TEST_EN && 3DSTATE_PS_EXTRA::PixelShaderComputesStencil */
const bool comp_stc_en = stc_test_en && wm_prog_data->computed_stencil;
/* COMP_STC_EN || STC_WRITE_EN */
if (!(comp_stc_en || stc_write_en))
return false;
/* (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
* 3DSTATE_WM::ForceKillPix == ON ||
* 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
* 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
* 3DSTATE_PS_BLEND::AlphaTestEnable ||
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable) ||
* (3DSTATE_PS_EXTRA::Pixel Shader Computed Depth mode != PSCDEPTH_OFF)
*/
return pipeline->kill_pixel ||
wm_prog_data->computed_depth_mode != PSCDEPTH_OFF;
}
static UNUSED bool
geom_or_tess_prim_id_used(struct anv_graphics_pipeline *pipeline)
{
const struct brw_tcs_prog_data *tcs_prog_data =
anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) ?
get_tcs_prog_data(pipeline) : NULL;
const struct brw_tes_prog_data *tes_prog_data =
anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL) ?
get_tes_prog_data(pipeline) : NULL;
const struct brw_gs_prog_data *gs_prog_data =
anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) ?
get_gs_prog_data(pipeline) : NULL;
return (tcs_prog_data && tcs_prog_data->include_primitive_id) ||
(tes_prog_data && tes_prog_data->include_primitive_id) ||
(gs_prog_data && gs_prog_data->include_primitive_id);
}
static void
genX(cmd_emit_te)(struct anv_cmd_buffer *cmd_buffer)
{
const struct vk_dynamic_graphics_state *dyn =
&cmd_buffer->vk.dynamic_graphics_state;
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
if (!tes_prog_data ||
!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_TE), te);
return;
}
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_TE), te) {
te.Partitioning = tes_prog_data->partitioning;
te.TEDomain = tes_prog_data->domain;
te.TEEnable = true;
te.MaximumTessellationFactorOdd = 63.0;
te.MaximumTessellationFactorNotOdd = 64.0;
#if GFX_VERx10 >= 125
if (intel_needs_workaround(cmd_buffer->device->info, 22012785325))
te.TessellationDistributionMode = TEDMODE_RR_STRICT;
else
te.TessellationDistributionMode = TEDMODE_RR_FREE;
if (intel_needs_workaround(cmd_buffer->device->info, 14015297576)) {
/* Wa_14015297576:
*
* Disable Tessellation Distribution when primitive Id is enabled.
*/
if (pipeline->primitive_id_override ||
geom_or_tess_prim_id_used(pipeline))
te.TessellationDistributionMode = TEDMODE_OFF;
}
te.TessellationDistributionLevel = TEDLEVEL_PATCH;
/* 64_TRIANGLES */
te.SmallPatchThreshold = 3;
/* 1K_TRIANGLES */
te.TargetBlockSize = 8;
/* 1K_TRIANGLES */
te.LocalBOPAccumulatorThreshold = 1;
#endif
if (dyn->ts.domain_origin == VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT) {
te.OutputTopology = tes_prog_data->output_topology;
} else {
/* When the origin is upper-left, we have to flip the winding order */
if (tes_prog_data->output_topology == OUTPUT_TRI_CCW) {
te.OutputTopology = OUTPUT_TRI_CW;
} else if (tes_prog_data->output_topology == OUTPUT_TRI_CW) {
te.OutputTopology = OUTPUT_TRI_CCW;
} else {
te.OutputTopology = tes_prog_data->output_topology;
}
}
}
}
static void
genX(cmd_emit_sample_mask)(struct anv_cmd_buffer *cmd_buffer)
{
const struct vk_dynamic_graphics_state *dyn =
&cmd_buffer->vk.dynamic_graphics_state;
/* From the Vulkan 1.0 spec:
* If pSampleMask is NULL, it is treated as if the mask has all bits
* enabled, i.e. no coverage is removed from fragments.
*
* 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
*/
uint32_t sample_mask = 0xffff;
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
sm.SampleMask = dyn->ms.sample_mask & sample_mask;
}
}
#if GFX_VER >= 12
static uint32_t
get_cps_state_offset(struct anv_device *device, bool cps_enabled,
const struct vk_fragment_shading_rate_state *fsr)
{
if (!cps_enabled)
return device->cps_states.offset;
uint32_t offset;
static const uint32_t size_index[] = {
[1] = 0,
[2] = 1,
[4] = 2,
};
#if GFX_VERx10 >= 125
offset =
1 + /* skip disabled */
fsr->combiner_ops[0] * 5 * 3 * 3 +
fsr->combiner_ops[1] * 3 * 3 +
size_index[fsr->fragment_size.width] * 3 +
size_index[fsr->fragment_size.height];
#else
offset =
1 + /* skip disabled */
size_index[fsr->fragment_size.width] * 3 +
size_index[fsr->fragment_size.height];
#endif
offset *= MAX_VIEWPORTS * GENX(CPS_STATE_length) * 4;
return device->cps_states.offset + offset;
}
#endif /* GFX_VER >= 12 */
#if GFX_VER >= 11
static void
genX(emit_shading_rate)(struct anv_batch *batch,
const struct anv_graphics_pipeline *pipeline,
const struct vk_fragment_shading_rate_state *fsr)
{
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
const bool cps_enable = wm_prog_data &&
brw_wm_prog_data_is_coarse(wm_prog_data, 0);
#if GFX_VER == 11
anv_batch_emit(batch, GENX(3DSTATE_CPS), cps) {
cps.CoarsePixelShadingMode = cps_enable ? CPS_MODE_CONSTANT : CPS_MODE_NONE;
if (cps_enable) {
cps.MinCPSizeX = fsr->fragment_size.width;
cps.MinCPSizeY = fsr->fragment_size.height;
}
}
#elif GFX_VER >= 12
/* TODO: we can optimize this flush in the following cases:
*
* In the case where the last geometry shader emits a value that is not
* constant, we can avoid this stall because we can synchronize the
* pixel shader internally with
* 3DSTATE_PS::EnablePSDependencyOnCPsizeChange.
*
* If we know that the previous pipeline and the current one are using
* the same fragment shading rate.
*/
anv_batch_emit(batch, GENX(PIPE_CONTROL), pc) {
#if GFX_VERx10 >= 125
pc.PSSStallSyncEnable = true;
#else
pc.PSDSyncEnable = true;
#endif
}
anv_batch_emit(batch, GENX(3DSTATE_CPS_POINTERS), cps) {
struct anv_device *device = pipeline->base.device;
cps.CoarsePixelShadingStateArrayPointer =
get_cps_state_offset(device, cps_enable, fsr);
}
#endif
}
#endif /* GFX_VER >= 11 */
const uint32_t genX(vk_to_intel_blend)[] = {
[VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO,
[VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE,
[VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
[VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
[VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
[VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
[VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
[VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
[VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
[VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
[VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
};
static const uint32_t genX(vk_to_intel_blend_op)[] = {
[VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
[VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
[VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
[VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
[VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
};
void
genX(cmd_buffer_flush_dynamic_state)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
const struct vk_dynamic_graphics_state *dyn =
&cmd_buffer->vk.dynamic_graphics_state;
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VI)) {
const uint32_t ve_count =
pipeline->vs_input_elements + pipeline->svgs_count;
const uint32_t num_dwords = 1 + 2 * MAX2(1, ve_count);
uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
GENX(3DSTATE_VERTEX_ELEMENTS));
if (p) {
if (ve_count == 0) {
memcpy(p + 1, cmd_buffer->device->empty_vs_input,
sizeof(cmd_buffer->device->empty_vs_input));
} else if (ve_count == pipeline->vertex_input_elems) {
/* MESA_VK_DYNAMIC_VI is not dynamic for this pipeline, so
* everything is in pipeline->vertex_input_data and we can just
* memcpy
*/
memcpy(p + 1, pipeline->vertex_input_data, 4 * 2 * ve_count);
} else {
/* Use dyn->vi to emit the dynamic VERTEX_ELEMENT_STATE input. */
genX(emit_vertex_input)(&cmd_buffer->batch, p + 1,
pipeline, dyn->vi);
/* Then append the VERTEX_ELEMENT_STATE for the draw parameters */
memcpy(p + 1 + 2 * pipeline->vs_input_elements,
pipeline->vertex_input_data,
4 * 2 * pipeline->vertex_input_elems);
}
}
}
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_TS_DOMAIN_ORIGIN)) {
genX(cmd_emit_te)(cmd_buffer);
}
#if GFX_VER >= 11
if (cmd_buffer->device->vk.enabled_extensions.KHR_fragment_shading_rate &&
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_FSR))
genX(emit_shading_rate)(&cmd_buffer->batch, pipeline, &dyn->fsr);
#endif /* GFX_VER >= 11 */
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_LINE_WIDTH) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_PROVOKING_VERTEX)) {
uint32_t sf_dw[GENX(3DSTATE_SF_length)];
struct GENX(3DSTATE_SF) sf = {
GENX(3DSTATE_SF_header),
};
ANV_SETUP_PROVOKING_VERTEX(sf, dyn->rs.provoking_vertex);
sf.LineWidth = dyn->rs.line.width,
GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf);
anv_batch_emit_merge(&cmd_buffer->batch, sf_dw, pipeline->gfx8.sf);
}
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_CULL_MODE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_FRONT_FACE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_DEPTH_BIAS_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_DEPTH_BIAS_FACTORS) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_POLYGON_MODE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_LINE_MODE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_DEPTH_CLIP_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_DEPTH_CLAMP_ENABLE)) {
/* Take dynamic primitive topology in to account with
* 3DSTATE_RASTER::APIMode
* 3DSTATE_RASTER::DXMultisampleRasterizationEnable
* 3DSTATE_RASTER::AntialiasingEnable
*/
uint32_t api_mode = 0;
bool msaa_raster_enable = false;
VkLineRasterizationModeEXT line_mode =
anv_line_rasterization_mode(dyn->rs.line.mode,
pipeline->rasterization_samples);
VkPolygonMode dynamic_raster_mode =
genX(raster_polygon_mode)(cmd_buffer->state.gfx.pipeline,
dyn->rs.polygon_mode,
dyn->ia.primitive_topology);
genX(rasterization_mode)(dynamic_raster_mode,
line_mode, dyn->rs.line.width,
&api_mode, &msaa_raster_enable);
/* From the Browadwell PRM, Volume 2, documentation for
* 3DSTATE_RASTER, "Antialiasing Enable":
*
* "This field must be disabled if any of the render targets
* have integer (UINT or SINT) surface format."
*
* Additionally internal documentation for Gfx12+ states:
*
* "This bit MUST not be set when NUM_MULTISAMPLES > 1 OR
* FORCED_SAMPLE_COUNT > 1."
*/
bool aa_enable =
anv_rasterization_aa_mode(dynamic_raster_mode, line_mode) &&
!cmd_buffer->state.gfx.has_uint_rt &&
!(GFX_VER >= 12 && cmd_buffer->state.gfx.samples > 1);
bool depth_clip_enable =
vk_rasterization_state_depth_clip_enable(&dyn->rs);
uint32_t raster_dw[GENX(3DSTATE_RASTER_length)];
struct GENX(3DSTATE_RASTER) raster = {
GENX(3DSTATE_RASTER_header),
.APIMode = api_mode,
.DXMultisampleRasterizationEnable = msaa_raster_enable,
.AntialiasingEnable = aa_enable,
.CullMode = genX(vk_to_intel_cullmode)[dyn->rs.cull_mode],
.FrontWinding = genX(vk_to_intel_front_face)[dyn->rs.front_face],
.GlobalDepthOffsetEnableSolid = dyn->rs.depth_bias.enable,
.GlobalDepthOffsetEnableWireframe = dyn->rs.depth_bias.enable,
.GlobalDepthOffsetEnablePoint = dyn->rs.depth_bias.enable,
.GlobalDepthOffsetConstant = dyn->rs.depth_bias.constant,
.GlobalDepthOffsetScale = dyn->rs.depth_bias.slope,
.GlobalDepthOffsetClamp = dyn->rs.depth_bias.clamp,
.FrontFaceFillMode = genX(vk_to_intel_fillmode)[dyn->rs.polygon_mode],
.BackFaceFillMode = genX(vk_to_intel_fillmode)[dyn->rs.polygon_mode],
.ViewportZFarClipTestEnable = depth_clip_enable,
.ViewportZNearClipTestEnable = depth_clip_enable,
};
GENX(3DSTATE_RASTER_pack)(NULL, raster_dw, &raster);
anv_batch_emit_merge(&cmd_buffer->batch, raster_dw,
pipeline->gfx8.raster);
}
/* Stencil reference values moved from COLOR_CALC_STATE in gfx8 to
* 3DSTATE_WM_DEPTH_STENCIL in gfx9. That means the dirty bits gets split
* across different state packets for gfx8 and gfx9. We handle that by
* using a big old #if switch here.
*/
if (BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_BLEND_CONSTANTS)) {
struct anv_state cc_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
GENX(COLOR_CALC_STATE_length) * 4,
64);
struct GENX(COLOR_CALC_STATE) cc = {
.BlendConstantColorRed = dyn->cb.blend_constants[0],
.BlendConstantColorGreen = dyn->cb.blend_constants[1],
.BlendConstantColorBlue = dyn->cb.blend_constants[2],
.BlendConstantColorAlpha = dyn->cb.blend_constants[3],
};
GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), ccp) {
ccp.ColorCalcStatePointer = cc_state.offset;
ccp.ColorCalcStatePointerValid = true;
}
}
if ((cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_MS_SAMPLE_MASK)))
genX(cmd_emit_sample_mask)(cmd_buffer);
if ((cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_RENDER_TARGETS)) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_DEPTH_TEST_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_DEPTH_WRITE_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_DEPTH_COMPARE_OP) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_STENCIL_TEST_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_STENCIL_OP) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_STENCIL_COMPARE_MASK) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_STENCIL_WRITE_MASK) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_STENCIL_REFERENCE)) {
VkImageAspectFlags ds_aspects = 0;
if (cmd_buffer->state.gfx.depth_att.vk_format != VK_FORMAT_UNDEFINED)
ds_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
if (cmd_buffer->state.gfx.stencil_att.vk_format != VK_FORMAT_UNDEFINED)
ds_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
struct vk_depth_stencil_state opt_ds = dyn->ds;
vk_optimize_depth_stencil_state(&opt_ds, ds_aspects, true);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_WM_DEPTH_STENCIL), ds) {
ds.DoubleSidedStencilEnable = true;
ds.StencilTestMask = opt_ds.stencil.front.compare_mask & 0xff;
ds.StencilWriteMask = opt_ds.stencil.front.write_mask & 0xff;
ds.BackfaceStencilTestMask = opt_ds.stencil.back.compare_mask & 0xff;
ds.BackfaceStencilWriteMask = opt_ds.stencil.back.write_mask & 0xff;
ds.StencilReferenceValue = opt_ds.stencil.front.reference & 0xff;
ds.BackfaceStencilReferenceValue = opt_ds.stencil.back.reference & 0xff;
ds.DepthTestEnable = opt_ds.depth.test_enable;
ds.DepthBufferWriteEnable = opt_ds.depth.write_enable;
ds.DepthTestFunction = genX(vk_to_intel_compare_op)[opt_ds.depth.compare_op];
ds.StencilTestEnable = opt_ds.stencil.test_enable;
ds.StencilBufferWriteEnable = opt_ds.stencil.write_enable;
ds.StencilFailOp = genX(vk_to_intel_stencil_op)[opt_ds.stencil.front.op.fail];
ds.StencilPassDepthPassOp = genX(vk_to_intel_stencil_op)[opt_ds.stencil.front.op.pass];
ds.StencilPassDepthFailOp = genX(vk_to_intel_stencil_op)[opt_ds.stencil.front.op.depth_fail];
ds.StencilTestFunction = genX(vk_to_intel_compare_op)[opt_ds.stencil.front.op.compare];
ds.BackfaceStencilFailOp = genX(vk_to_intel_stencil_op)[opt_ds.stencil.back.op.fail];
ds.BackfaceStencilPassDepthPassOp = genX(vk_to_intel_stencil_op)[opt_ds.stencil.back.op.pass];
ds.BackfaceStencilPassDepthFailOp = genX(vk_to_intel_stencil_op)[opt_ds.stencil.back.op.depth_fail];
ds.BackfaceStencilTestFunction = genX(vk_to_intel_compare_op)[opt_ds.stencil.back.op.compare];
}
const bool pma = want_stencil_pma_fix(cmd_buffer, &opt_ds);
genX(cmd_buffer_enable_pma_fix)(cmd_buffer, pma);
}
#if GFX_VER >= 12
if (BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_DEPTH_BOUNDS_TEST_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_DS_DEPTH_BOUNDS_TEST_BOUNDS)) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BOUNDS), db) {
db.DepthBoundsTestEnable = dyn->ds.depth.bounds_test.enable;
db.DepthBoundsTestMinValue = dyn->ds.depth.bounds_test.min;
db.DepthBoundsTestMaxValue = dyn->ds.depth.bounds_test.max;
}
}
#endif
if (BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_LINE_STIPPLE)) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_LINE_STIPPLE), ls) {
ls.LineStipplePattern = dyn->rs.line.stipple.pattern;
ls.LineStippleInverseRepeatCount =
1.0f / MAX2(1, dyn->rs.line.stipple.factor);
ls.LineStippleRepeatCount = dyn->rs.line.stipple.factor;
}
}
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RESTART_INDEX) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE)) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF), vf) {
#if GFX_VERx10 >= 125
vf.GeometryDistributionEnable = true;
#endif
vf.IndexedDrawCutIndexEnable = dyn->ia.primitive_restart_enable;
vf.CutIndex = cmd_buffer->state.gfx.restart_index;
}
}
if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_INDEX_BUFFER) {
struct anv_buffer *buffer = cmd_buffer->state.gfx.index_buffer;
uint32_t offset = cmd_buffer->state.gfx.index_offset;
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
ib.IndexFormat = cmd_buffer->state.gfx.index_type;
ib.MOCS = anv_mocs(cmd_buffer->device,
buffer->address.bo,
ISL_SURF_USAGE_INDEX_BUFFER_BIT);
#if GFX_VER >= 12
ib.L3BypassDisable = true;
#endif
ib.BufferStartingAddress = anv_address_add(buffer->address, offset);
ib.BufferSize = vk_buffer_range(&buffer->vk, offset,
VK_WHOLE_SIZE);
}
}
#if GFX_VERx10 >= 125
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE)) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VFG), vfg) {
/* If 3DSTATE_TE: TE Enable == 1 then RR_STRICT else RR_FREE*/
vfg.DistributionMode =
anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL) ? RR_STRICT :
RR_FREE;
vfg.DistributionGranularity = BatchLevelGranularity;
/* Wa_14014890652 */
if (intel_device_info_is_dg2(cmd_buffer->device->info))
vfg.GranularityThresholdDisable = 1;
vfg.ListCutIndexEnable = dyn->ia.primitive_restart_enable;
/* 192 vertices for TRILIST_ADJ */
vfg.ListNBatchSizeScale = 0;
/* Batch size of 384 vertices */
vfg.List3BatchSizeScale = 2;
/* Batch size of 128 vertices */
vfg.List2BatchSizeScale = 1;
/* Batch size of 128 vertices */
vfg.List1BatchSizeScale = 2;
/* Batch size of 256 vertices for STRIP topologies */
vfg.StripBatchSizeScale = 3;
/* 192 control points for PATCHLIST_3 */
vfg.PatchBatchSizeScale = 1;
/* 192 control points for PATCHLIST_3 */
vfg.PatchBatchSizeMultiplier = 31;
}
}
#endif
if (pipeline->base.device->vk.enabled_extensions.EXT_sample_locations &&
(BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_MS_SAMPLE_LOCATIONS) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_MS_SAMPLE_LOCATIONS_ENABLE))) {
genX(emit_sample_pattern)(&cmd_buffer->batch,
dyn->ms.sample_locations_enable ?
dyn->ms.sample_locations : NULL);
}
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_COLOR_WRITE_ENABLES) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_LINE_STIPPLE_ENABLE)) {
/* 3DSTATE_WM in the hope we can avoid spawning fragment shaders
* threads.
*/
uint32_t wm_dwords[GENX(3DSTATE_WM_length)];
struct GENX(3DSTATE_WM) wm = {
GENX(3DSTATE_WM_header),
.ForceThreadDispatchEnable = anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT) &&
(pipeline->force_fragment_thread_dispatch ||
anv_cmd_buffer_all_color_write_masked(cmd_buffer)) ?
ForceON : 0,
.LineStippleEnable = dyn->rs.line.stipple.enable,
};
GENX(3DSTATE_WM_pack)(NULL, wm_dwords, &wm);
anv_batch_emit_merge(&cmd_buffer->batch, wm_dwords, pipeline->gfx8.wm);
}
if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_LOGIC_OP) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_COLOR_WRITE_ENABLES) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_LOGIC_OP_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_MS_ALPHA_TO_ONE_ENABLE) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_WRITE_MASKS) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_BLEND_ENABLES) ||
BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_CB_BLEND_EQUATIONS)) {
const uint8_t color_writes = dyn->cb.color_write_enables;
const struct anv_cmd_graphics_state *state = &cmd_buffer->state.gfx;
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
bool has_writeable_rt =
anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT) &&
(color_writes & ((1u << state->color_att_count) - 1)) != 0;
uint32_t num_dwords = GENX(BLEND_STATE_length) +
GENX(BLEND_STATE_ENTRY_length) * MAX_RTS;
struct anv_state blend_states =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
num_dwords * 4,
64);
uint32_t *dws = blend_states.map;
struct GENX(BLEND_STATE) blend_state = {
.AlphaToCoverageEnable = dyn->ms.alpha_to_coverage_enable,
.AlphaToOneEnable = dyn->ms.alpha_to_one_enable,
};
/* Jump to blend entries. */
dws += GENX(BLEND_STATE_length);
struct GENX(BLEND_STATE_ENTRY) bs0 = { 0 };
for (uint32_t i = 0; i < MAX_RTS; i++) {
/* Disable anything above the current number of color attachments. */
bool write_disabled = i >= cmd_buffer->state.gfx.color_att_count ||
(color_writes & BITFIELD_BIT(i)) == 0;
struct GENX(BLEND_STATE_ENTRY) entry = {
.WriteDisableAlpha = write_disabled ||
(dyn->cb.attachments[i].write_mask &
VK_COLOR_COMPONENT_A_BIT) == 0,
.WriteDisableRed = write_disabled ||
(dyn->cb.attachments[i].write_mask &
VK_COLOR_COMPONENT_R_BIT) == 0,
.WriteDisableGreen = write_disabled ||
(dyn->cb.attachments[i].write_mask &
VK_COLOR_COMPONENT_G_BIT) == 0,
.WriteDisableBlue = write_disabled ||
(dyn->cb.attachments[i].write_mask &
VK_COLOR_COMPONENT_B_BIT) == 0,
/* Vulkan specification 1.2.168, VkLogicOp:
*
* "Logical operations are controlled by the logicOpEnable and
* logicOp members of VkPipelineColorBlendStateCreateInfo. If
* logicOpEnable is VK_TRUE, then a logical operation selected
* by logicOp is applied between each color attachment and the
* fragment’s corresponding output value, and blending of all
* attachments is treated as if it were disabled."
*
* From the Broadwell PRM Volume 2d: Command Reference:
* Structures: BLEND_STATE_ENTRY:
*
* "Enabling LogicOp and Color Buffer Blending at the same time
* is UNDEFINED"
*/
.LogicOpFunction = genX(vk_to_intel_logic_op)[dyn->cb.logic_op],
.LogicOpEnable = dyn->cb.logic_op_enable,
.ColorBufferBlendEnable =
!dyn->cb.logic_op_enable && dyn->cb.attachments[i].blend_enable,
.ColorClampRange = COLORCLAMP_RTFORMAT,
.PreBlendColorClampEnable = true,
.PostBlendColorClampEnable = true,
};
/* Setup blend equation. */
entry.SourceBlendFactor =
genX(vk_to_intel_blend)[dyn->cb.attachments[i].src_color_blend_factor];
entry.DestinationBlendFactor =
genX(vk_to_intel_blend)[dyn->cb.attachments[i].dst_color_blend_factor];
entry.ColorBlendFunction =
genX(vk_to_intel_blend_op)[dyn->cb.attachments[i].color_blend_op];
entry.SourceAlphaBlendFactor =
genX(vk_to_intel_blend)[dyn->cb.attachments[i].src_alpha_blend_factor];
entry.DestinationAlphaBlendFactor =
genX(vk_to_intel_blend)[dyn->cb.attachments[i].dst_alpha_blend_factor];
entry.AlphaBlendFunction =
genX(vk_to_intel_blend_op)[dyn->cb.attachments[i].alpha_blend_op];
if (dyn->cb.attachments[i].src_color_blend_factor !=
dyn->cb.attachments[i].src_alpha_blend_factor ||
dyn->cb.attachments[i].dst_color_blend_factor !=
dyn->cb.attachments[i].dst_alpha_blend_factor ||
dyn->cb.attachments[i].color_blend_op !=
dyn->cb.attachments[i].alpha_blend_op) {
blend_state.IndependentAlphaBlendEnable = true;
}
/* The Dual Source Blending documentation says:
*
* "If SRC1 is included in a src/dst blend factor and
* a DualSource RT Write message is not used, results
* are UNDEFINED. (This reflects the same restriction in DX APIs,
* where undefined results are produced if “o1” is not written
* by a PS – there are no default values defined)."
*
* There is no way to gracefully fix this undefined situation
* so we just disable the blending to prevent possible issues.
*/
if (wm_prog_data && !wm_prog_data->dual_src_blend &&
anv_is_dual_src_blend_equation(&dyn->cb.attachments[i])) {
entry.ColorBufferBlendEnable = false;
}
/* Our hardware applies the blend factor prior to the blend function
* regardless of what function is used. Technically, this means the
* hardware can do MORE than GL or Vulkan specify. However, it also
* means that, for MIN and MAX, we have to stomp the blend factor to
* ONE to make it a no-op.
*/
if (dyn->cb.attachments[i].color_blend_op == VK_BLEND_OP_MIN ||
dyn->cb.attachments[i].color_blend_op == VK_BLEND_OP_MAX) {
entry.SourceBlendFactor = BLENDFACTOR_ONE;
entry.DestinationBlendFactor = BLENDFACTOR_ONE;
}
if (dyn->cb.attachments[i].alpha_blend_op == VK_BLEND_OP_MIN ||
dyn->cb.attachments[i].alpha_blend_op == VK_BLEND_OP_MAX) {
entry.SourceAlphaBlendFactor = BLENDFACTOR_ONE;
entry.DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
}
GENX(BLEND_STATE_ENTRY_pack)(NULL, dws, &entry);
if (i == 0)
bs0 = entry;
dws += GENX(BLEND_STATE_ENTRY_length);
}
/* Generate blend state after entries. */
GENX(BLEND_STATE_pack)(NULL, blend_states.map, &blend_state);
/* 3DSTATE_PS_BLEND to be consistent with the rest of the
* BLEND_STATE_ENTRY.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_PS_BLEND), blend) {
blend.HasWriteableRT = has_writeable_rt,
blend.ColorBufferBlendEnable = bs0.ColorBufferBlendEnable;
blend.SourceAlphaBlendFactor = bs0.SourceAlphaBlendFactor;
blend.DestinationAlphaBlendFactor = bs0.DestinationAlphaBlendFactor;
blend.SourceBlendFactor = bs0.SourceBlendFactor;
blend.DestinationBlendFactor = bs0.DestinationBlendFactor;
blend.AlphaTestEnable = false;
blend.IndependentAlphaBlendEnable = blend_state.IndependentAlphaBlendEnable;
blend.AlphaToCoverageEnable = dyn->ms.alpha_to_coverage_enable;
}
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
bsp.BlendStatePointer = blend_states.offset;
bsp.BlendStatePointerValid = true;
}
}
/* When we're done, there is no more dirty gfx state. */
vk_dynamic_graphics_state_clear_dirty(&cmd_buffer->vk.dynamic_graphics_state);
cmd_buffer->state.gfx.dirty = 0;
}
|